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Sebastien Roch, UW-Madison Scribe: Jeremy Johnson

1 Overview

In the last lecture we expand our understanding of sub-exponential distributions and prove useful
concentration inequalities for the sum of sub-exponential random variables and for the norm of
random vectors with sub-gaussian coordinates.

2 Sub-Exponential Random Variables

We recall the class of sub-exponential random variables; a class of random variables whose tails
decay slightly slower than those of sub-gaussian random variables. Similar to sub-gaussian random
variables, this class of random variable can be understood through the following norm:

Definition 1. The sub-exponential norm of X € R is
| X, =inf {t > 0: Eexp(|X|/t) <2}.
If || X ||y, is finite, we say that X is sub-exponential.

Fact 2 (See 2.7.1 in V for greater detail). The above is equivalent (up to some absolute constant)
to P(|X| > t) < 2exp(—ct/||X||y,) for all t > 0. Moreover, the MGF of |X| is bounded at some
point, namely

Eexp(|X|/Kq) < 2.

We will see that sub-exponential distributions and sub-gaussian distributions are closely related.
First, note that any sub-gaussian distribution is sub-exponential. Second, the square of a sub-
gaussian random variable is sub-exponential:

Lemma 3 (2.7.6 in V). A random variable X is sub-gaussian if and only if X? is sub-exponential.

Moreover,
1221y, = 1 X113,

Idea of Proof.
We have that
| X2\, = inf {t > 0: Eexp(|X?|/t) < 2}.

For any t for which this is true, take (v/#)? in the definition of the sub-gaussian norm.

With the above, we can now state a concentration inequality for sums of independent sub-exponential
random variables.



Theorem 4 (Bernstein’s inequality). Let X1,..., X be independent, mean zero, sub-exponential
random variables. Then, for every t > 0, we have
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where ¢ > 0 is an absolute constant.
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Proof. See 2.8.1 in Vershynin. O

Let us see what this says for random variables satisfying ||.X; ||, = 1:
g
IP’{ 2t}g{exp( ct*/N) t< N

exp(—ct) t> N.
This says that, for sums of sub-exponential random variables, small deviations from the mean have
sub-gaussian tails whereas large deviations have heavier sub-exponential tails.
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3 Concentration of the norm

Given a random vector X = (X1,...,X,) € R", we may ask where its norm is likely to be located.
This is answered by the following theorem:

Theorem 5 (3.1.1 in V). Let X = (Xi,...,X,) € R" be a random vector with independent,
sub-gaussian coordinates X; that satisfy IEX? =1. Then

P([IX11 - va| 2 t) < 2exp(~ct?/K?),

where K = max; || X[y, -

Proof. In the following, we assume K > 1 (this is justified below). We will apply Bernstein’s
inequality to %HX |2 — 1 by first noting that this quantity is equivalent to % > (X2 —1) and that
this is indeed a sum of sub-exponential random variables:
IX7 = Ly, S IX7P My (by centering lemma)
2
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Apply Bernstein’s inequality with ¢ = nu:
1 2,2
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< 2exp <K4 min(u2,u)> (K <1). (1)



This is a concentration inequality for || X|3. To make the link towards a concentration inequality
for || X||2, observe (this is an exercise) that for z > 0:

|z —1|>6 implies |22 — 1| > max(d,5%).
We obtain, for any § > 0, that

1 1
P{’\/ﬁ\\x\\z - 1’ > 5} SP{‘HHXH% - 1‘ > maX(5,52)}
_n 52 _ 2
§2exp< 74 (5) (by (1) for u = max(d,d)).

Changing variables to t = §y/n, we obtain the desired concentration inequality

P (|I1Xll = vit] > £) < 2exp(—ct2/K.

Remark. Why may we assume K > 17 Note that e > 1+ x. Hence
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Recalling that IEXZ-2 = 1 and rearranging, we have

1
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That is, || X;|y, is at least 1.
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