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1 Overview

In the last lecture we talked about the bias-variance decomposition in the mean squared loss, and
introduce the Cramer-Rao bound.

In this lecture we will prove the Cramer-Rao bound.

2 Unbiased Estimator

Definition 1. The bias of θ̂ (with respect to distribution P ) is

biasP (θ̂) = EP (θ̂)− θ(P )

we say that θ̂ is unbiased if EP (θ̂) = θ(P ), ∀P ∈ P.

Example: Let the true parameter be θ∗. Defined γ̂(n)(X1, · · · , Xn) = g(θ∗), where g(θ∗) ∕= θ∗.
Then g(θ∗) is a biased estimator since

EP (·,θ∗)[γ̂
(n)] = g(θ∗).

We will use the concept “unbiased estimator” in the Cramer-Rao bound.

3 Cramer-Rao Bound (Special Case)

In the following, we will give the statement of Cramer-Rao bound for θ dimension p = 1 (θ is a
scalar).

First, we define the required notation:

1. X is a finite sample space.

2. The parameter space Θ ⊆ R is open.

3. P = {P (·, θ), θ ∈ Θ} where P (x, θ) is the probability of observing sample x.

4. ∂
∂θP (x, θ) exists ∀x, θ (i.e. P (x; θ) is continuously differentiable for all x w.r.t. θ).

5. x1, · · · , xn iid ∼ P (·, θ).
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6. P (x, θ) > 0 ∀x, θ

Theorem 2. Cramer-Rao Bound. If γ̂(n)(x) is an unbiased estimator of g(θ) where g is con-
tinuous and differentiable. Then

Var(γ̂(n)(x))! "# $
MSE(γ̂(n)(x))

≥ [g′(θ)]2

n E

%&
∂

∂θ
logP (x1, θ)

'2
(

! "# $
Fisher Information matrix I(θ)

(1)

Remark 3. The Var(γ̂(n)(x)) is same as MSE(γ̂(n)(x)). This is because MSE of an estimator can
be decomposed into mean and variance:

MSE(γ̂(n)) = bias(γ̂(n))2 +Var(γ̂(n))

As γ̂(n) is an unbiased estimator, we know bias(γ̂(n)) = 0, thus

MSE(γ̂(n)) = Var(γ̂(n)).

Remark 4. The point of finding a lower bound for Var(γ̂(n)(x)) is: if we successfully prove the
upper bound is same as the lower bound, we can stop looking for a better estimator any more.

Proof. Let x = (x1, · · · , xn) with xi ∈ X , P (n)(x, θ) =
)n

i=1 P (xi, θ). Recall the Cauchy-Schwarz
inequality:

[Cov(X,Y )]2 = [E [(X − E[X])(Y − E[Y ])]]2

= [〈X − E[X], Y − E[Y ]〉]2

≤ 〈X − E[X], X − E[X]〉〈Y − E[Y ], Y − E[Y ]〉 (apply the Cauchy-Schwarz inequality)

= E
*
(X − E[X])2

+
E
*
(Y − E[Y ])2

+

= Var(X)Var(Y )

Then for any Ψ(x, θ),

[Cov(γ̂(n)(x),Ψ(x, θ))]2 ≤ Var(γ̂(n)(x))Var(Ψ(x, θ))

which implies

Var(γ̂(n)(x)) ≥ [Cov(γ̂(n)(x),Ψ(x, θ))]2

Var(Ψ(x, θ))
(2)

Choose Ψ(x, θ) = ∂
∂θ logP

(n)(x, θ) =
∂
∂θ

P (n)(x,θ)

P (n)(x,θ)
.

Then

E[Ψ(x, θ)] =
,

x∈Xn

✘✘✘✘✘
P (n)(x, θ)

∂
∂θP

(n)(x, θ)

✘✘✘✘✘
P (n)(x, θ)

=
∂

∂θ

-
,

x∈Xn

P (n)(x, θ)

.

! "# $
1

= 0
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And
Var(Ψ(x, θ)) = In(θ) = nI(θ)

is the denominator part in Eq. 1. Recall the definition of covariance matrix:

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])]

= E [XY − Y E[X]−XE[Y ] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]

So

Cov(γ̂(n)(x),Ψ(x, θ)) = Cov

&
γ̂(n)(x),

∂

∂θ
logP (n)(x, θ)

'

= E
/
γ̂(n)(x) · ∂

∂θ
logP (n)(x, θ)

0
− E[γ̂(n)(x)] · E

/
∂

∂θ
logP (n)(x, θ)

0

! "# $
0

=
,

x∈Xn

✘✘✘✘✘
P (n)(x, θ) · γ̂(n)(x) ·

∂
∂θP

(n)(x, θ)

✘✘✘✘✘
P (n)(x, θ)

=
∂

∂θ

-
,

x∈Xn

γ̂(n)(x) · P (n)(x, θ)

.

! "# $
E[γ̂(n)(x)]

=
∂

∂θ
(g(θ)) (since γ̂(n)(x) is an unbiased estimator of g(θ))

= g′(θ)

We can complete the proof by plugging in the value of Cov(γ̂(n)(x),Ψ(x, θ)) to Eq. 2.

Remark 5. If the sample space is continuous, then we cannot take the derivative ∂
∂θ outside the

sum.

4 Example of Cramer-Rao Bound on Bernoulli Estimator

Let x = 1 with probability θ, and x = 0 with probability 1 − θ. We want to calculate the lower
bound of any estimator γ̂(n)(x). Set

• the sample space to be X = {0, 1},

• and the parameter space Θ = {0, 1},

• P (x, θ) = θx(1− θ)1−x,

• g(θ) = θ.
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Then

E

%&
∂

∂θ
logP (x1, θ)

'2
(
= E

%&
∂

∂θ
[x1 log θ + (1− x1) log(1− θ)]

'2
(

= E

%&
x1
θ

− 1− x1
1− θ

'2
(

= θ · 1

θ2
+ (1− θ) · 1

(1− θ)2

=
1

θ
+

1

1− θ
=

1

θ(1− θ)

and g′(θ) = 1, thus

Var(γ̂(n)(x)) ≥ θ(1− θ)

n

If we estimate by θ̂(x) =
!n

i=1 xi

n , then the variance is exactly the θ(1−θ)
n . Also this is an unbiased

estimator. So by Cramer-Rao bound, we confirm this is the best estimator we can get.

Other choice of g(θ). If we take g(θ) = 1
θ , then we can show that there is no unbiased estimator,

and as θ → 0, E[γ̂(n)(x)] ≈ γ̂(n)(0).
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