MATH888: High-dimensional probability and statistics	Fall 2021
Lecture 7 — September 22, 2021	

Sebastien Roch, UW-Madison

Scribe: Sixu Li

1 Overview

In the last lecture we defined the sub-gaussian distributions and talked about a few useful subgaussian properties.

In this lecture we are going to discuss the general Hoeffding's inequality, sub-exponential distributions, and Bernstein's inequality.

2 Review of Sub-Gaussian Distributions

In this section, we recall some definitions and properties of sub-gaussian variables and norm.

• (Sub-gaussian norm) The sub-gaussian norm of X, denoted $||X||_{\psi_2}$ is defined as

$$||X||_{\psi_2} := \inf\{t > 0 : \mathbb{E}\exp(X^2/t^2) \le 2\}$$
(1)

if $||X||_{\psi_2} < +\infty$, we say X is sub-gaussian.

- (Restate Proposition 2.5.2 in [1] in terms of $\|\cdot\|_{\psi_2}$) $\|X\|_{\psi_2} \leq K$ is equivalent to (up to constants, see more details in [1] page 28)
 - (i) The tails of X satisfy

$$\mathbb{P}(|X| \ge t) \le 2\exp(-\frac{ct^2}{K^2}), \quad \text{for all } t \ge 0$$
(2)

(ii) The moments of X satisfy

$$||X||_p \le CK\sqrt{p}, \quad \text{for all } p \ge 1 \tag{3}$$

(v) If $\mathbb{E}X = 0$, the MGF of X satisfies

$$\mathbb{E}\exp(\lambda X) \le \exp(C\lambda^2 K^2), \quad \text{for all } \lambda \in \mathbb{R}$$
(4)

• (Triangle inequality) For any two sub-gaussian random variables X and Y,

$$\|X + Y\|_{\psi_2} \le \|X\|_{\psi_2} + \|Y\|_{\psi_2} \tag{5}$$

3 Main Section

3.1 Centering

Lemma 1 (Centering lemma (Lemma 2.6.8 in [1])). If X is a sub-gaussian random variable, then $X - \mathbb{E}X$ is also a sub-gaussian and,

$$\|X - \mathbb{E}X\|_{\psi_2} \lesssim \|X\|_{\psi_2}^{-1} \tag{6}$$

Proof. By the triangle inequality (5), we get

$$\|X - \mathbb{E}X\|_{\psi_2} \le \|X\|_{\psi_2} + \|\mathbb{E}X\|_{\psi_2} \tag{7}$$

Also note that, by the definition of sub-gaussian norm, we have $||\mathbb{E}X||_{\psi_2} \leq |\mathbb{E}X|$ (because $\mathbb{E}X$ is a constant), then

$$\begin{split} |\mathbb{E}X||_{\psi_2} \lesssim |\mathbb{E}X| \\ \lesssim ||X||_1 \quad \text{(by Jensen's inequality)} \\ \lesssim ||X||_{\psi_2} \quad \text{(using (3) with } p = 1) \end{split}$$
(8)

Substituting this into (7), we complete the proof.

3.2 Hoeffding's inequality

Here, we consider the concentration inequality to the general sub-gaussian distributions.

Theorem 2 (General Hoeffding's inequality (Theorem 2.6.2 in [1])). Let X_1, \dots, X_N be independent, mean zero, sub-gaussian random variables. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{|\sum_{i=1}^{N} X_{i}| \ge t\right\} \le 2\exp\left(-\frac{ct^{2}}{\sum_{i=1}^{N} \|X_{i}\|_{\psi_{2}}^{2}}\right)$$
(9)

Observations: It is sufficient to show that

$$\|\sum_{i=1}^{N} X_i\|_{\psi_2}^2 \lesssim \sum_{i=1}^{N} \|X_i\|_{\psi_2}^2 \tag{10}$$

But note that triangle inequality (5) only gives us

$$\|\sum_{i=1}^{N} X_i\|_{\psi_2}^2 \le (\sum_{i=1}^{N} \|X_i\|_{\psi_2})^2,\tag{11}$$

which is not good enough. Therefore, we consider to use the independent assumption and the moment generating function of the sum to prove it.

¹The notation $a \leq b$ means that $a \leq Cb$ where is C is some absolute constant.

Proof. For any $\lambda \in \mathbb{R}$,

$$\mathbb{E} \exp(\lambda \sum_{i=1}^{N} X_i) = \prod_{i=1}^{N} \mathbb{E} \exp(\lambda X_i) \quad \text{(by independence)}$$

$$\leq \prod_{i=1}^{N} \exp(C\lambda^2 \|X_i\|_{\psi_2}^2) \quad \text{(by sub-gaussian property (4))} \quad (12)$$

$$= \exp(\lambda^2 K^2), \quad \text{(where } K^2 := C \sum_{i=1}^{N} \|X_i\|_{\psi_2}^2)$$

Recall that the bound on MGF we just proved characterizes sub-gaussian distribution (sub-gaussian property (4)), which implies $\sum_{i=1}^{N} X_i$ is sub-gaussian and $\|\sum_{i=1}^{N} X_i\|_{\psi_2}^2 \lesssim \sum_{i=1}^{N} \|X_i\|_{\psi_2}^2$.

