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1 Overview

In the last lecture we completed the proof of the Cramer-Rao bound and discussed a few examples.

In this lecture we will begin our foray into High Dimensional Probability by Roman Vershynin [1]
and discuss sub-gaussian random variables and some of their properties.

2 Sub-Gaussian Random Variables

These are a very useful class of random variables whose tails decay atleast as fast as gaussian
random variables.

Notation:

• a . b : ∃C > 0 s.t a ≤ Cb

• a ∨ b := max{a, b}

Proposition 1. (2.12 in [1]) Let g ∼ N (0, 1) i.e., fg(t) = 1√
2π

exp(−t2/2). Then, for any t ≥ 0,(
1

t
− 1

t3

)
1√
2π
e−t

2/2 ≤ P(g ≥ t) ≤
(

1

t

)
1√
2π
e−t

2/2 (1)

Definition 2. The sub-gaussian norm of X ∈ R is

‖X‖ψ2 := inf

{
t ≥ 0 : E

[
ψ2

(
|X|
t

)]
≤ 1

}
(2)

where ψ2(x) = ex
2 − 1

Remarks:

• The sub-gaussian norm is a valid norm and therefore obeys useful properties such as absolute
homogeneity and the triangle inequality.

• The “-1” is a convention chosen so that ψ2(0) = 0

• Refer [1] for a discussion on the connection with `p spaces.
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2.1 Sub-gaussian norms of some examples

Gaussian case: g ∼ N (0, 1).
First note that we can push the “−1” to the other side of the inequality in Equation (2) and
therefore, it suffices to consider

E
[
ψ2

(
|g|
t

)]
= E

[
exp

(
g2

t2

)]
=

∫ ∞
−∞

1√
2π
exp

(
−x2

2
+
x2

t2

)
dx

It is clear that the above integral is finite if and only if t ≥
√

2. Moreover, E[ψ2(|g|/t)] → 1 as
t → ∞ as the integral reduces to the integral of the gaussian pdf. Therefore, ∃t∗ >

√
2 such that

E[ψ2(|g|/t)] ≤ 2 so that ‖g‖ψ2 = t∗.

Bounded case: X ∈ [a, b] a.s.
Then, ‖X‖ψ2 . |a| ∨ |b|

2.2 Useful properties of the sub-gaussian norm

Exercise (2.5.7 in [1]) Show that

‖X + Y ‖ψ2 ≤ ‖X‖ψ2 + ‖Y ‖ψ2

Proof. Note that,

ψ2

(
|X + Y |
a+ b

)
≤ ψ2

(
|X|+ |Y |
a+ b

)
≤ a

a+ b
ψ2

(
|X|
b

)
+

b

a+ b
ψ2

(
|Y |
b

)
where the first inequality holds since ψ2 is an increasing function of its argument and the second is
from applying Jensen’s inequality since ψ2 is convex.
Therefore, for any a > ‖X‖ψ2 , b > ‖Y ‖ψ2

E
[(
|X + Y

a+ b

)]
≤ a

a+ b
E
[
ψ2

(
|X|
a

)]
+

b

a+ b
E
[
ψ2

(
|Y |
b

)]
≤ 1

where both expectations are bounded by 1 simply by applying the definition of sub-gaussian norm.

Theorem 3. (2.5.2 in [1]). If ‖X‖ψ2 < +∞, then the following properties are equivalent

(i) P(|X| > t) ≤ 2 exp
(
−ct2
K@

)
, for all t ≥ 0.

(ii) ‖X‖p = (E(|X|p))
1
p ≤ C ·K√p, for all p ≥ 1.
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(v) If EX = 0, then E[exp(λX)] ≤ exp(Cλ2K2), for all λ ∈ R

where K = ‖X‖ψ2, c is a small universal constant and C is a large universal constant. Vice Versa,
if any of the above properties is true, then ‖X‖ψ2 . K.

Proof ideas.
(i)⇒ (ii): E|X|p =

∫∞
0 P(|X| ≥ t)ptp−1dt = . . . The

√
p should come naturally out of the calculus.

(ii)⇒ ‖X‖ψ2 < +∞: Using the taylor’s expansion, E[exp(λ2x2)] = 1 +
∑∞

p=1
λ2pE[X2p]

p = . . . .
Applying property (ii) and massaging the terms should give the result.

‖X‖ψ2 < +∞⇒ (i): For simplicity, assume that ‖X‖ψ2 = 1. The proof is identical otherwise with
just appropriate scaling.

P(|X| ≥ t) = P(eX
2 ≥ et2)

≤ e−t2E[eX
2
] (Markov’s inequality)

≤ 2e−t
2

(v)⇒ (i):

P(X ≥ t) = P(eλx ≥ eλt), λ > 0

≤ e−λtE[eλx] (Markov’s inequality)

≤ e−λt+Cλ2 (applying (v))

= e−t
2/4c

where the last equality follows by choosing a good λ.
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