MATH888: High-dimensional probability and statistics

Fall 2021

Lecture 5 — Sept. 17th, 2021

Sebastien Roch, UW-Madison

Scribe: Liu Yang

1 Overview

In the last lecture we talked about the bias-variance decomposition in the mean squared loss, and introduce the Cramer-Rao bound.

In this lecture we will prove the Cramer-Rao bound.

2 Unbiased Estimator

Definition 1. The bias of $\hat{\theta}$ (with respect to distribution P) is

$$\operatorname{bias}_{P}(\hat{\theta}) = \mathbb{E}_{P}(\hat{\theta}) - \theta(P)$$

we say that $\hat{\theta}$ is unbiased if $\mathbb{E}_P(\hat{\theta}) = \theta(P)$, $\forall P \in \mathcal{P}$.

Example: Let the true parameter be θ^* . Defined $\hat{\gamma}^{(n)}(X_1, \dots, X_n) = g(\theta^*)$, where $g(\theta^*) \neq \theta^*$. Then $g(\theta^*)$ is a biased estimator since

$$\mathbb{E}_{P(\cdot,\theta^*)}[\hat{\gamma}^{(n)}] = g(\theta^*).$$

We will use the concept "unbiased estimator" in the Cramer-Rao bound.

3 Cramer-Rao Bound (Special Case)

In the following, we will give the statement of Cramer-Rao bound for θ dimension p = 1 (θ is a scalar).

First, we define the required notation:

- 1. \mathcal{X} is a finite sample space.
- 2. The parameter space $\Theta \subseteq \mathbb{R}$ is open.
- 3. $\mathcal{P} = \{P(\cdot, \theta), \theta \in \Theta\}$ where $P(x, \theta)$ is the probability of observing sample x.
- 4. $\frac{\partial}{\partial \theta}P(x,\theta)$ exists $\forall x,\theta$ (i.e. $P(x;\theta)$ is continuously differentiable for all x w.r.t. θ).
- 5. $x_1, \dots, x_n \text{ iid } \sim P(\cdot, \theta)$.

6.
$$P(x,\theta) > 0 \quad \forall x, \theta$$

Theorem 2. Cramer-Rao Bound. If $\hat{\gamma}^{(n)}(x)$ is an unbiased estimator of $g(\theta)$ where g is continuous and differentiable. Then

$$\underbrace{\operatorname{Var}(\hat{\gamma}^{(n)}(\boldsymbol{x}))}_{\mathrm{MSE}(\hat{\gamma}^{(n)}(\boldsymbol{x}))} \ge \frac{[g'(\theta)]^2}{n \underbrace{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log P(x_1, \theta)\right)^2\right]}_{Fisher\ Information\ matrix\ I(\theta)}}$$
(1)

Remark 3. The $Var(\hat{\gamma}^{(n)}(\boldsymbol{x}))$ is same as $MSE(\hat{\gamma}^{(n)}(\boldsymbol{x}))$. This is because MSE of an estimator can be decomposed into mean and variance:

$$MSE(\hat{\gamma}^{(n)}) = bias(\hat{\gamma}^{(n)})^2 + Var(\hat{\gamma}^{(n)})$$

As $\hat{\gamma}^{(n)}$ is an unbiased estimator, we know bias $(\hat{\gamma}^{(n)}) = 0$, thus

$$MSE(\hat{\gamma}^{(n)}) = Var(\hat{\gamma}^{(n)}).$$

Remark 4. The point of finding a lower bound for $Var(\hat{\gamma}^{(n)}(x))$ is: if we successfully prove the upper bound is same as the lower bound, we can stop looking for a better estimator any more.

Proof. Let $\mathbf{x} = (x_1, \dots, x_n)$ with $x_i \in \mathcal{X}$, $P^{(n)}(\mathbf{x}, \theta) = \prod_{i=1}^n P(x_i, \theta)$. Recall the Cauchy-Schwarz inequality:

$$\begin{split} [\operatorname{Cov}(X,Y)]^2 &= \left[\mathbb{E} \left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right]^2 \\ &= \left[\langle X - \mathbb{E}[X], Y - \mathbb{E}[Y] \rangle \right]^2 \\ &\leq \langle X - \mathbb{E}[X], X - \mathbb{E}[X] \rangle \langle Y - \mathbb{E}[Y], Y - \mathbb{E}[Y] \rangle \quad (apply \ the \ Cauchy-Schwarz \ inequality) \\ &= \mathbb{E} \left((X - \mathbb{E}[X])^2 \right) \mathbb{E} \left((Y - \mathbb{E}[Y])^2 \right) \\ &= \operatorname{Var}(X) \operatorname{Var}(Y) \end{split}$$

Then for any $\Psi(x,\theta)$,

$$[\operatorname{Cov}(\hat{\gamma}^{(n)}(\boldsymbol{x}), \Psi(\boldsymbol{x}, \boldsymbol{\theta}))]^2 \leq \operatorname{Var}(\hat{\gamma}^{(n)}(\boldsymbol{x})) \operatorname{Var}(\Psi(\boldsymbol{x}, \boldsymbol{\theta}))$$

which implies

$$\operatorname{Var}(\hat{\gamma}^{(n)}(\boldsymbol{x})) \ge \frac{\left[\operatorname{Cov}(\hat{\gamma}^{(n)}(\boldsymbol{x}), \Psi(\boldsymbol{x}, \theta))\right]^2}{\operatorname{Var}(\Psi(\boldsymbol{x}, \theta))}$$
(2)

Choose $\Psi(\boldsymbol{x}, \theta) = \frac{\partial}{\partial \theta} \log P^{(n)}(\boldsymbol{x}, \theta) = \frac{\frac{\partial}{\partial \theta} P^{(n)}(\boldsymbol{x}, \theta)}{P^{(n)}(\boldsymbol{x}, \theta)}$.

