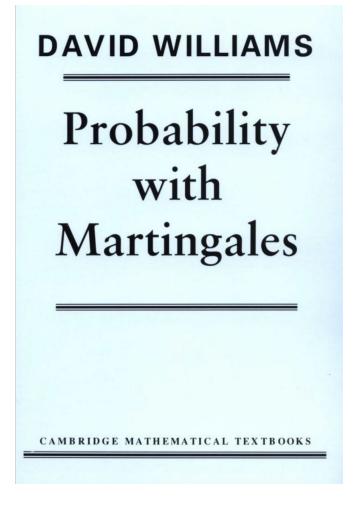
High-Dimensional Probability and Statistics

MATH/STAT/ECE 888: Topics in Mathematical Data Science Sebastien Roch (Math+Stat) UW-Madison Fall 2021

Lecture 3 (09/13/21) & Lecture 4 (09/15/21)

Course website

Today's slides based on Williams (but results can be found in any graduate-level probability textbook)



Important Probability Facts

Markov's inequality

6.4. Markov's inequality

Suppose that $Z \in m\mathcal{F}$ and that $g : \mathbf{R} \to [0, \infty]$ is \mathcal{B} -measurable and non-decreasing. (We know that $g(Z) = g \circ Z \in (m\mathcal{F})^+$.) Then

$$Eg(Z) \ge E(g(Z); Z \ge c) \ge g(c)P(Z \ge c).$$

Examples: for $Z \in (m\mathcal{F})^+$, $cP(Z \ge c) \le E(Z)$, (c > 0),

for
$$X \in \mathcal{L}^1$$
, $cP(|X| \ge c) \le E(|X|)$ $(c > 0)$.

ightharpoonup Considerable strength can often be obtained by choosing the optimum θ for c in

$$P(Y > c) \le e^{-\theta c} E(e^{\theta Y}), \qquad (\theta > 0, \quad c \in \mathbb{R}).$$

7.3. Chebyshev's inequality

As you know this says that for $c \geq 0$, and $X \in \mathcal{L}^2$,

$$c^2 \mathbf{P}(|X - \mu| > c) \le Var(X), \qquad \mu := \mathbf{E}(X);$$

and it is obvious.

Lp norm

6.7. Monotonicity of \mathcal{L}^p norms

▶▶ For $1 \leq p < \infty$, we say that $X \in \mathcal{L}^p = \mathcal{L}^p(\Omega, \mathcal{F}, \mathbf{P})$ if

$$\mathsf{E}(|X|^p)<\infty,$$

and then we define

$$||X||_p := \{ \mathsf{E}(|X|^p) \}^{\frac{1}{p}}.$$

The monotonicity property referred to in the section title is the following:

▶(a) if $1 \le p \le r < \infty$ and $Y \in \mathcal{L}^r$, then $Y \in \mathcal{L}^p$ and

$$||Y||_p \leq ||Y||_r.$$

Cauchy-Schwarz inequality

6.8. The Schwarz inequality

▶(a) If X and Y are in L^2 , then $XY \in L^1$, and

$$|\mathsf{E}(XY)| \le \mathsf{E}(|XY|) \le ||X||_2 ||Y||_2.$$

The following is an immediate consequence of (a):

(b) if X and Y are in L^2 , then so is X + Y, and we have the triangle law:

$$||X + Y||_2 \le ||X||_2 + ||Y||_2.$$

Modes of convergence

A13.1. Modes of convergence: definitions

Let $(X_n : n \in \mathbb{N})$ be a sequence of RVs and let X be a RV, all carried by our triple (Ω, \mathcal{F}, P) . Let us collect together definitions known to us.

Convergence in probability

We say that $X_n \to X$ in probability if, for every $\varepsilon > 0$,

$$P(|X_n - X| > \varepsilon) \to 0$$
 as $n \to \infty$.

 \mathcal{L}^p convergence $(p \ge 1)$

We say that $X_n \to X$ in \mathcal{L}^p if each X_n is in \mathcal{L}^p and $X \in \mathcal{L}^p$ and

$$||X_n - X||_p \to 0$$
 as $n \to \infty$,

equivalently,

$$E(|X_n - X|^p) \to 0$$
 as $n \to \infty$.

Modes of convergence cont'd

A13.2. Modes of convergence: relationships

Let me state the facts.

Convergence in probability is the weakest of the above forms of convergence.

(b) for $p \ge 1$,

$$(X_n \to X \text{ in } \mathcal{L}^p) \Rightarrow (X_n \to X \text{ in prob}).$$

No other implication between any two of our three forms of convergence is valid. But, of course, for $r \geq p \geq 1$,

(c)
$$(X_n \to X \text{ in } \mathcal{L}^r) \Rightarrow (X_n \to X \text{ in } \mathcal{L}^p)$$
.

More on Lp spaces

Vector-space property of \mathcal{L}^p

(b) Since, for $a, b \in \mathbb{R}^+$, we have

$$(a+b)^p \le [2\max(a,b)]^p \le 2^p(a^p+b^p),$$

 \mathcal{L}^p is obviously a vector space.

6.10. Completeness of \mathcal{L}^p $(1 \le p < \infty)$

Let $p \in [1, \infty)$.

The following result (a) is important in functional analysis, and will be crucial for us in the case when p = 2. It is instructive to prove it as an exercise in our probabilistic way of thinking, and we now do so.

