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1 Overview

In the last lecture we expand our understanding of sub-exponential distributions and prove useful
concentration inequalities for the sum of sub-exponential random variables and for the norm of
random vectors with sub-gaussian coordinates.

2 Sub-Exponential Random Variables

We recall the class of sub-exponential random variables; a class of random variables whose tails
decay slightly slower than those of sub-gaussian random variables. Similar to sub-gaussian random
variables, this class of random variable can be understood through the following norm:

Definition 1. The sub-exponential norm of X ∈ R is

‖X‖ψ1 = inf {t > 0 : E exp(|X|/t) ≤ 2} .

If ‖X‖ψ1 is finite, we say that X is sub-exponential.

Fact 2 (See 2.7.1 in V for greater detail). The above is equivalent (up to some absolute constant)
to P(|X| ≥ t) ≤ 2 exp(−ct/‖X‖ψ1) for all t ≥ 0. Moreover, the MGF of |X| is bounded at some
point, namely

E exp(|X|/K4) ≤ 2.

We will see that sub-exponential distributions and sub-gaussian distributions are closely related.
First, note that any sub-gaussian distribution is sub-exponential. Second, the square of a sub-
gaussian random variable is sub-exponential:

Lemma 3 (2.7.6 in V). A random variable X is sub-gaussian if and only if X2 is sub-exponential.
Moreover,

‖X2‖ψ1 = ‖X‖2ψ2
.

Idea of Proof.
We have that

‖X2‖ψ1 = inf
{
t > 0 : E exp(|X2|/t) ≤ 2

}
.

For any t for which this is true, take (
√
t)2 in the definition of the sub-gaussian norm.

With the above, we can now state a concentration inequality for sums of independent sub-exponential
random variables.
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Theorem 4 (Bernstein’s inequality). Let X1, . . . , XN be independent, mean zero, sub-exponential
random variables. Then, for every t ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

[
−cmin

(
t2∑N

i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

)]
,

where c > 0 is an absolute constant.

Proof. See 2.8.1 in Vershynin.

Let us see what this says for random variables satisfying ‖Xi‖ψ1 = 1:

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
}
≤

{
exp(−ct2/N) t < N

exp(−ct) t ≥ N.

This says that, for sums of sub-exponential random variables, small deviations from the mean have
sub-gaussian tails whereas large deviations have heavier sub-exponential tails.

3 Concentration of the norm

Given a random vector X = (X1, . . . , Xn) ∈ Rn, we may ask where its norm is likely to be located.
This is answered by the following theorem:

Theorem 5 (3.1.1 in V). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent,
sub-gaussian coordinates Xi that satisfy EX2

i = 1. Then

P
(∣∣∣‖X‖2 −√n∣∣∣ ≥ t) ≤ 2 exp(−ct2/K4),

where K = maxi ‖Xi‖ψ2.

Proof. In the following, we assume K ≥ 1 (this is justified below). We will apply Bernstein’s
inequality to 1

n‖X‖
2
2−1 by first noting that this quantity is equivalent to 1

n

∑n
i=1(X

2
i −1) and that

this is indeed a sum of sub-exponential random variables:

‖X2
i − 1‖ψ1 . ‖X2

i ‖ψ1 (by centering lemma)

= ‖Xi‖2ψ2

. K2.

Apply Bernstein’s inequality with t = nu:

P
(∣∣∣ 1
n
‖X‖22 − 1

∣∣∣ ≥ u) ≤ 2 exp

(
−cmin

(
n2u2

nK4
,
nu

K2

))
≤ 2 exp

(
−cn
K4

min(u2, u)

)
(K ≤ 1). (1)
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This is a concentration inequality for ‖X‖22. To make the link towards a concentration inequality
for ‖X‖2, observe (this is an exercise) that for z ≥ 0:

|z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2).

We obtain, for any δ ≥ 0, that

P
{∣∣∣∣ 1√

n
‖X‖2 − 1

∣∣∣∣ ≥ δ} ≤ P
{∣∣∣∣ 1n‖X‖22 − 1

∣∣∣∣ ≥ max(δ, δ2)

}
≤ 2 exp

(
− cn
K4
· δ2
)

(by (1) for u = max(δ, δ2)).

Changing variables to t = δ
√
n, we obtain the desired concentration inequality

P
(∣∣∣‖X‖2 −√n∣∣∣ ≥ t) ≤ 2 exp(−ct2/K4).

Remark. Why may we assume K ≥ 1? Note that ex ≥ 1 + x. Hence

2 ≥ E

(
exp

(
|Xi|2

‖Xi‖2ψ2

))

≥ E

(
|Xi|2

‖Xi‖2ψ2

)
+ 1

Recalling that EX2
i = 1 and rearranging, we have

E

(
1

‖Xi‖2ψ2

)
≤ 1.

That is, ‖Xi‖ψ2 is at least 1.
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