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1 Overview

In the last lecture we defined the sub-gaussian distributions and talked about a few useful sub-
gaussian properties.

In this lecture we are going to discuss the general Hoeffding’s inequality, sub-exponential distribu-
tions, and Bernstein’s inequality.

2 Review of Sub-Gaussian Distributions

In this section, we recall some definitions and properties of sub-gaussian variables and norm.

• (Sub-gaussian norm) The sub-gaussian norm of X, denoted ‖X‖ψ2 is defined as

‖X‖ψ2 := inf{t > 0 : E exp(X2/t2) ≤ 2} (1)

if ‖X‖ψ2 < +∞, we say X is sub-gaussian.

• (Restate Proposition 2.5.2 in [1] in terms of ‖ · ‖ψ2) ‖X‖ψ2 ≤ K is equivalent to (up to
constants, see more details in [1] page 28)

(i) The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp(− ct
2

K2
), for all t ≥ 0 (2)

(ii) The moments of X satisfy

‖X‖p ≤ CK
√
p, for all p ≥ 1 (3)

(v) If EX = 0, the MGF of X satisfies

E exp(λX) ≤ exp(Cλ2K2), for all λ ∈ R (4)

• (Triangle inequality) For any two sub-gaussian random variables X and Y ,

‖X + Y ‖ψ2 ≤ ‖X‖ψ2 + ‖Y ‖ψ2 (5)
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3 Main Section

3.1 Centering

Lemma 1 (Centering lemma (Lemma 2.6.8 in [1])). If X is a sub-gaussian random variable, then
X − EX is also a sub-gaussian and,

‖X − EX‖ψ2 . ‖X‖ψ2
1 (6)

Proof. By the triangle inequality (5), we get

‖X − EX‖ψ2 ≤ ‖X‖ψ2 + ‖EX‖ψ2 (7)

Also note that, by the definition of sub-gaussian norm, we have ‖EX‖ψ2 . |EX| (because EX is a
constant), then

‖EX‖ψ2 . |EX|
. ‖X‖1 (by Jensen’s inequality)

. ‖X‖ψ2 (using (3) with p = 1)

(8)

Substituting this into (7), we complete the proof.

3.2 Hoeffding’s inequality

Here, we consider the concentration inequality to the general sub-gaussian distributions.

Theorem 2 (General Hoeffding’s inequality (Theorem 2.6.2 in [1])). Let X1, · · · , XN be indepen-
dent, mean zero, sub-gaussian random variables. Then, for every t ≥ 0, we have

P
{
|
N∑
i=1

Xi| ≥ t
}
≤ 2 exp

(
− ct2∑N

i=1 ‖Xi‖2ψ2

)
(9)

Observations: It is sufficient to show that

‖
N∑
i=1

Xi‖2ψ2
.

N∑
i=1

‖Xi‖2ψ2
(10)

But note that triangle inequality (5) only gives us

‖
N∑
i=1

Xi‖2ψ2
≤ (

N∑
i=1

‖Xi‖ψ2)2, (11)

which is not good enough. Therefore, we consider to use the independent assumption and the
moment generating function of the sum to prove it.

1The notation a . b means that a ≤ Cb where is C is some absolute constant.
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Proof. For any λ ∈ R,

E exp(λ

N∑
i=1

Xi) =

N∏
i=1

E exp(λXi) (by independence)

≤
N∏
i=1

exp(Cλ2‖Xi‖2ψ2
) (by sub-gaussian property (4))

= exp(λ2K2), (where K2 := C
N∑
i=1

‖Xi‖2ψ2
)

(12)

Recall that the bound on MGF we just proved characterizes sub-gaussian distribution (sub-gaussian
property (4)), which implies

∑N
i=1Xi is sub-gaussian and ‖

∑N
i=1Xi‖2ψ2

.
∑N

i=1 ‖Xi‖2ψ2
.

