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1 Overview

In the last lecture we introduced the properties of sub-exponential variables and its relation with
sub-gaussian variables. We proved the concentration of norm theorem.

In this lecture we review the properties of conditional expectations, introduce the symmetrization
method with corresponding lemma, and discuss the main idea of proving Hanson-Wright inequality.

2 Main Section

We begin by describing the properties of conditional expectations, the slides for this part can be
found in https://people.math.wisc.edu/~roch/hdps/roch-hdps-slides9.pdf

2.1 A Useful Fact

Lemma 1. (lemma 6.1.2 in[1]) Let Y and Z be independent random variables such that EZ = 0.
Then, for every convex function F, one has

EF (Y ) ≤ EF (Y + Z)

Proof.

EF (Y + Z) = E(E(F (Y + Z)|Y )) (Tower property)

≥ E(F (E(Y + Z|Y ))) (Jensen’s inequality)

= E(F (E(Y |Y ) + E(Z|Y ))) (Linearity)

= E(F (Y + E(Z|Y ))) (Property (b) in slides 9)

= E(F (Y + EZ)) (Property (k) in slides 9)

= E(F (Y ))

2.2 Symmetrization

Lemma 2. Let X be a mean-zero random variable with |X| ≤ c a.s. Then

E(exp(λX)) ≤ exp(2c2λ2)
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Proof. We use symmetrization to proof this lemma. Let Z be a Rademacher variable, i.e. P(Z =
1) = P(Z = −1) = 1

2 and independent of X.

Let X
′

be an independent copy of X.

E(exp(λX)) ≤ E(exp(λ(X −X ′
))) (Previous lemma)

= E(exp(λZ(X −X ′
))) (X −X ′

is symmetric)

= E(E(exp(λZ(X −X ′
))|X,X ′

)) (Tower property)

≤ E(exp(
1

2
λ2(X −X ′

)2))

≤ exp(2λ2c2) (X,X
′

are bounded)

where the fourth inequality follows from the fact that

E(exp(tZ)) =
et + e−t

2
(Definition of Z)

=
1

2

∞∑
k=0

tk + (−t)k

k!
(Taylor’s expansion)

=
∞∑
k=0

t2k

(2k)!

≤
∞∑
k=0

t2k

2kk!

= exp(
t2

2
)

2.3 Hanson-Wright Inequality

Theorem 3. (Theorem 6.2.1 in [1] Hanson-Wright inequality) Let X = (X1, X2, ...Xn) ∈ Rn
be a random vector with independent, mean-zero, sub-gaussian coordinates. Let A be an n × n
deterministic matrix. Then, for every t ≥ 0, we have

P{|XTAX − EXTAX| ≥ t} ≤ 2exp[−c min(
t2

K4||A||2F
,

t

K2||A||
)]

where K = maxi||Xi||ψ2

We will prove this theorem in next lecture using the following ideas.

2.3.1 Decoupling

Let A = (aij)i,j , assume Xi are mean-zero and have unit varianc. Notice that

XTAX =
∑
i,j

aijXiXj E(XTAX) =
∑
i

aii = tr(A)
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The first term is hard to handle, we replace it by

XTAX
′

=
∑
i,j

aijXiX
′
j

where X
′

is an independent copy of X. This is better since it is a linear combination of independent
random variables if we conditioning on X

′
.

2.3.2 Compare to gaussians

Then we will compare XTAX
′

to gAg
′
, where g, g

′ ∼ N(0, In).

2.3.3 Compute explicitly

We can compute the moment generating functions of gaussians explicitly, this will complete the
proof.
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