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1 Overview

In the last lecture, we began talking about the Stochastic Block Model (SBM) and conditions for
community recovery in this model. In this lecture, we establish some results regarding almost
exact recovery in the SBM. Initially we recap what was covered in the previous lecture, setup the
problem, and then move on to the key results.

2 Setup

We are concerned with recovering cluster/community assignments for n vertices in a graph. The
vertices are partitioned into two clusters of equal sizes (n/2). Pairs of vertices within the same
cluster/community have an edge between them with probability p = qin, whereas the corresponding
probability for edges between nodes that belong to different clusters is p = qout. We observe
an instance of this random graph, where nodes have edges between them with the probabilities
mentioned above.

Denote by (X,G) ∼ SBM(n, qin, qout) the obtained output, where X is the cluster assignment for
each node, and G is the resulting graph.

3 Community recovery by spectral clustering

3.1 Exact recovery

We state below a theorem from [ABH16], that characterizes the conditions for exact recovery to be
possible.

Theorem 1. Exact recovery in the SBM model is possible if we have the following, qin ≈ alogn
n ,

qout ≈ blogn
n with the relationship |

√
a−
√
b| >

√
2. It is not possible if we have |

√
a−
√
b| <

√
2.

3.2 Spectral clustering: a special case

Let us look at the spectral clustering algorithm, the following background will be necessary,

1. Add self loops to the graph, each being present with probability qin

2. Let A′ be the adjacency matrix that has been so modified
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3. Denote by A the matrix A = A′ − qin+qout
2

[
1n/2
−1n/2

] [
1n/2
−1n/2

]T

4. Note that EA = qin−qout
2

[
1n/2
−1n/2

] [
1n/2
−1n/2

]T

Here we have assumed that the first n/2 vertices belong to the first community and the next n/2
belong to the second community. This is without loss of generality.

We now compute
ˇ
φ, the leading eigenvector of A. Note that the corresponding eigenvector of EA

is
ˇ
φ̄ = 1√

n

[
1n/2
−1n/2

]
. We can then estimate the community assignments by using

ˇ
φ, in the following

manner,

sign(
ˇ
φ) =

{
+1 φi ≥ 0

−1 φi < 0

Observation 2. In the Assignment, note that we did not have access to the values of qin and qout.

Observation 3. This estimator does not use the fact that the communities are balanced anywhere.

4 Almost exact recovery

We first obtain “almost exact” recovery, as established by the following theorem (Theorem 3.8 from
[CCFM21]).

Theorem 4. Under the conditions qin & logn
n and

√
qin
n = o(qin− qout), w.p. exceeding 1−n−8 the

spectral method achieves almost exact recovery, i.e.
∑n

i=1 1{xi=x∗i } = n− o(n).

This means that the number of nodes that are mis-clustered as a fraction of n tend to vanish.

We show this by an application of Davis-Kahan, as well as a result from [BH16] about the matrix
norm of a matrix with bounded and centered entries.

Theorem 5. Consider a symmetric matrix X = [Xi,j ] ∈ Rn×n whose entries are independent and
obey, EXi,j = 0 and Xi,j ≤ B, ∀1 ≤ i, j ≤ n, EX2

i,j ≤ σ2 then w.p. we have ||X|| . σ
√
n+B

√
log n.

Note that if we consider the matrix A− EA, it satisfies these properties, since,

• The entries are centered

• |Ai,j − EAi,j | ≤ 1

• E[Ai,j − EAi,j ]2 ≤ qin ∨ qout since it is essentially a centered Bernoulli random variable.

Applying this theorem, we obtain,
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||A− EA|| ≤ √qinn+
√
logn

≈ √qinn

Now, applying Davis-Kahan to show almost exact recovery,

min
s∈{−1,+1}

||sφ− φ̄||2 ≤
||A− EA||

λ̄
,

λ̄ =
n(qin − qout)

2

min
s∈{−1,+1}

||sφ− φ̄||2 ≤
2
√
qinn

n(qin − qout)
= o(1)

Where in the last step, we apply the second property stated in the theorem.

Now, we make a claim that can be obtained from this result,

Claim 6. Let N = {|φi− φ̄i| > 1/
√
n. Note that if we have a misclassification, that is, sign(φi) 6=

sign(φ̄i) then i ∈ N . We can see from the result that we have obtained above that |N | = ||φ−φ̄||2
1/n =

o(n).

5 Exact recovery: a key lemma

We will sketch the proof of the exact recovery result next time. To obtain the result, we use a key
lemma regarding sums of Bernoulli random variables.

Lemma 7 (Lemma 8 in [AFWZ20]). Let {Wi}n/2i=1 ∼ Bern(qin) i.i.d. and similarly, {Zi}n/2i=1 ∼
Bern(qout) i.i.d. For any ε > 0 we have,

P (
∑

Wi −
∑

Zi ≤ ε log n) ≤ n−
(
√
a−
√
b)2

2
+ε log

√
a
b

Observation 8. Note that here the result we require is in terms of the difference of these bernoulli
sums. We can think of this result as characterizing the event that any particular node has more
edges to nodes that are not part of its community, compared to edges to nodes that are part of the
same community. In case a particular node does have more edges to non-cluster nodes, it becomes
hard for any algorithm to distinguish between both assignments of clusters to this node.
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