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1 Review of the Last Lecture

In the last lecture, we introduce Sub-Exponential random variables. Let X be a random variable.
We define its ¥; norm to be

| Xy, :=inf{t > 0| Eexp(|X]|/t) < 2}.

If || X||y, < oo, then we say X is a Sub-Exponential random variable. An important fact for Sub-
Exponential random variable is that if X is a Sub-Exponential random variable, then for every
t > 0, we have

P(IX| = t) < 2exp(—ct/[[X|ly, ).

This implies that a Sub-Exponential variable decays slower than a Sub-Gaussian variable.

2 This Lecture

In this lecture, we introduce more properties of Sub-Exponential variables and Sub-Gaussian vari-
ables. The topics of this lecture includes the relation between Sub-Exponential variables and
Sub-Gaussian variables, Bernstein’s inequality and concentration of the norm.

2.1 Sub-Exponential and Sub-Gaussian

Let X be a random variable. We will see that X is a Sub-Gaussian if and only if X? is a Sub-
Exponential.

Lemma 1. (Lemma 2.7.6 in [1]) Let X be a random variable. Then || X?|y, = ||X||121}2

Proof

12|, = inf{t >0 | Eexp(X?/t) < 2}
= inf{(v1)? | Eexp(X/V1)? < 2}
= X3,



2.2 Bernstein’s inequality

Hoeffding’s inequality gives a concentration result for Sub-Gaussian random variables. For Sub-
Exponential random variables, Bernstein’s inequality gives a similar concentration result.

Theorem 2. (Bernstein’s inequality) If X1,...,X,, are independent zero-mean Sub-Exponential
random variables, then for every t > 0,

N

P> X;| > t) < 2exp(—cmin(
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12 t
N 27 . X, ))7
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where ¢ s a constant.

Before we give the proof of the above theorem, we first give an example for the theorem.

Example 1. Suppose that for i € [N], we have || X;|ly, =1, then

N ct?y -
‘ exp(—%) ft <N
P(|;XZ| 21 < { exp(—ct) if t > N.

The above example shows that if ¢ is small, the behavior of Zfi 1 X; is like Gaussian, because
of the central limit theorem. On the other hand, if ¢ is large, the behavior of ZZ]\L 1 X; is like a
Sub-Exponential.

Now, we present the proof of the Bernstein’s inequality, which was not covered in the lecture.

Proof (Proof of Theorem 2.8.1 in [1]) To deal with the sum of independent random variables, we
consider the MGF. Let S := Zf\il X;. Let A > 0 be a parameter. Then we have

P(S > t) = P(exp(\S) > exp(At))
< exp(—At)Eexp(AS)

N
= exp(—A\t) H E exp(AX;)
i=1
The inequality follows by Markov’s inequality. Using the property of Sub-Exponential, we know that
there is a constant ¢ such that when A < 1/cmax;e(yy | Xilly, , we have Eexp(AX;) < exp(eX?||X; ”?M)
So we get

N
P(S > 1) < exp(eA® Y [ Xull3, — At)
=1
t
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By choosing the optimal A := min(

12 t

P(S > t) < exp(—cmin( , ))-
SN X2, maxieqy [1Xil,

Using a similar trick for —S, we can finish the proof.



2.3 Concentration of the Norm

In this part, we apply the property of Sub-Gaussian to obtain a result for a high dimensional
random vector.

Theorem 3. Let X = (X1,...,X,) € R, where X; are independent Sub-Gaussian with EX? = 1.
Then for every t > 0, we have

P(||| X2 — v/n| > t) < 2exp(—ct?/K*),

where K = maX;e () || Xy, -

We notice that E|| X |3 = > | X2 = n. Although this doesn’t implies E||X||2 = v/, we can expect
that E|| X ||z is close to /n.

Proof We first show that K > 1. By the definition of 19 norm, we have
2 > Eexp(X2/||1Xil12,) > 1+ EXZ/|IX|I5, =1+ 1/ X312,
This implies HXZHfZ}2 > 1 for every i.

Notice that %HX'H% —1=215" (X2—-1). We show that ||X? — 1|y, < K? for every i. This is
because

IX7 = U S N5 N = 17, < K2,

where the first inequality follows by centering and the last inequality holds because K > 1. So
there is some ¢ > 0 such that || X2 — 1y, < cK?. Now we use Bernstein’s inequality and get for
every u > 0,

1, - cn .
P(‘EHXH% —1>u) < 2€Xp(—ﬁ mm(u2,u)).

A simple observation is that if z,d > 0, then |z — 1| > § implies |22 — 1| > max{4, 62}. To see this,
we only need to show |z + 1| > max{1,0}. From |z — 1| > ¢, we know that either 2 > 1+ ¢ or
0 <z <1-—¢. In the first case |2+ 1| = 2+, while in the second case |[z+1| =2—§Jand 0 < § < 1.
So in both cases, we have |z + 1| > max{1,d}.

Now, we take § = t/y/n. Then we get
. 1 -
P(|[| X2 — v/n| > t) = P(lﬁHX\b —1[=9)

1 =
< P(lgHXH% — 1| > max{é,%})
< 2exp(—% min(u?, u)),

where u = max{6,52}. Notice that min(u?,u) = 62 always holds true. To see this, if § > 1, then
u = 62 and min(u?,u) = u = §%2. If § < 1, then v = § and min(u?,u) = u? = §2. Combine the
above results, we finally get

P(||| X2 — v/n| > t) < 2exp(—ct?/K*).
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