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1 Review of the Last Lecture

In the last lecture, we introduce Sub-Exponential random variables. Let X be a random variable.
We define its ψ1 norm to be

∥X∥ψ1 := inf{t ≥ 0 | E exp(|X|/t) ≤ 2}.

If ∥X∥ψ1 < ∞, then we say X is a Sub-Exponential random variable. An important fact for Sub-
Exponential random variable is that if X is a Sub-Exponential random variable, then for every
t ≥ 0, we have

P(|X| ≥ t) ≤ 2 exp(−ct/∥X∥ψ1).

This implies that a Sub-Exponential variable decays slower than a Sub-Gaussian variable.

2 This Lecture

In this lecture, we introduce more properties of Sub-Exponential variables and Sub-Gaussian vari-
ables. The topics of this lecture includes the relation between Sub-Exponential variables and
Sub-Gaussian variables, Bernstein’s inequality and concentration of the norm.

2.1 Sub-Exponential and Sub-Gaussian

Let X be a random variable. We will see that X is a Sub-Gaussian if and only if X2 is a Sub-
Exponential.

Lemma 1. (Lemma 2.7.6 in [1]) Let X be a random variable. Then ∥X2∥ψ1 = ∥X∥2ψ2
.

Proof

∥X2∥ψ1 = inf{t ≥ 0 | E exp(X2/t) ≤ 2}
= inf{(

√
t)2 | E exp(X/

√
t)2 ≤ 2}

= ∥X∥2ψ2
.
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2.2 Bernstein’s inequality

Hoeffding’s inequality gives a concentration result for Sub-Gaussian random variables. For Sub-
Exponential random variables, Bernstein’s inequality gives a similar concentration result.

Theorem 2. (Bernstein’s inequality) If X1, . . . , Xn are independent zero-mean Sub-Exponential
random variables, then for every t ≥ 0,

P(|
N∑
i=1

Xi| ≥ t) ≤ 2 exp(−cmin(
t2∑N

i=1 ∥Xi∥2ψ1

,
t

maxi∈[N ] ∥Xi∥ψ1

)),

where c is a constant.

Before we give the proof of the above theorem, we first give an example for the theorem.

Example 1. Suppose that for i ∈ [N ], we have ∥Xi∥ψ1 = 1, then

P(|
N∑
i=1

Xi| ≥ t) ≤

{
exp(− ct2

N ) if t ≤ N

exp(−ct) if t > N.

The above example shows that if t is small, the behavior of
∑N

i=1Xi is like Gaussian, because
of the central limit theorem. On the other hand, if t is large, the behavior of

∑N
i=1Xi is like a

Sub-Exponential.

Now, we present the proof of the Bernstein’s inequality, which was not covered in the lecture.

Proof (Proof of Theorem 2.8.1 in [1]) To deal with the sum of independent random variables, we
consider the MGF. Let S :=

∑N
i=1Xi. Let λ > 0 be a parameter. Then we have

P(S ≥ t) = P(exp(λS) ≥ exp(λt))

≤ exp(−λt)E exp(λS)

= exp(−λt)
N∏
i=1

E exp(λXi)

The inequality follows by Markov’s inequality. Using the property of Sub-Exponential, we know that
there is a constant c such that when λ ≤ 1/cmaxi∈[N ] ∥Xi∥ψ1 , we have E exp(λXi) ≤ exp(cλ2∥Xi∥2ψ1

).
So we get

P(S ≥ t) ≤ exp(cλ2
N∑
i=1

∥Xi∥2ψ1
− λt)

By choosing the optimal λ := min( t
2c

∑N
i=1 ∥Xi∥2ψ1

, 1
cmaxi∈[N ] ∥Xi∥ψ1

), we can see

P(S ≥ t) ≤ exp(−cmin(
t2∑N

i=1 ∥Xi∥2ψ1

,
t

maxi∈[N ] ∥Xi∥ψ1

)).

Using a similar trick for −S, we can finish the proof.
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2.3 Concentration of the Norm

In this part, we apply the property of Sub-Gaussian to obtain a result for a high dimensional
random vector.

Theorem 3. Let X⃗ = (X1, . . . , Xn) ∈ Rn, where Xi are independent Sub-Gaussian with EX2
i = 1.

Then for every t ≥ 0, we have

P(|∥X⃗∥2 −
√
n| ≥ t) ≤ 2 exp(−ct2/K4),

where K = maxi∈[n] ∥Xi∥ψ2.

We notice that E∥X⃗∥22 =
∑n

i=1X
2
i = n. Although this doesn’t implies E∥X⃗∥2 =

√
n, we can expect

that E∥X⃗∥2 is close to
√
n.

Proof We first show that K ≥ 1. By the definition of ψ2 norm, we have

2 ≥ E exp(X2
i /∥Xi∥2ψ2

) ≥ 1 + EX2
i /∥Xi∥2ψ2

= 1 + 1/∥Xi∥2ψ2
.

This implies ∥Xi∥2ψ2
≥ 1 for every i.

Notice that 1
n∥X⃗∥22 − 1 = 1

n

∑n
i=1(X

2
i − 1). We show that ∥X2

i − 1∥ψ1 . K2 for every i. This is
because

∥X2
i − 1∥ψ1 . ∥X2

i ∥ψ1 = ∥Xi∥2ψ2
≤ K2,

where the first inequality follows by centering and the last inequality holds because K ≥ 1. So
there is some c > 0 such that ∥X2

i − 1∥ψ1 ≤ cK2. Now we use Bernstein’s inequality and get for
every u > 0,

P(| 1
n
∥X⃗∥22 − 1| > u) ≤ 2 exp(− cn

K4
min(u2, u)).

A simple observation is that if z, δ ≥ 0, then |z − 1| ≥ δ implies |z2 − 1| ≥ max{δ, δ2}. To see this,
we only need to show |z + 1| ≥ max{1, δ}. From |z − 1| ≥ δ, we know that either z ≥ 1 + δ or
0 ≤ z ≤ 1−δ. In the first case |z+1| = 2+δ, while in the second case |z+1| = 2−δ and 0 < δ < 1.
So in both cases, we have |z + 1| ≥ max{1, δ}.

Now, we take δ = t/
√
n. Then we get

P(|∥X⃗∥2 −
√
n| ≥ t) = P(| 1√

n
∥X⃗∥2 − 1| ≥ δ)

≤ P(| 1
n
∥X⃗∥22 − 1| > max{δ, δ2})

≤ 2 exp(− cn

K4
min(u2, u)),

where u = max{δ, δ2}. Notice that min(u2, u) = δ2 always holds true. To see this, if δ ≥ 1, then
u = δ2 and min(u2, u) = u = δ2. If δ < 1, then u = δ and min(u2, u) = u2 = δ2. Combine the
above results, we finally get

P(|∥X⃗∥2 −
√
n| ≥ t) ≤ 2 exp(−ct2/K4).
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