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1 Overview

In a previous lecture, we stated the following theorem:

Theorem 1. In SSBM(n, qin = a logn
n , qout = b logn

n ), where a > b, exact recovery

• is possible if (
√
a−
√
b)2 > 2

• is not possible if (
√
a−
√
b)2 < 2

In this lecture, we sketch the proof of the first half of the theorem. The lecture is based on [Abb18].

Remark. This result is somewhat different from what we have done this semester. Here we derive
a tight result by a tailored argument for a specific. One must also be more careful with some of
the constants appearing in the proof.

2 A Key Lemma

Lemma 2 (Lemma 8 in [AFWZ20]). In the setting above,

P
{

Bin(
n

2
, qin)− Bin(

n

2
, qout) ≤ ε log n

}
≤ n−

(
√
a−
√
b)2

2
+ε log

√
a
b ,

where the binomial random variables are independent.

Remark. Note the absence of constants in the exponent on the right-hand side. In fact, the in-
equality can be strengthened to equality P{· · · } = n−(··· )+o(1), which plays a role in proving the
second half of Theorem 1 (impossibility result).

Sketch of Proof. Apply Markov inequality to exp
(
λ ·
(
Bin(n2 , qin)− Bin(n2 , qout)

))
and take λ =

− log
√

a
b . Use the explicit moment-generating function for the binomial.

3 A Technical Proposition

In this section we state a key technical proposition.

Let A′ be the adjacent matrix with self-loops (random zeros/ones on diagonal following Ber(qin)).

Let A := A′ − n qin+qout
2 1n1

T
n and Ā := EA = n qin−qout2 φ̄̄φ̄φφ̄̄φ̄φT , where φ̄̄φ̄φ = 1√

n
=

[
1n

2

−1n
2

]
.
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We already proved that ‖φφφ − φ̄̄φ̄φ‖ . 1√
logn

on the event E := {‖A − Ā‖2 .
√

log n} with PE ≥
1 − n−8. For exact recovery, a first attempt would be to show that φφφ and φ̄̄φ̄φ are close enough in
each component, i.e., that with high probability,

∣∣φφφi − φ̄̄φ̄φi∣∣ ?
<
∣∣φ̄̄φ̄φi∣∣ , ∀i ∈ [n] (1)

⇐⇒‖φφφ− φ̄̄φ̄φ‖∞
?
< 1/

√
n (2)

This would imply that rounding the components of φφφ to their signs would produce with high
probability the same signs as φ̄̄φ̄φ, which solves exact recovery.

Unfortunately the above inequality does not hold all the way down to the exact recovery threshold,
which makes the problem more difficult. However, note that it is not necessary to have (1) in order
to obtain the correct sign by rounding φφφ : one can have a large gap for

∣∣φφφi − φ̄̄φ̄φi∣∣ which still produces
the good sign as long as this gap in “on the right side”, i.e., φφφi can be much larger than φ̄̄φ̄φi if φ̄̄φ̄φi is
positive and φφφi can be much smaller than φ̄̄φ̄φi if φ̄̄φ̄φi is negative.

Proposition 3 ([Abb18, Theorem 4.10]). For large enough n,

P
(

min
s=±1

‖sφφφ−Aφ̄̄φ̄φ/λ̄‖∞ ≤
c√

n log log n

)
≥ 1− Cn−2

Remark. A notable difference from Davis-Kahan-based approach is the Aφ̄̄φ̄φ/λ̄ on the LHS instead
of φ̄̄φ̄φ. Recall that φφφ is the leading eigenvector of A. So, by the power method, Aφ̄̄φ̄φ (normalized) is
closer to φφφ while having properties similar to φ̄̄φ̄φ in analysis (specifically its signs). To analyze it, we
will see later that entries of Aφ̄̄φ̄φ behave like Bin(n2 , qin)− Bin(n2 , qout).

