MATH888: High-dimensional probability and statistics	Fall 2021
Lecture 5 — September 17, 2021	
Sebastien Roch, UW-Madison	Scribe: Zhuoyan Xu

1 Overview

In the previous lecture we introduced some basic notations in point estimation and the definition of unbiasedness, mean squared error and Cramér-Rao Lower Bound. We introduced the main theorem of CR lower bound and talked about the intuition behind it.

In this lecture we mainly prove the Cramér-Rao Lower Bound and illustrate the property of it.

2 Cramér-Rao Lower Bound main theory

In this section we consider the special discrete case of random variables. For general results, see *Theorem 6.6* in Lehmann and Casella [1]. We redefine the following setting:

- 1. The sample space \mathcal{X} is finite, i.e. $|\mathcal{X}| < \infty$.
- 2. The parameter space $\Theta \subseteq \mathbb{R}$ is an open set.
- 3. The family of distribution

$$\mathcal{P} = \{ p(\cdot; \theta) : \theta \in \Theta \}$$

satisfies $p(x,\theta) > 0$ and $\frac{\partial}{\partial \theta} p(x,\theta)$ exists for $\forall x \in \mathcal{X}$ and $\forall \theta \in \Theta$.

Theorem 1. Let $\hat{\vartheta}^{(n)}$, $n \in \mathbb{N}$ be an unbiased estimators of $g(\theta)$ i.e. $\mathbb{E}[\hat{\vartheta}^{(n)}] = g(\theta)$ for all $n \in \mathbb{N}$, where $g : \mathbb{R} \to \mathbb{R}$ is a continuously differentiable function, then:

$$Var\left[\hat{\vartheta}^{(n)}\right] \geq \frac{[g'(\theta)]^2}{n\mathbb{E}\left[\frac{\partial}{\partial \theta}\log p(X_1;\theta)\right]^2}$$

where $\mathbb{E}\left[\frac{\partial}{\partial\theta}\log p(X_1;\theta)\right]^2 =: I(\theta)$ is the Fisher Information for θ . **Remark 2.** The Fisher information

$$I(\theta) := \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log p(x;\theta)\right)^2\right] = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} p(x;\theta)}{p(x;\theta)}\right)^2\right]$$

quantifies the expected relative rate of change of the likelihood with respect to a small perturbation in θ . It can be roughly seen as the relative "derivative" of pdf with respect to θ . A larger fisher information indicates the steep change in log-likelihood function in changing of parameter θ . It makes it easier to distinguish two likelihood function with different values of θ . In this sense, $I(\theta)$ captures information about the parameter θ . A larger Fisher information value also leads to a lower Cramér-Rao bound. To illustrate the theorem of Cramér-Rao bound, we consider following example.

Example 3. Suppose we have true parameter θ^* for some distribution p, define $\hat{\vartheta}^{(n)} = \theta^*$. Then we have

$$\mathbb{E}[\hat{\vartheta}^{(n)}] = \theta^* and \ Var[\hat{\vartheta}^{(n)}] = 0$$

The estimator in this example has lower variance than CR lower bound, but it's not an unbiased estimator indeed. Recall the definition of unbiasedness: An estimator $\hat{\theta}$ is said to be unbiased if $bias(\hat{\theta}, \theta) = 0$ for all $P \in \mathcal{P}$. An unbiased estimator must have zero bias for all possible distributions. In this example, the constant estimator $\hat{\vartheta}^{(n)}$ has zero bias for any P with $\theta(P) = \theta^*$, but this is not an unbiased estimator for any P with a different value of θ .

Now we begin our proof of the main theorem.

Proof. Without abuse of notation, we define $\mathbf{X} = (X_1, \ldots, X_n)$ as random vector where $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p(X, \theta), \mathbf{x} = (x_1, \ldots, x_n)$ as the realization of \mathbf{X} .

We have $p^{(n)}(\boldsymbol{X}, \theta) = \prod_{i=1}^{n} p(X_i, \theta)$. Recall

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y)$$

for any function $\psi(\mathbf{X}, \theta)$, by Cauchy-Schwarz inequality, we have

$$|\operatorname{Cov}(\hat{\vartheta}, \psi(\boldsymbol{X}, \theta))|^{2} \leq \operatorname{Var}(\hat{\vartheta})\operatorname{Var}(\psi(\boldsymbol{X}, \theta))$$
$$\operatorname{Var}(\hat{\vartheta}) \geq \frac{|\operatorname{Cov}(\hat{\vartheta}, \psi(\boldsymbol{X}, \theta))|^{2}}{\operatorname{Var}(\psi(\boldsymbol{X}, \theta)))}$$

