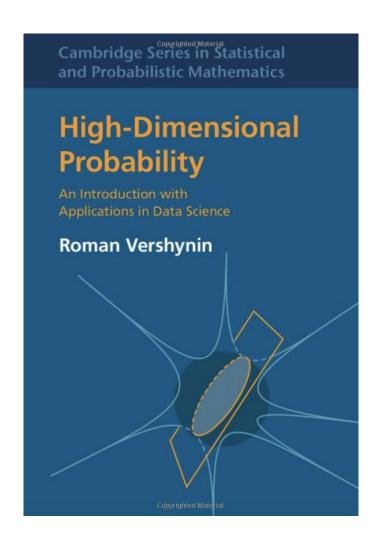
High-Dimensional Probability and Statistics

MATH/STAT/ECE 888: Topics in Mathematical Data Science Sebastien Roch (Math+Stat) UW-Madison Fall 2021

Lecture 20 (10/22/21)

Today's slides based on Vershynin



Matrix Bernstein

Matrix Bernstein inequality

Theorem 5.4.1 (Matrix Bernstein's inequality). Let X_1, \ldots, X_N be independent, mean zero, $n \times n$ symmetric random matrices, such that $||X_i|| \leq K$ almost surely for all i. Then, for every $t \geq 0$, we have

$$\mathbb{P}\Big\{ \Big\| \sum_{i=1}^N X_i \Big\| \geq t \Big\} \leq 2n \exp\Big(- \frac{t^2/2}{\sigma^2 + Kt/3} \Big).$$

Here $\sigma^2 = \left\| \sum_{i=1}^N \mathbb{E} X_i^2 \right\|$ is the norm of the matrix variance of the sum.

In particular, we can express this bound as the mixture of sub-gaussian and sub-exponential tail, just like in the scalar Bernstein's inequality:

$$\mathbb{P}\Big\{\Big\|\sum_{i=1}^N X_i\Big\| \geq t\Big\} \leq 2n \exp\Big[-c\cdot \min\Big(rac{t^2}{\sigma^2},\,rac{t}{K}\Big)\Big].$$

Application: covariance estimation

Like in Section 4.7, we estimate the second moment matrix $\Sigma = \mathbb{E} X X^{\mathsf{T}}$ by its sample version

$$\Sigma_m = \frac{1}{m} \sum_{i=1}^m X_i X_i^\mathsf{T}.$$

Recall that if X has zero mean, then Σ is the covariance matrix of X and Σ_m is the sample covariance matrix of X.

Theorem 5.6.1 (General covariance estimation). Let X be a random vector in \mathbb{R}^n , $n \geq 2$. Assume that for some $K \geq 1$,

$$||X||_2 \le K (\mathbb{E} ||X||_2^2)^{1/2}$$
 almost surely. (5.16)

Then, for every positive integer m, we have

$$\mathbb{E} \|\Sigma_m - \Sigma\| \le C \Big(\sqrt{\frac{K^2 n \log n}{m}} + \frac{K^2 n \log n}{m} \Big) \|\Sigma\|.$$

Application: covariance estimation cont'd

Exercise 5.6.4 (Tail bound). $\blacksquare \blacksquare$ Our argument also implies the following high-probability guarantee. Check that for any $u \ge 0$, we have

$$\|\Sigma_m - \Sigma\| \le C\Big(\sqrt{\frac{K^2r(\log n + u)}{m}} + \frac{K^2r(\log n + u)}{m}\Big) \|\Sigma\|$$

with probability at least $1 - 2e^{-u}$. Here $r = \operatorname{tr}(\Sigma)/\|\Sigma\| \le n$ as before.