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1 Last time

In the last lecture we talked about the sub-Gaussian Random variables. Recall that a random
variable X is sub-Gaussian variable if its sub-Gaussian norm is bounded, i.e.,

‖X‖ψ2 <∞ ,

where
‖X‖ψ2 = inf{t ≥ 0 : E[exp(X2/t2)] ≤ 2} .

If ‖X‖ψ2 ≤ K, there exists an absolute constant C > 0 such that the following properties are
equivalent (see [1])

1. Pr[|X| ≥ t] ≤ 2 exp(−t2/(CK2)) for all t > 0.

2. ‖X‖p ≤ CK
√
p for all p ≥ 1 (recall that ‖X‖p = (E[Xp])1/p).

3. If E[X] = 0, E[exp(λX)] ≤ exp(Cλ2K2) for all λ.

Moreover, the triangle inequality holds w.r.t. the ‖ · ‖ψ2 , i.e.,

‖X + Y ‖ψ2 ≤ ‖X‖ψ2 + ‖Y ‖ψ2 .

We denote that a . b for a ≤ Cb, for some absolute constant C > 0.

2 Hoeffding’s Inequality

In this lecture we are going to see the Hoeffding’s Inequality for sub-Gaussian random variables.
First, we prove the following lemma:

Lemma 1 (Centering lemma 2.6.8 in [1]). It holds that

‖X −E[X]‖ψ2 . ‖X‖ψ2 .

Proof. From triangle inequality, it holds that

‖X −E[X]‖ψ2 ≤ ‖X‖ψ2 + ‖E[X]‖ψ2 . ‖X‖ψ2 + |E[X]| ,

where we used that ‖E[X]‖ψ2 ≤ C|E[X]|, for some C > 0, from the definition of the sub-Gaussian
norm (for t = E[X]/

√
ln 2). Then using Jensen’s inequality we have that |E[X]| ≤ ‖X‖1 and from

Property 2, we have that ‖X‖1 ≤ C‖X‖ψ2 , for some C > 0. Therefore, we have that

‖X −E[X]‖ψ2 . ‖X‖ψ2 + |E[X]| . ‖X‖ψ2 .
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Next, we prove the General Hoeffding’s inequality.

Theorem 2 (Thm 2.6.2 in [1]). Let X1, X2, . . . , XN be independent mean zero, sub-Gaussian ran-
dom variables. Then there exists an absolute constant c > 0, so that for all t ≥ 0, it holds

Pr

[∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− ct2∑N

i=1 ‖Xi‖2ψ2

)
.

This is called General Hoeffding’s inequality and generalizes the Hoeffding’s inequality which as-
sumes that the random variables have bounded variance σ2.

Proof. First, from triangle inequality it holds that

‖
N∑
i=1

Xi‖ψ2 ≤
N∑
i=1

‖Xi‖ψ2 ≤ ∞ ,

therefore
∑N

i=1Xi is a sub-Gaussian random variable. It suffices to show that the

‖
N∑
i=1

Xi‖2ψ2
.

N∑
i=1

‖Xi‖2ψ2
.

One could try the triangle inequality, but this would give that ‖
∑N

i=1Xi‖2ψ2
≤ (
∑N

i=1 ‖Xi‖ψ2)2 ∼
N
∑N

i=1 ‖Xi‖2ψ2
which is very loose, therefore we need to find a different way to prove this.

To prove this, we need to use the independence of the random variables Xi. From the assumption
that the random variables are mean zero, the sum is also from linearity, hence, using Property 3,
we have that for some absolute constant C > 0 that

E[exp(λ
N∑
i=1

Xi)] =
N∏
i=1

E[exp(λXi)] ≤
N∏
i=1

exp(Cλ‖Xi‖ψ2) = exp(Cλ
N∑
i=1

‖Xi‖2ψ2
) ,

where we used the independence to split the expectation into a product. The proof follows by
applying the Property 1.

3 Sub-Exponential Random Variables

To understand the norm of a vector with sub-Gaussian (X) coordinates, we need to understand
the square of a sub-Gaussian (X2). Observe that

Pr[X2 ≥ t] = Pr[|X| ≥
√
t] ≤ 2 exp(−C(

√
t)2

K2
) = 2 exp(−Ct

K2
) ,

where we used the Property 1. Observe that the decay is smaller than before, these random variables
are called sub-exponential.
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Definition 3. We call a random variable X, sub-exponential if

‖X‖ψ1 <∞ ,

where
‖X‖ψ1 = inf{t ≥ 0 : E[exp(|X|/t)] ≤ 2} .

Similar with the sub-Gaussian random variables, we have some equivalence properties for sub-
exponential random variables. We mark with red the main differences with sub-Gaussian random
variables.

Proposition 4. If ‖X‖ψ1 ≤ K, i.e., X is sub-exponential then there exists an absolute constant
C > 0 such that the following properties are equivalent,

1. Pr[|X| ≥ t] ≤ 2 exp(−t/(CK)) for all t > 0.

2. ‖X‖p ≤ CKp for all p ≥ 1.

3. If E[X] = 0, then E[exp(λX)] ≤ exp(Cλ2K2) for all |λ| ≤ 1
CK .

We have that triangle inequality holds w.r.t. the ‖ · ‖ψ1 . We have the Bernstein’s inequality.

Theorem 5 (Thm 2.8.1. in [1]). Let X1, X2, . . . , XN be independent mean zero, sub-exponential
random variables. Then there exists an absolute constant c > 0, so that for all t ≥ 0, it holds

Pr

[∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−cmin(

t2∑N
i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

)

)
.

Proof. The proof is similar to the Hoeffding’s inequality. To prove this, we need to use the inde-
pendence of the random variables Xi. We use Property 3, we have that

E[exp(λ
N∑
i=1

Xi)] =
N∏
i=1

E[exp(λXi)] ≤
N∏
i=1

exp(Cλ‖Xi‖ψ1) = exp(Cλ
N∑
i=1

‖Xi‖2ψ1
) ,

for all λ ≤ 1
Cmaxi ‖Xi‖ψ1

, where we used the independence to split the expectation into a product.

Let σ2 =
∑N

i=1 ‖Xi‖2ψ1
. From Markov’s inequality we have that

Pr

[
N∑
i=1

Xi ≥ t

]
= Pr

[
exp

(
λ

N∑
i=1

Xi

)
≥ exp(λt)

]
≤ exp(−λt) E[exp(λ

N∑
i=1

Xi)] ≤ exp(−λt+Cλ2σ2) ,

then optimizing with respect of λ we have that λ = min
(

t
2Cσ2 ,

1
Cmaxi ‖Xi‖ψ1

)
which gives the result,

to complete the proof apply Markov’s inequality in the −
∑N

i=1Xi.

There is another form of Bernstein’s inequality, when the random variables are bounded.
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