We choose $\psi(\mathbf{X}, \theta) = \frac{\partial}{\partial \theta} \log p^{(n)}(\mathbf{X}, \theta)$, then

$$\mathbb{E}(\psi) = \sum_{x \in \mathcal{X}} p^{(n)}(\mathbf{X}, \theta) \frac{\partial}{\partial \theta} \log p^{(n)}(\mathbf{X}, \theta)$$
$$= \sum_{x \in \mathcal{X}} p^{(n)}(\mathbf{X}, \theta) \frac{\frac{\partial}{\partial \theta} p^{(n)}(\mathbf{X}, \theta)}{p^{(n)}(\mathbf{X}, \theta)}$$
$$= \frac{\partial}{\partial \theta} \left(\sum_{x \in \mathcal{X}} p^{(n)}(\mathbf{X}, \theta) \right)$$
$$= 0$$

Since $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p(X_1, \theta)$, we have:

$$\operatorname{Var}(\psi) = \operatorname{Var}\left(\frac{\partial}{\partial\theta}\log p^{(n)}(\boldsymbol{X},\theta)\right)$$
$$= \operatorname{Var}\left(\sum_{i=1}^{n}\frac{\partial}{\partial\theta}\log p(X,\theta)\right)$$
$$= n\operatorname{Var}\left(\frac{\partial}{\partial\theta}\log p(X,\theta)\right)$$
$$= n\mathbb{E}\left[\left(\frac{\partial}{\partial\theta}\log p(X,\theta)\right)^{2}\right]$$

Consider covariance, we have:

$$Cov(\hat{\vartheta}, \psi) = Cov\left[\hat{\vartheta}, \frac{\partial}{\partial \theta} \log p^{(n)}(\boldsymbol{X}, \theta)\right]$$
$$= \mathbb{E}\left[\hat{\vartheta} \cdot \frac{\partial}{\partial \theta} \log p^{(n)}(\boldsymbol{X}, \theta)\right]$$
$$= \sum_{x \in \mathcal{X}} \left[p^{(n)}(\boldsymbol{X}, \theta) \cdot \hat{\vartheta} \cdot \frac{\frac{\partial}{\partial \theta} p^{(n)}(\boldsymbol{X}, \theta)}{p^{(n)}(\boldsymbol{X}, \theta)} \right]$$
$$= \frac{\partial}{\partial \theta} \left[\sum_{x \in \mathcal{X}} p^{(n)}(\boldsymbol{X}, \theta) \cdot \hat{\vartheta} \right]$$
$$= \frac{\partial}{\partial \theta} \left[g(\theta) \right]$$
$$= g'(\theta)$$

plug in previous equation, we have desired result:

$$\operatorname{Var}\left[\hat{\vartheta}^{(n)}\right] \geq \frac{[g'(\theta)]^2}{n\mathbb{E}\left[\frac{\partial}{\partial \theta}\log p(X_1,\theta)\right]^2}$$

Example 4. Consider Bernoulli distribution:

- X is = {0,1} Θ = (0,1)
 p(X, θ) = θ^X(1 − θ)^{1−X} > 0 for ∀x ∈ X and ∀θ ∈ Θ.
 ∂/∂θ p(x, θ) = X/θ − 1−X/1−θ exists for ∀x ∈ X and ∀θ ∈ Θ.
- $g(\theta) = \theta$.

We have Fisher information

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial\theta}\log p(x;\theta)\right)^2\right]$$
$$= \mathbb{E}\left[\left(\frac{\partial}{\partial\theta}\left[X\log(\theta) + (1-X)\log(1-\theta)\right]\right)^2\right]$$
$$= \mathbb{E}\left[\left(\frac{X}{\theta} - \frac{1-X}{1-\theta}\right)^2\right]$$
$$= \mathbb{E}\left[\frac{(X-\theta)^2}{(\theta(1-\theta))^2}\right]$$
$$= \frac{1}{\theta(1-\theta)}$$

 $We\ have$

$$Var\left[\hat{\vartheta}^{(n)}\right] \ge \frac{\theta(1-\theta)}{n}$$

Consider empirical mean estimator $\hat{\theta}^{(n)} = \frac{1}{n}\sum_{i=1}^n X_i$, we have

$$\mathbb{E}\hat{\theta}^{(n)} = \theta$$
$$Var(\hat{\theta}^{(n)}) = \frac{\theta(1-\theta)}{n}$$

achieves the CR lower bound.

Remark 5. We may not always find such unbiased estimator, consider $g(\theta) = 1/\theta$ in previous example, the unbiased estimator does not exist, see details on [2].

References

- [1] Lehmann, E. L. and Casella, G. (1998). Theory of point estimation. Springer.
- [2] Uon-existence of unbiased estimator: https://math.stackexchange.com/questions/ 681638/for-the-binomial-distribution-why-does-no-unbiased-estimator-exist-for-1-p