Then

$$\mathbb{E}[\Psi(\boldsymbol{x},\theta)] = \sum_{\boldsymbol{x}\in\mathcal{X}^n} \underbrace{P^{(n)}(\boldsymbol{x},\theta)}_{\underline{P^{(n)}(\boldsymbol{x},\theta)}} \underbrace{\frac{\partial}{\partial \theta}P^{(n)}(\boldsymbol{x},\theta)}_{\underline{P^{(n)}(\boldsymbol{x},\theta)}}$$
$$= \frac{\partial}{\partial \theta} \underbrace{\left(\sum_{\boldsymbol{x}\in\mathcal{X}^n} P^{(n)}(\boldsymbol{x},\theta)\right)}_{1}$$
$$= 0$$

And

$$Var(\Psi(\boldsymbol{x}, \theta)) = I_n(\theta) = nI(\theta)$$

is the denominator part in Eq. 1. Recall the definition of covariance matrix:

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \mathbb{E}[XY - Y\mathbb{E}[X] - X\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y]]$$

$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

So

$$\operatorname{Cov}(\hat{\gamma}^{(n)}(\boldsymbol{x}), \Psi(\boldsymbol{x}, \theta)) = \operatorname{Cov}\left(\hat{\gamma}^{(n)}(\boldsymbol{x}), \frac{\partial}{\partial \theta} \log P^{(n)}(\boldsymbol{x}, \theta)\right)$$

$$= \mathbb{E}\left[\hat{\gamma}^{(n)}(\boldsymbol{x}) \cdot \frac{\partial}{\partial \theta} \log P^{(n)}(\boldsymbol{x}, \theta)\right] - \mathbb{E}[\hat{\gamma}^{(n)}(\boldsymbol{x})] \cdot \mathbb{E}\left[\frac{\partial}{\partial \theta} \log P^{(n)}(\boldsymbol{x}, \theta)\right]$$

$$= \sum_{\boldsymbol{x} \in \mathcal{X}^n} P^{(n)}(\boldsymbol{x}, \theta) \cdot \hat{\gamma}^{(n)}(\boldsymbol{x}) \cdot \frac{\frac{\partial}{\partial \theta} P^{(n)}(\boldsymbol{x}, \theta)}{P^{(n)}(\boldsymbol{x}, \theta)}$$

$$= \frac{\partial}{\partial \theta} \left(\sum_{\boldsymbol{x} \in \mathcal{X}^n} \hat{\gamma}^{(n)}(\boldsymbol{x}) \cdot P^{(n)}(\boldsymbol{x}, \theta)\right)$$

$$= \frac{\partial}{\partial \theta} \left(g(\theta)\right) \quad (since \ \hat{\gamma}^{(n)}(\boldsymbol{x}) \ is \ an \ unbiased \ estimator \ of \ g(\theta))$$

$$= g'(\theta)$$

We can complete the proof by plugging in the value of $Cov(\hat{\gamma}^{(n)}(\boldsymbol{x}), \Psi(\boldsymbol{x}, \theta))$ to Eq. 2.

Remark 5. If the sample space is continuous, then we cannot take the derivative $\frac{\partial}{\partial \theta}$ outside the sum.

4 Example of Cramer-Rao Bound on Bernoulli Estimator

Let x = 1 with probability θ , and x = 0 with probability $1 - \theta$. We want to calculate the lower bound of any estimator $\hat{\gamma}^{(n)}(\boldsymbol{x})$. Set

- the sample space to be $\mathcal{X} = \{0, 1\},\$
- and the parameter space $\Theta = \{0, 1\},\$
- $P(x,\theta) = \theta^x (1-\theta)^{1-x}$,
- $g(\theta) = \theta$.

Then

$$\mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log P(x_1, \theta)\right)^2\right] = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\left[x_1\log\theta + (1 - x_1)\log(1 - \theta)\right]\right)^2\right]$$

$$= \mathbb{E}\left[\left(\frac{x_1}{\theta} - \frac{1 - x_1}{1 - \theta}\right)^2\right]$$

$$= \theta \cdot \frac{1}{\theta^2} + (1 - \theta) \cdot \frac{1}{(1 - \theta)^2}$$

$$= \frac{1}{\theta} + \frac{1}{1 - \theta} = \frac{1}{\theta(1 - \theta)}$$

and $g'(\theta) = 1$, thus

$$\operatorname{Var}(\hat{\gamma}^{(n)}(\boldsymbol{x})) \ge \frac{\theta(1-\theta)}{n}$$

If we estimate by $\hat{\theta}(x) = \frac{\sum_{i=1}^{n} x_i}{n}$, then the variance is exactly the $\frac{\theta(1-\theta)}{n}$. Also this is an unbiased estimator. So by Cramer-Rao bound, we confirm this is the best estimator we can get.

Other choice of $g(\theta)$. If we take $g(\theta) = \frac{1}{\theta}$, then we can show that there is no unbiased estimator, and as $\theta \to 0$, $\mathbb{E}[\hat{\gamma}^{(n)}(\boldsymbol{x})] \approx \hat{\gamma}^{(n)}(\boldsymbol{0})$.