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1 Overview

In the last lecture we applied Bernstein’s inequality to prove the concentration property of the vector
with independent sub-gaussian coordinates. In this lecture, we will focus on the concentration of
quadratic forms.

2 Conditional Expectation

The slides for this section (https://people.math.wisc.edu/~roch/hdps/roch-hdps-slides9.
pdf) provides a quick review of basic facts of conditional expectation. These materials are based
on Williams [Wil91], but the results can be found in any graduate-level probability textbook. The
following fact will be widely used throughout this course.

Lemma 1. Let Y and Z be independent random variables with E[Z] = 0. Then, for every convex
function F , one has

E[F (Y )] ≤ E[F (Y + Z)].

Proof. By the tower law of expectation and Jensen’s inequality, we have that

E[F (Y + Z)] = E[E[F (Y + Z) | Y ]] ≥ E[F (E[Y + Z | Y ])]

= E[F (E[Y | Y ] + E[Z | Y ])]

= E[F (Y + E[Z])]

= E[F (Y )].

3 Symmetrization

In this section, we briefly discuss the symmetrization technique. More details can be found in
section 6.4 of [Ver18]. A random variable Z is symmetric if Z and −Z have the same distribution.
A simple example of a symmetric random variable is the well known symmetric Bernoulli, which
takes values −1 and +1 with equal probability 1/2 each, i.e,

Pr[Z = 1] = Pr[Z = −1] = 1/2.

Fact 2 ([Ver18]). Let X be a random variable and Z be an independent symmetric Bernoulli random
variable. Then,
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1. Let X ′ be an independent copy of X. We have that X −X ′ is symmetric.

2. If X is symmetric, then ZX has the same distribution of X.

As an application, we will use the symmetrization technique to prove the following lemma.

Lemma 3. Let X be a real random variable such that E[X] = 0 and |X| ≤ c. Then, for every
λ ∈ R, we have that

E[exp(λX)] ≤ exp(2λ2c2).

Proof. Let X ′ be an independent copy of X and Z be an independent symmetric Bernoulli random
variable. Then, we have that

E[exp(λX)] ≤ E[exp(λ(X −X ′))] = E[exp(λZ(X −X ′))] = E[E[exp(λZ(X −X ′)) | X,X ′]]
≤ E[exp(λ2(X −X ′)2/2)] ≤ exp(2λ2c2),

where the first inequality comes from Lemma 1, the first equality comes from Fact 2, the second
equality comes from the tower law of expectation, and the second inequality comes from the fact
that E[exp(λZ)] ≤ exp(λ2/2),∀λ ∈ R.

4 Hanson-Wright Inequality

Theorem 4 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with
independent mean zero sub-gaussian coordinates Xi. Let A ∈ Rn×n. Then, for every t ≥ 0, we have
that

Pr
[∣∣XTAX −E[XTAX]

∣∣ ≥ t] ≤ 2 exp

(
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖2

))
,

where K = maxi ‖Xi‖ψ2, ‖A‖F and ‖A‖2 denote the Frobenius norm and spectral norm of matrix
A respectively.

We briefly describe the proof idea in this section and will prove Theorem 4 in detail in the next
two lectures. As many times before, the proof will be based on bounding the moment generating
function of XTAX. We will first apply the decoupling technique to replace the term XTAX to
XTAX ′, where X ′ is an independent copy of X. Then, we will compare the moment generating
functions of the decoupled XTAX ′ to the case where X is the Gaussian random vector.
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