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Matrix Bernstein



Matrix Bernstein inequality

Theorem 5.4.1 (Matrix Bernstein’s inequality). Let Xi,..., Xy be independent,
mean zero, n X n. symmetric random matrices, such that || X;|| < K almost surely
for all ©. Then, for everyt > 0, we have
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1s the norm of the matriz variance of the sum.

In particular, we can express this bound as the mixture of sub-gaussian and
sub-exponential tail, just like in the scalar Bernstein’s inequality:
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Application: covariance estimation

Like in Section 4.7, we estimate the the second moment matrix ¥ = E X X" by
its sample version

1 m
Y = E;)QXJ.

Recall that if X has zero mean, then ¥ is the covariance matrix of X and ¥, is
the sample covariance matrix of X.

Theorem 5.6.1 (General covariance estimation). Let X be a random vector in
R™, n > 2. Assume that for some K > 1,

1 X < K (E[|X]2)Y? almost surely. (5.16)

Then, for every positive integer m, we have
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Application: covariance estimation cont’'d

Exercise 5.6.4 (Tail bound). de# Our argument also implies the following
high-probability guarantee. Check that for any u > 0, we have

K?r(logn+u) K?r(logn+u
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with probability at least 1 — 2e~*. Here r = tr(X)/||X|| < n as before.




