MATHS888: High-dimensional probability and statistics Fall 2021

Lecture 7 — September 22, 2021
Sebastien Roch, UW-Madison Scribe: Sixu Li

1 Overview

In the last lecture we defined the sub-gaussian distributions and talked about a few useful sub-
gaussian properties.

In this lecture we are going to discuss the general Hoeffding’s inequality, sub-exponential distribu-
tions, and Bernstein’s inequality.

2 Review of Sub-Gaussian Distributions
In this section, we recall some definitions and properties of sub-gaussian variables and norm.

e (Sub-gaussian norm) The sub-gaussian norm of X, denoted || X||y, is defined as
[ X ||, = inf{t > 0: Eexp(X?/t?) < 2} (1)
if || Xy, < 400, we say X is sub-gaussian.

e (Restate Proposition 2.5.2 in [1] in terms of || - [|y,) || X[y, < K is equivalent to (up to
constants, see more details in [1] page 28)

(i) The tails of X satisfy

t2
P(IX|>1t) < 2exp(—%), for all ¢ > 0 2)

(ii) The moments of X satisfy
IX]lp < CK /5, forallp=1 (3)
(v) If EX = 0, the MGF of X satisfies
Eexp(AX) < exp(CA2K?), forall A € R (4)
e (Triangle inequality) For any two sub-gaussian random variables X and Y,

X+ Y gy < (1 Xy + 1Y [l ()



3 Main Section

3.1 Centering

Lemma 1 (Centering lemma (Lemma 2.6.8 in [1])). If X is a sub-gaussian random variable, then
X —EX is also a sub-gaussian and,

IX = EX s, S 1 Xl (6)

Proof. By the triangle inequality (5), we get
HX - EXH¢2 < ||X||1/12 + ||EX||'¢12 (7)

Also note that, by the definition of sub-gaussian norm, we have |[EX ||y, < |EX| (because EX is a

constant), then
[EX |y, S [EX]

S IX]1 (by Jensen’s inequality) (8)
S Xy,  (using (3) with p =1)

Substituting this into (7), we complete the proof. O
3.2 Hoeffding’s inequality

Here, we consider the concentration inequality to the general sub-gaussian distributions.

Theorem 2 (General Hoeffding’s inequality (Theorem 2.6.2 in [1])). Let X1, -+, Xn be indepen-
dent, mean zero, sub-gaussian random variables. Then, for every t > 0, we have

N ct?
P{Y " Xi| >t} < 2exp (-

_ 9
= PO ||Xi@2) )

Observations: It is sufficient to show that

N N
1> Xillf, <> IXll7, (10)
i=1 i=1
But note that triangle inequality (5) only gives us
N N
1> Xillf, < QIXilly.)?, (11)
i=1 i=1

which is not good enough. Therefore, we consider to use the independent assumption and the
moment generating function of the sum to prove it.

!The notation a < b means that a < Cb where is C is some absolute constant.



Proof. For any \ € R,

N N
Eexp()\ZXi) = HEexp()\Xi) (by independence)
i=1 i=1
N
< Hexp(C)\2||Xi||12pQ) (by sub-gaussian property (4)) (12)
i=1

N
= exp(A\’K?), (where K?:=C) [ Xil[7,)
=1

Recall that the bound on MGF we just proved characterizes sub-gaussian distribution (sub-gaussian
property (4)), which implies IV | X; is sub-gaussian and || 2N XZ'Hi2 <N HXZH%Z)2

O]

3.3 Sub-exponential distributions

Motivations: To understand the norm of a vector with sub-gaussian coordinate, we need to
understand the square of a sub-gaussian. For example, considering X is sub-gaussian and Y := X?,
then for V¢ > 0,

c(vt)? ct

P(Y > ) = P(X2 > 1) = P(1X] > Vi) < 2exp(— S = 2exp(— o
IXT2, IXT2,

) (13)

Note that the tail of Y are like for the exponential distribution, and are strictly heavier than
sub-gaussian. Therefore, in the following, we consider another important family of distributions,
sub-exponential distributions, which are quite similar to the sub-gaussian distributions in terms of
either definition or properties.

Definition 3 (Sub-exponential random variables). The sub-exponential norm of X, denoted || X||y, ,
is defined as
| X ||y, :=inf{t > 0: Eexp(|X]|/t) <2} (14)

If || X |y, < 400, we say X is sub-exponential.

Proposition 4 (Sub-exponential properties (restate Proposition 2.7.1 in [1] in terms of || - ||y, ))-
| X1y, < K is equivalent to (up to constants, see more details in [1] page 32)

(i) The tails of X satisfy

t
P(|X|>1t) < 2exp(—%), forallt >0 (15)
(ii) The moments of X satisfy
| X, < CKp, forallp>1 (16)

(v) If EX =0, the MGF of X satisfies

1
Eexp(AX) < exp(CN2K?),  for all X such that |\| <
POX) < exp(CNK?), A<



Lemma 5 (Triangle inequality). For any two sub-exponential random variables X andY,
X + Yy < [ Xy + 1Y [ (18)

Lemma 6 (Centering lemma). If X is a sub-exponential random variable, then X —EX is also a
sub-exponential and,
X = EX [y, S [ Xy (19)

3.4 Bernstein’s inequality
Similar to the concentration inequality of sums of independent sub-gaussian random variables
(Hoeffding’s inequality), for sub-exponential random variables, we have

Theorem 7 (Bernstein’s inequality (Theorem 2.8.1 in [1])). Let Xi,--- , Xy be independent, mean
zero, sub-exponential random variables. Then, for every t > 0, we have

ct? ct
S 1X)12, T max [ Xilly,

N
{3 Xl > t} < 2exp [~ min{ 3. (20)

=1

where ¢ > 0 is an absolute constant.

Proof. Note that

N N
PO Xi>t) =PA>_X; > M)
=1 =1

N
<e MEexp(AY_X;) (by Markov inequality) (21)
i=1

N
=e M H E exp(AXj;)
i=1

To bound the MGF of each term X;, we use property (17) in Proposition 4. So, if A is small enough

such that,
c

AN < ——7— (22)
max; || X |y,
then Eexp(AX;) < exp(C’)\2||Xi]@l). Then we have,
N N
P() X; > t) < exp(—At + CN0?), where 0” := Y || Xi|[3, (23)
i=1 1=1

Now we minimize this expression in A w.r.t the constraint (22). The optimal choice is A =
min( , for which we obtain

t c )
2C02’ max; 1 X llpy

t2 ct 1
4(]0-27 2 max; ||X,L||¢1

N
P(Z X; > t) < exp | — min{
i=1

(24)

Repeating this argument for —X; instead of X;, we obtain the same bound for P(— 25\;1 X; <t).
A combination of these two bounds completes the proof. O
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