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1 Overview

In the last lecture we talked about the bias-variance decomposition in the mean squared loss, and
introduce the Cramer-Rao bound.

In this lecture we will prove the Cramer-Rao bound.

2 Unbiased Estimator

Definition 1. The bias of 6 (with respect to distribution P) is

Example: Let the true parameter be 6*. Defined 4™ (X1, ---,X,,) = g(6*), where g(6*) # 6*.
Then g(0*) is a biased estimator since

Ep(.o[3™] = 9(67).

We will use the concept “unbiased estimator” in the Cramer-Rao bound.

3 Cramer-Rao Bound (Special Case)

In the following, we will give the statement of Cramer-Rao bound for § dimension p = 1 (0 is a
scalar).

First, we define the required notation:

1. X is a finite sample space.

2. The parameter space © C R is open.

3. P={P(-,0),0 € O} where P(z,0) is the probability of observing sample z.

4. %P(m, 0) exists Vx,0 (i.e. P(z;6) is continuously differentiable for all x w.r.t. ).

5. x1,--+ @y, iid ~ P(-,0).



6. P(z,0) >0 Vx,0

Theorem 2. Cramer-Rao Bound. If 4" (x) is an unbiased estimator of g(0) where g is con-
tinuous and differentiable. Then
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Remark 3. The Var(3" (x)) is same as MSE(5™ (x)). This is because MSE of an estimator can
be decomposed into mean and variance:

MSE(5™) = bias(5™)2 + Var(5™)
As 4™ is an unbiased estimator, we know bias(3™) = 0, thus
MSE(4™) = Var(5™).
Remark 4. The point of finding a lower bound for Var(3™(x)) is: if we successfully prove the
upper bound is same as the lower bound, we can stop looking for a better estimator any more.
Proof. Let = (x1,--- ,x,) with z; € X, P™(x,0) = [[I~, P(xi,0). Recall the Cauchy-Schwarz
inequality:

[Cov(X,Y))* = [E[(X —E[X])(Y — E[Y])]]”
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Then for any ¥(x,0),
[Cov(3"™ (@), ¥(z,0))] < Var(y™ (x)) Var(¥(z.0))

which implies
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And
Var(VU(x,0)) = I,,(0) = nl(0)

is the denominator part in Eq. 1. Recall the definition of covariance matrix:

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]
=E[XY — YE[X] — XE[Y] + E[X]E[Y]]
= E[XY] - E[X]E[Y]

So

Cov(3™ (x), ¥(x,0)) = Cov <fy(")(ac), % log P (x, 0))
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We can complete the proof by plugging in the value of Cov (5™ (), ¥(x,0)) to Eq. 2. O

Remark 5. If the sample space is continuous, then we cannot take the derivative % outside the
sum.

4 Example of Cramer-Rao Bound on Bernoulli Estimator

Let x = 1 with probability 6, and x = 0 with probability 1 — #. We want to calculate the lower
bound of any estimator 4 (). Set

e the sample space to be X = {0, 1},
e and the parameter space © = {0,1},
o P(x,0)=0%(1-0)"",

e g(6) =6.



Then
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and ¢'() = 1, thus
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If we estimate by é(cc) = %m", then the variance is exactly the . Also this is an unbiased
estimator. So by Cramer-Rao bound, we confirm this is the best estimator we can get.

0(1-0)

Other choice of g(). If we take g(f) = %, then we can show that there is no unbiased estimator,
and as § — 0, E[5™ (x)] ~ 4 (0).



