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1 Overview

In the previous lecture we introduced some basic notations in point estimation and the definition of
unbiasedness, mean squared error and Cramér-Rao Lower Bound. We introduced the main theorem
of CR lower bound and talked about the intuition behind it.

In this lecture we mainly prove the Cramér-Rao Lower Bound and illustrate the property of it.

2 Cramér-Rao Lower Bound main theory

In this section we consider the special discrete case of random variables. For general results, see
Theorem 6.6 in Lehmann and Casella [1]. We redefine the following setting:

1. The sample space X is finite, i.e. |X | <∞.

2. The parameter space Θ ⊆ R is an open set.

3. The family of distribution
P = { p( · ; θ) : θ ∈ Θ }

satisfies p(x, θ) > 0 and ∂
∂θp(x, θ) exists for ∀x ∈ X and ∀θ ∈ Θ.

Theorem 1. Let ϑ̂(n), n ∈ N be an unbiased estimators of g(θ) i.e. E[ϑ̂(n)] = g(θ) for all n ∈ N,
where g : R→ R is a continuously differentiable function, then:

Var
[
ϑ̂(n)

]
≥ [g′(θ)]2

nE
[
∂
∂θ log p(X1; θ)

]2
where E

[
∂
∂θ log p(X1; θ)

]2
=: I(θ) is the Fisher Information for θ.

Remark 2. The Fisher information

I(θ) := E

[(
∂

∂θ
log p(x; θ)

)2
]

= E

( ∂
∂θp(x; θ)

p(x; θ)

)2


quantifies the expected relative rate of change of the likelihood with respect to a small perturbation
in θ. It can be roughly seen as the relative “derivative” of pdf with respect to θ. A larger fisher
information indicates the steep change in log-likelihood function in changing of parameter θ. It
makes it easier to distinguish two likelihood function with different values of θ. In this sense, I(θ)
captures information about the parameter θ. A larger Fisher information value also leads to a lower
Cramér-Rao bound.
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To illustrate the theorem of Cramér-Rao bound, we consider following example.

Example 3. Suppose we have true parameter θ∗ for some distribution p, define ϑ̂(n) = θ∗. Then
we have

E[ϑ̂(n)] = θ∗and Var[ϑ̂(n)] = 0

The estimator in this example has lower variance than CR lower bound, but it’s not an unbiased
estimator indeed. Recall the definition of unbiasedness: An estimator θ̂ is said to be unbiased if
bias(θ̂, θ) = 0 for all P ∈ P. An unbiased estimator must have zero bias for all possible distributions.
In this example, the constant estimator ϑ̂(n) has zero bias for any P with θ(P ) = θ∗, but this is
not an unbiased estimator for any P with a different value of θ.

Now we begin our proof of the main theorem.

Proof. Without abuse of notation, we define X = (X1, . . . , Xn) as random vector whereX1, . . . , Xn
iid∼

p(X, θ), x = (x1, . . . , xn) as the realization of X.

We have p(n)(X, θ) =
∏n
i=1 p(Xi, θ). Recall

Cov(X,Y ) = E[(X − EX)(Y − EY )] = EXY − EXEY )

for any function ψ(X, θ), by Cauchy-Schwarz inequality, we have

|Cov(ϑ̂, ψ(X, θ))|2 ≤ Var(ϑ̂)Var(ψ(X, θ))

Var(ϑ̂) ≥ |Cov(ϑ̂, ψ(X, θ))|2

Var(ψ(X, θ)))

We choose ψ(X, θ) = ∂
∂θ log p(n)(X, θ), then

E(ψ) =
∑
x∈X

p(n)(X, θ)
∂

∂θ
log p(n)(X, θ)

=
∑
x∈X

p(n)(X, θ)
∂
∂θp

(n)(X, θ)

p(n)(X, θ)

=
∂

∂θ

(∑
x∈X

p(n)(X, θ)

)
= 0

Since X1, . . . , Xn
iid∼ p(X1, θ), we have:

Var(ψ) = Var

(
∂

∂θ
log p(n)(X, θ)

)
= Var

(
n∑
i=1

∂

∂θ
log p(X, θ)

)

= nVar

(
∂

∂θ
log p(X, θ)

)
= nE

[(
∂

∂θ
log p(X, θ)

)2
]
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Consider covariance, we have:

Cov(ϑ̂, ψ) = Cov

[
ϑ̂,

∂

∂θ
log p(n)(X, θ)

]
= E

[
ϑ̂ · ∂

∂θ
log p(n)(X, θ)

]
=
∑
x∈X

[
p(n)(X, θ) · ϑ̂ ·

∂
∂θp

(n)(X, θ)

p(n)(X, θ)

]

=
∂

∂θ

[∑
x∈X

p(n)(X, θ) · ϑ̂

]

=
∂

∂θ
[g(θ)]

= g′(θ)

plug in previous equation, we have desired result:

Var
[
ϑ̂(n)

]
≥ [g′(θ)]2

nE
[
∂
∂θ log p(X1, θ)

]2
Example 4. Consider Bernoulli distribution:

• X is = {0,1} Θ = (0,1)

• p(X, θ) = θX(1− θ)1−X > 0 for ∀x ∈ X and ∀θ ∈ Θ.

• ∂
∂θp(x, θ) = X

θ −
1−X
1−θ exists for ∀x ∈ X and ∀θ ∈ Θ.

• g(θ) = θ.

We have Fisher information

I(θ) = E

[(
∂

∂θ
log p(x; θ)

)2
]

= E

[(
∂

∂θ
[X log(θ) + (1−X) log(1− θ)]

)2
]

= E

[(
X

θ
− 1−X

1− θ

)2
]

= E
[

(X − θ)2

(θ(1− θ))2

]
=

1

θ(1− θ)
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We have

Var
[
ϑ̂(n)

]
≥ θ(1− θ)

n

Consider empirical mean estimator θ̂(n) = 1
n

∑n
i=1Xi , we have

Eθ̂(n) = θ

Var(θ̂(n)) =
θ(1− θ)

n

achieves the CR lower bound.

Remark 5. We may not always find such unbiased estimator, consider g(θ) = 1/θ in previous
example, the unbiased estimator does not exist, see details on [2].
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