We will not prove this theorem here. We mention one key idea that comes up in the analysis (the
leave-one-out trick). First, we use triangle inequality to split into two terms

‖φφφ−Aφ̄̄φ̄φ/λ̄‖∞ ≤ ‖φφφ−Aφφφ/λ̄‖∞ + ‖A(φφφ− φ̄̄φ̄φ)/λ̄‖∞ = ‖φφφ− λφφφ/λ̄‖∞ + ‖A(φφφ− φ̄̄φ̄φ)/λ̄‖∞

The first term is easy to bound with Weyl’s inequality, while the second term is trickier. One
difficulty in estimating ‖A(φφφ− φ̄̄φ̄φ)‖∞ is that A and (φφφ− φ̄̄φ̄φ) are dependent since φφφ is an eigenvector
of A. Thus, to bound the m-th component of A(φφφ − φ̄̄φ̄φ), namely Am(φφφ − φ̄̄φ̄φ), where Am is the
m-row of A, we cannot use directly a concentration result that applies to expressions of the kind
Amw where w is an independent test vector. To decouple the dependencies, we use a leave-one-out
technique.

Define n auxiliary matrices
{
A(m)

}n
m=1

⊆ Rn×n as follows: for any m ∈ [n], let(
A(m)

)
ij

= Aijδ{i 6=m,j 6=m}, ∀i, j ∈ [n]

where δA is the indicator function on the event A. Therefore, A(m) is obtained from A by zeroing
out the m-th row and column. Let φφφ(m) be the leading eigenvector of A(m). We can write

(A(φφφ− φ̄̄φ̄φ))m = Am(φφφ− φ̄̄φ̄φ) = Am

(
φφφ−φφφ(m)

)
+Am

(
φφφ(m) − φ̄̄φ̄φ

)
2



and thus ∣∣(A(φφφ− φ̄̄φ̄φ))m
∣∣ ≤ ∣∣∣Am (φφφ−φφφ(m)

)∣∣∣+
∣∣∣Am (φφφ(m) − φ̄̄φ̄φ

)∣∣∣
≤ ‖Am‖2

∥∥∥φφφ−φφφ(m)
∥∥∥

2
+
∣∣∣Am (φφφ(m) − φ̄̄φ̄φ

)∣∣∣
The first term is very small since Am and A are very close and so do φφφ(m) and φφφ. Note that the
second term is better-behaved now since Am and φφφ(m)− φ̄̄φ̄φ are independent. That second term can
be analyzed using a tailored application of Markov’s inequality (see Lemma 7 in [AFWZ20]).

4 Putting everything together

Now we assume
(
√
a−
√
b)2 > 2 (3)

‖A− Ā‖2 .
√

log n i.e. on event E (4)

min
s=±1

‖sφφφ−Aφ̄̄φ̄φ/λ̄‖∞ ≤
c√

n log logn
(5)

We sketch the proof of Theorem 1 given Lemma 2 and Proposition 3.

Sketch of Proof of Theorem 1. Assume conditions (3), (4) and (5) hold. Then it suffices to prove
that F+ ∩ F− happens with probability 1− o(1), where

F+ = { 1

λ̄
(Aφ̄̄φ̄φ)i ≥

2ε

(a− b)
√
n

for all i = 1 . . . n/2}

F− = { 1

λ̄
(Aφ̄̄φ̄φ)i ≤ −

2ε

(a− b)
√
n

for all i = n/2 + 1 . . . n}.

Now we need to show that

P
(∣∣(Aφ̄̄φ̄φ/λ̄)1

∣∣ ≥ 2ε

(a− b)
√
n

)
≤ 1

n1+Ω(1)
,

and that is exactly what Lemma 2 implies, since

(Aφ̄̄φ̄φ)i
d
= (A′φ̄̄φ̄φ)i

d
=

1√
n

(
Bin(

n

2
, qin)− Bin(

n

2
, qout)

)
and

λ̄ =
n(qin − qout)

2
=
a− b

2
log n.

Finally, it remains to choose ε small enough that

n−
(
√
a−
√
b)2

2
+ε log

√
a
b = n−(1+Ω(1)),

which is equivalent to make

−(
√
a−
√
b)2

2
+ ε log

√
a

b
< −1,

which is possible because inequality (3) is strict.
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