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1 Last time

In the last lecture we talked about the sub-Gaussian Random variables. Recall that a random
variable X is sub-Gaussian variable if its sub-Gaussian norm is bounded, i.e.,

Xy, <00,

where
[ X ||y, = inf{t > 0: E[exp(X?/t?)] < 2} .

If || Xy, < K, there exists an absolute constant C' > 0 such that the following properties are
equivalent (see [1])

1. Pr[|X|>t] < 2exp(—t2/(CK?)) for all t > 0.
2. | X|, < CK./p for all p > 1 (recall that || X, = (E[XP])/P).
3. If E[X] = 0, E[exp(A\X)] < exp(CA2K?) for all .

Moreover, the triangle inequality holds w.r.t. the || - ||4,, i.e.,
X+ Vg, < 1 Xy + 1Y [, -

We denote that a < b for a < Cb, for some absolute constant C' > 0.

2 Hoeffding’s Inequality

In this lecture we are going to see the Hoeffding’s Inequality for sub-Gaussian random variables.
First, we prove the following lemma:

Lemma 1 (Centering lemma 2.6.8 in [1]). It holds that
X = EX]lly, < X1y, -

Proof. From triangle inequality, it holds that
X = E[X][ly, < [[Xlp, + [ EX]lly, S 1X v, + [EX]],

where we used that || E[X]||y, < C|E[X]|, for some C > 0, from the definition of the sub-Gaussian
norm (for t = E[X]|/vIn2). Then using Jensen’s inequality we have that | E[X]| < || X]|; and from
Property 2, we have that || X||; < C||X]||y,, for some C' > 0. Therefore, we have that

X = E[X]llp, S 1 X1l + [EX]S [ Xy, -



Next, we prove the General Hoeffding’s inequality.

Theorem 2 (Thm 2.6.2 in [1]). Let X1, Xo,..., Xy be independent mean zero, sub-Gaussian ran-
dom variables. Then there exists an absolute constant ¢ > 0, so that for all t > 0, it holds

N ct?
SXi| >t| <2exp (—N> .
] Do 1 Xl13,

i=1
This is called General Hoeffding’s inequality and generalizes the Hoeffding’s inequality which as-

sumes that the random variables have bounded variance o2.

Pr

Proof. First, from triangle inequality it holds that

N N
1Y Xillgs <D 1 Xillyy < 00,
i=1 =1

therefore Zfi 1 X; is a sub-Gaussian random variable. It suffices to show that the
N N
2 2
1> Xillg, < D 1%l -
i=1 i=1

One could try the triangle inequality, but this would give that || SV XZ-\@Q < (N 1Xillpy)? ~
NN, HX,HEZ)2 which is very loose, therefore we need to find a different way to prove this.
To prove this, we need to use the independence of the random variables X;. From the assumption

that the random variables are mean zero, the sum is also from linearity, hence, using Property 3,
we have that for some absolute constant C' > 0 that

N N N N
Elexp(A Y Xi)] = [ [ Elexp(AXi)] < [[ exp(CAIXillv,) = exp(CA D [1Xill7,)
i=1 i=1 i=1 i=1

where we used the independence to split the expectation into a product. The proof follows by
applying the Property 1. O

3 Sub-Exponential Random Variables

To understand the norm of a vector with sub-Gaussian (X) coordinates, we need to understand
the square of a sub-Gaussian (X?). Observe that

C(Vt)? Ct

Pr[X% > ] = Pr[|X| > V1] < Qexp(—T) = 2exp(—ﬁ) ,

where we used the Property 1. Observe that the decay is smaller than before, these random variables
are called sub-exponential.



Definition 3. We call a random variable X, sub-exponential if
[ X1y, <00,
where

1X Iy, = inf{t > 0: Elexp(IX|/)] < 2} .

Similar with the sub-Gaussian random variables, we have some equivalence properties for sub-
exponential random variables. We mark with red the main differences with sub-Gaussian random
variables.

Proposition 4. If || X||y, < K, i.e., X is sub-exponential then there exists an absolute constant
C > 0 such that the following properties are equivalent,

1. Pr[|X| > t] < 2exp(—t/(CK)) for allt > 0.
2. || X|lp < CKp for allp > 1.
3. If E[X] =0, then E[exp(AX)] < exp(CN’K?) for all |\ <

UK

We have that triangle inequality holds w.r.t. the | - [|;,. We have the Bernstein’s inequality.

Theorem 5 (Thm 2.8.1. in [1]). Let X1, Xo,...,Xn be independent mean zero, sub-exponential
random variables. Then there exists an absolute constant ¢ > 0, so that for all t > 0, it holds

t2 ¢
>t| <2exp | —cmin( , )] .
] ( Sy 1XG]2, maxs [ Xilly,

Proof. The proof is similar to the Hoeffding’s inequality. To prove this, we need to use the inde-
pendence of the random variables X;. We use Property 3, we have that

N

>

=1

Pr

N N N N
Elexp(A ) Xi)] = [ [ Elexp(AX:)] < [ exp(CAIXilly,) = exn(CA Y I1XGI1,)
i=1 i=1 i=1 i=1

for all A < =—————— where we used the independence to split the expectation into a product.
C max; [| X ||y,

Let 02 = vazl ||X2H;2z;1 From Markov’s inequality we have that

N
ZXi > ¢
=1

then optimizing with respect of A we have that A\ = min (

Pr =Pr

i=1 =1

N N
exp ()\ZXZ) > exp()\t)] < exp(—At) E[exp(/\ZX,-)] < exp(—A+CN?0?) |

t 1 Ca
5007 Cmax; HXz'le) which gives the result,

to complete the proof apply Markov’s inequality in the — Z,fil X;. ]

There is another form of Bernstein’s inequality, when the random variables are bounded.
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