(a) If (X_n) is a Cauchy sequence in \mathcal{L}^p in that

$$\sup_{r,s\geq k} \|X_r - X_s\|_p \to 0 \qquad (k \to \infty)$$

then there exists X in \mathcal{L}^p such that $X_r \to X$ in \mathcal{L}^p :

$$||X_r - X||_p \to 0 \qquad (r \to \infty).$$

Note. We already know that \mathcal{L}^p is a vector space. Property (a) is important in showing that \mathcal{L}^p can be made into a Banach space L^p by a quotienting technique of the type mentioned at the end of the preceding section.

More on Lp spaces cont'd

Let (S, Σ, μ) be a measure space. Suppose that

p > 1 and $p^{-1} + q^{-1} = 1$.

Write $f \in \mathcal{L}^p(S, \Sigma, \mu)$ if $f \in m\Sigma$ and $\mu(|f|^p) < \infty$, and in that case define

$$||f||_p := {\mu(|f|^p)}^{1/p}.$$

THEOREM

Suppose that $f, g \in \mathcal{L}^p(S, \Sigma, \mu), h \in \mathcal{L}^q(S, \Sigma, \mu)$. Then

▶(a) (Hölder's inequality) $fh \in \mathcal{L}^1(S, \Sigma, \mu)$ and

$$|\mu(fh)| \le \mu(|fh|) \le ||f||_p ||h||_q;$$

►(b) (Minkowski's inequality)

$$||f+g||_p \leq ||f||_p + ||g||_p.$$

Conditional Expectation Cheat Sheet

These properties are proved in Section 9.8. All X's satisfy $E(|X|) < \infty$ in this list of properties. Of course, \mathcal{G} and \mathcal{H} denote sub- σ -algebras of \mathcal{F} . (The use of 'c' to denote 'conditional' in (cMON), etc., is obvious.)

- (a) If Y is any version of $E(X|\mathcal{G})$ then E(Y) = E(X). (Very useful, this.)
- (b) If X is \mathcal{G} measurable, then $E(X|\mathcal{G}) = X$, a.s.
- (c) (Linearity) $\mathsf{E}(a_1X_1 + a_2X_2|\mathcal{G}) = a_1\mathsf{E}(X_1|\mathcal{G}) + a_2\mathsf{E}(X_2|\mathcal{G})$, a.s. Clarification: if Y_1 is a version of $\mathsf{E}(X_1|\mathcal{G})$ and Y_2 is a version of $\mathsf{E}(X_2|\mathcal{G})$, then $a_1Y_1 + a_2Y_2$ is a version of $\mathsf{E}(a_1X_1 + a_2X_2|\mathcal{G})$.
- (d) (Positivity) If $X \ge 0$, then $E(X|\mathcal{G}) \ge 0$, a.s.
- (e) (cMON) If $0 \le X_n \uparrow X$, then $E(X_n | \mathcal{G}) \uparrow E(X | \mathcal{G})$, a.s.
- (f) (cFATOU) If $X_n \ge 0$, then $\mathsf{E}[\liminf X_n | \mathcal{G}] \le \liminf \mathsf{E}[X_n | \mathcal{G}]$, a.s.
- (g) (cDOM) If $|X_n(\omega)| \leq V(\omega)$, $\forall n, EV < \infty$, and $X_n \to X$, a.s., then

$$\mathsf{E}(X_n|\mathcal{G}) \to \mathsf{E}(X|\mathcal{G}),$$
 a.s.

Conditional Expectation Cheat Sheet cont'd

(h) (cJENSEN) If $c: \mathbb{R} \to \mathbb{R}$ is convex, and $\mathbb{E}|c(X)| < \infty$, then

$$\mathsf{E}[c(X)|\mathcal{G}] \ge c(\mathsf{E}[X|\mathcal{G}]),$$
 a.s.

Important corollary: $\|\mathsf{E}(X|\mathcal{G})\|_p \leq \|X\|_p$ for $p \geq 1$.

(i) (Tower Property) If \mathcal{H} is a sub- σ -algebra of \mathcal{G} , then

$$\mathsf{E}[\mathsf{E}(X|\mathcal{G})|\mathcal{H}] = \mathsf{E}[X|\mathcal{H}],$$
 a.s.

Note. We shorthand LHS to $E[X|\mathcal{G}|\mathcal{H}]$ for tidiness.

(j) ('Taking out what is known') If Z is G-measurable and bounded, then

(*)
$$\mathsf{E}[ZX|\mathcal{G}] = Z\mathsf{E}[X|\mathcal{G}], \quad \text{a.s.}$$

If p > 1, $p^{-1} + q^{-1} = 1$, $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathsf{P})$ and $Z \in \mathcal{L}^q(\Omega, \mathcal{G}, \mathsf{P})$, then (*) again holds. If $X \in (\mathsf{m}\mathcal{F})^+$, $Z \in (\mathsf{m}\mathcal{G})^+$, $\mathsf{E}(X) < \infty$ and $\mathsf{E}(ZX) < \infty$, then (*) holds.

(k) (Rôle of independence) If \mathcal{H} is independent of $\sigma(\sigma(X), \mathcal{G})$, then

$$\mathsf{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathsf{E}(X|\mathcal{G}),$$
 a.s.

In particular, if X is independent of \mathcal{H} , then $E(X|\mathcal{H}) = E(X)$, a.s.