3.3 Sub-exponential distributions

Motivations: To understand the norm of a vector with sub-gaussian coordinate, we need to understand the square of a sub-gaussian. For example, considering X is sub-gaussian and $Y := X^2$, then for $\forall t \ge 0$,

$$\mathbb{P}(Y \ge t) = \mathbb{P}(X^2 \ge t) = \mathbb{P}(|X| \ge \sqrt{t}) \le 2\exp(-\frac{c(\sqrt{t})^2}{\|X\|_{\psi_2}^2}) = 2\exp(-\frac{ct}{\|X\|_{\psi_2}^2})$$
(13)

Note that the tail of Y are like for the exponential distribution, and are strictly heavier than sub-gaussian. Therefore, in the following, we consider another important family of distributions, *sub-exponential* distributions, which are quite similar to the sub-gaussian distributions in terms of either definition or properties.

Definition 3 (Sub-exponential random variables). The sub-exponential norm of X, denoted $||X||_{\psi_1}$, is defined as

$$||X||_{\psi_1} := \inf\{t > 0 : \mathbb{E}\exp(|X|/t) \le 2\}$$
(14)

If $||X||_{\psi_1} < +\infty$, we say X is sub-exponential.

Proposition 4 (Sub-exponential properties (restate Proposition 2.7.1 in [1] in terms of $\|\cdot\|_{\psi_1}$)). $\|X\|_{\psi_1} \leq K$ is equivalent to (up to constants, see more details in [1] page 32)

(i) The tails of X satisfy

$$\mathbb{P}(|X| \ge t) \le 2\exp(-\frac{ct}{K}), \quad \text{for all } t \ge 0$$
(15)

(ii) The moments of X satisfy

$$||X||_p \le CKp, \quad for \ all \ p \ge 1 \tag{16}$$

(v) If $\mathbb{E}X = 0$, the MGF of X satisfies

$$\mathbb{E}\exp(\lambda X) \le \exp(C\lambda^2 K^2), \quad \text{for all } \lambda \text{ such that } |\lambda| \le \frac{1}{\sqrt{C}K}$$
(17)

Lemma 5 (Triangle inequality). For any two sub-exponential random variables X and Y,

$$\|X + Y\|_{\psi_1} \le \|X\|_{\psi_1} + \|Y\|_{\psi_1} \tag{18}$$

Lemma 6 (Centering lemma). If X is a sub-exponential random variable, then $X - \mathbb{E}X$ is also a sub-exponential and,

$$\|X - \mathbb{E}X\|_{\psi_1} \lesssim \|X\|_{\psi_1} \tag{19}$$

3.4 Bernstein's inequality

Similar to the concentration inequality of sums of independent *sub-gaussian* random variables (Hoeffding's inequality), for *sub-exponential* random variables, we have

Theorem 7 (Bernstein's inequality (Theorem 2.8.1 in [1])). Let X_1, \dots, X_N be independent, mean zero, sub-exponential random variables. Then, for every $t \ge 0$, we have

$$\mathbb{P}\left\{\left|\sum_{i=1}^{N} X_{i}\right| \ge t\right\} \le 2\exp\left[-\min\left\{\frac{ct^{2}}{\sum_{i=1}^{N} \|X_{i}\|_{\psi_{1}}^{2}}, \frac{ct}{\max_{i} \|X_{i}\|_{\psi_{1}}}\right\}\right],\tag{20}$$

where c > 0 is an absolute constant.

Proof. Note that

$$\mathbb{P}(\sum_{i=1}^{N} X_{i} \ge t) = \mathbb{P}(\lambda \sum_{i=1}^{N} X_{i} \ge \lambda t)$$

$$\leq e^{-\lambda t} \mathbb{E} \exp(\lambda \sum_{i=1}^{N} X_{i}) \quad \text{(by Markov inequality)}$$

$$= e^{-\lambda t} \prod_{i=1}^{N} \mathbb{E} \exp(\lambda X_{i})$$
(21)

To bound the MGF of each term X_i , we use property (17) in Proposition 4. So, if λ is small enough such that,

$$|\lambda| \le \frac{c}{\max_i \|X_i\|_{\psi_1}} \tag{22}$$

then $\mathbb{E} \exp(\lambda X_i) \leq \exp(C\lambda^2 ||X_i||_{\psi_1}^2)$. Then we have,

$$\mathbb{P}(\sum_{i=1}^{N} X_i \ge t) \le \exp(-\lambda t + C\lambda^2 \sigma^2), \quad \text{where } \sigma^2 := \sum_{i=1}^{N} \|X_i\|_{\psi_1}^2$$
(23)

Now we minimize this expression in λ w.r.t the constraint (22). The optimal choice is $\lambda = \min(\frac{t}{2C\sigma^2}, \frac{c}{\max_i ||X_i||_{\psi_1}})$, for which we obtain

$$\mathbb{P}(\sum_{i=1}^{N} X_i \ge t) \le \exp\left[-\min\{\frac{t^2}{4C\sigma^2}, \frac{ct}{2\max_i \|X_i\|_{\psi_1}}\}\right]$$
(24)

Repeating this argument for $-X_i$ instead of X_i , we obtain the same bound for $\mathbb{P}(-\sum_{i=1}^N X_i \leq t)$. A combination of these two bounds completes the proof.

References

[1] Vershynin, Roman, *High-dimensional probability: An introduction with applications in data science.* Vol. 47. Cambridge university press, 2018,