3.3 Sub-exponential distributions

Motivations: To understand the norm of a vector with sub-gaussian coordinate, we need to
understand the square of a sub-gaussian. For example, considering X is sub-gaussian and Y := X2,
then for ∀t ≥ 0,

P(Y ≥ t) = P(X2 ≥ t) = P(|X| ≥
√
t) ≤ 2 exp(−c(

√
t)2

‖X‖2ψ2

) = 2 exp(− ct

‖X‖2ψ2

) (13)

Note that the tail of Y are like for the exponential distribution, and are strictly heavier than
sub-gaussian. Therefore, in the following, we consider another important family of distributions,
sub-exponential distributions, which are quite similar to the sub-gaussian distributions in terms of
either definition or properties.

Definition 3 (Sub-exponential random variables). The sub-exponential norm of X, denoted ‖X‖ψ1,
is defined as

‖X‖ψ1 := inf{t > 0 : E exp(|X|/t) ≤ 2} (14)

If ‖X‖ψ1 < +∞, we say X is sub-exponential.

Proposition 4 (Sub-exponential properties (restate Proposition 2.7.1 in [1] in terms of ‖ · ‖ψ1)).
‖X‖ψ1 ≤ K is equivalent to (up to constants, see more details in [1] page 32)

(i) The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp(− ct
K

), for all t ≥ 0 (15)

(ii) The moments of X satisfy
‖X‖p ≤ CKp, for all p ≥ 1 (16)

(v) If EX = 0, the MGF of X satisfies

E exp(λX) ≤ exp(Cλ2K2), for all λ such that |λ| ≤ 1√
CK

(17)
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Lemma 5 (Triangle inequality). For any two sub-exponential random variables X and Y ,

‖X + Y ‖ψ1 ≤ ‖X‖ψ1 + ‖Y ‖ψ1 (18)

Lemma 6 (Centering lemma). If X is a sub-exponential random variable, then X − EX is also a
sub-exponential and,

‖X − EX‖ψ1 . ‖X‖ψ1 (19)

3.4 Bernstein’s inequality

Similar to the concentration inequality of sums of independent sub-gaussian random variables
(Hoeffding’s inequality), for sub-exponential random variables, we have

Theorem 7 (Bernstein’s inequality (Theorem 2.8.1 in [1])). Let X1, · · · , XN be independent, mean
zero, sub-exponential random variables. Then, for every t ≥ 0, we have

P
{
|
N∑
i=1

Xi| ≥ t
}
≤ 2 exp

[
−min{ ct2∑N

i=1 ‖Xi‖2ψ1

,
ct

maxi ‖Xi‖ψ1

}
]
, (20)

where c > 0 is an absolute constant.

Proof. Note that

P(

N∑
i=1

Xi ≥ t) = P(λ

N∑
i=1

Xi ≥ λt)

≤ e−λtE exp(λ
N∑
i=1

Xi) (by Markov inequality)

= e−λt
N∏
i=1

E exp(λXi)

(21)

To bound the MGF of each term Xi, we use property (17) in Proposition 4. So, if λ is small enough
such that,

|λ| ≤ c

maxi ‖Xi‖ψ1

(22)

then E exp(λXi) ≤ exp(Cλ2‖Xi‖2ψ1
). Then we have,

P(
N∑
i=1

Xi ≥ t) ≤ exp(−λt+ Cλ2σ2), where σ2 :=
N∑
i=1

‖Xi‖2ψ1
(23)

Now we minimize this expression in λ w.r.t the constraint (22). The optimal choice is λ =
min( t

2Cσ2 ,
c

maxi ‖Xi‖ψ1
), for which we obtain

P(
N∑
i=1

Xi ≥ t) ≤ exp
[
−min{ t2

4Cσ2
,

ct

2 maxi ‖Xi‖ψ1

}
]

(24)

Repeating this argument for −Xi instead of Xi, we obtain the same bound for P(−
∑N

i=1Xi ≤ t).
A combination of these two bounds completes the proof.
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