Community recovery: Recap

Definition 1. Let n be a positive integer (the number of vertices), k be a positive
integer (the number of communities), p = (p1,...,pr) be a probability vector on
k] .= {1,...,k} (the prior on the k communities) and W be a k X k symmetric
matriz with entries in |0,1] (the connectivity probabilities). The pair (X, G) is drawn
under SBM(n,p, W) if X is an n-dimensional random vector with i.i.d. components
distributed under p, and G is an n-vertex simple graph where vertices © and j are

connected with probability Wx, x,, independently of other pairs of vertices. We also
define the community sets by ; = ;(X) :={v € [n| : X, =1},1 € [k].

Definition 2. (X, G) is drawn under SSBM(n, k, ¢in, qout) if W takes value g, on
the diagonal and gouwt off the diagonal, and if the community prior is p = {1/k}*
in the Bernoulli model, and X s drawn uniformly at random with the constraints
{v € [n] : Xy, =i} = n/k, n a multiple of k, in the uniform or strictly balanced
model.



Definition 3 (Agreement and normalized agreement). The agreement between two
community vectors x,y € k| is obtained by mazrimizing the common components
between x and any relabelling of y, i.e.,

Az, TrESk o Z L(zi = 7(yi)), (9)

Definition 4. Let (X, G) ~ SBM(n,p, W). The following recovery requirements are
solved if there exists an algorithm that takes G as an input and outputs X = X(G)
such that

e Exact recovery: P{A(X,X)=1}=1—o(1),
e Almost exact recovery: P{A(X,X)=1—0(1)} =1—0(1),

Theorem 3. [ABHI1/, MNS1/a] Exact recovery in SSBM(n, 2, alog(n)/n,blog(n)/n)
is solvable and efficiently so if |\/a — Vb| > V2 and unsolvable if |\/a — Vb| < V2.



Theorem 3. [ABHI1/, MNS1/a] Exact recovery in SSBM(n, 2, alog(n)/n,blog(n)/n)
is solvable and efficiently so if |\/a — Vb| > /2 and unsolvable if |\/a — vVb| < V2.



In the two-community case, denoting by N;, and N,,; the number of edges inside
and across the clusters respectively,

N Now
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Assuming ¢in = Qout, We have g““fl(:ftg < 1 and thus

MAP is equivalent to finding a min-bisection of G,

1.e., a balanced partition with the least number of crossing edges.



Spectral relaxations. Consider again the symmetric SBM with strictly bal-
anced communities. Recall that MAP maximizes

max z'Az, (20)
c€{+1,—1}"
k11T =
since this counts the number of edges inside the clusters minus the number of edges
across the clusters, which is equivalent to the min-bisection problem (the total number

of edges being fixed by the graph). The general idea behind spectral methods is to



relax the integral constraint to an Euclidean constraint on real valued vectors. This
leads to looking for a maximizer of

max ' Ax. (21)
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Without the constraint z'1™ = 0, the above maximization gives precisely the cigen-
vector corresponding to the largest eigenvalue of A. Note that A1™ is the vector
containing the degrees of each node in g, and when ¢ is an instance of the sym-
metric SBM, this concentrates to the same value for each vertex, and 1™ is close to
an eigenvector of A. Since A is real symmetric, this suggests that the constraint
z'1™ = 0 leads the maximization (21) to focus on the eigenspace orthogonal to the
first cigenvector, and thus to the cigenvector corresponding to the sccond largest
eigenvalue. Thus it is reasonable to take the second largest eigenvector ¢2(A) of A
and round it to obtain an efficient relaxation of MAD:

. (1 if ¢a(A) >0,
Xspe-: = 4 1 q{}z( ) N (22)
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Now we describe a spectral method. To simplity presentation, it is assumed without loss of generality
that: ¥ =1 for any 1 <i¢ <n/2, and =7 = —1 for any 2 > n/2.
A starting point for the algorithm design is to examine the mean ol the adjacency maltrix, given

as follows
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As revealed by the above calculation, the matrix constructed below

p+4q

M-=A 1,1 + pI (3.30)
exhibits an approximate rank-1 structure, in the sense that its mean
. P—q| Ly |- T ] o -
M* =E[M]="—=| * ) Lo —Llu, (3.31)
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is a rank-1 matrix. The leading eigenvalue of M™ and its associated eigenvector are given respectively
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Crucially, the eigenvector «”* encapsulates the precise community structure we seek to recover: all

positive entries of 4 correspond to vertices from one community, while the remaining ones form

another community.

Inspired by the above calculation, a candidate spectral clustering algorithm consists of eigende-

composition followed by entrywise rounding:

1. Compute the leading eigenvector w of M (constructed in (3.30));

2. Compute the cstimate & = [z;]1<i<p such that for any 1 <+

I

1.
sgn(us) =4

1,

|\

il u; > 0.

it w; <0.

n,

(3.33)



Theorem 3.8. Consider the setting in Section 3.4.1, and suppose that

log n \/ﬁ
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PR an - =o(p—a) (3.35)
With probability exceeding 1 — O(n %), the spectral method achieves
1 T 1 T
— Y Mz, =z} =1-—0(1), — Y I{z;=—x;} =1-0(1).
L Hai=ai}=1-o() or -3 1{m=-al}=1-o(1

Special case 1: p—g>logn/n,  if p=<(logn)/n.

Special case 2: p—q>» 1/vn, ifpx1,



Theorem 3.4. Consider a symmetric random matrix X = |X; j|1<i j<n in R"*", whose entries are
independently generated and obey

E[X?;?j] - U, and |X?;Jj| "5_: B, 1 {_i ’L,} *‘_: Ti. (36)
Define
v = max Zj E[X})]. (3.7)
Then there exists some universal constant ¢ > 0 such that for any ¢ > 0,
+2
P{IX|| > 4w+t <nexp (- @). (3.8)

This result, which appeared in Bandeira and Van Handel (2016, Remark 3.13), can be established

e As a useful corollary, if we know @ priori that E| X fj] < g?foralll < i, < n, then Theorem 3.4
implies that

| X || < 4o+/n + ¢B+/logn (3.9)

with probability at least 1 —n~" for some constant ¢ > 0. To see this, it suffices to set ¢ = v/9c
and take ¢ = By/9clogn in (3.8).




2.3.1 Setup and notation

Let M™ and M = M*+ E be two n xn real symmetric matrices. We express the cigendecomposition

of M™ and M as follows

L A* 0 U-Jr'l'

M*=Y Nuw' = | U U* N 1 | 2.11
v (o v ][50 o | =
" A 0O U'

M= \uu' =|U U . 2.12
vl = (v w1150 |07 212

Here, {A;} (resp. {A\]}) denote the eigenvalues of M (resp. M™), and u; (resp. u}) stands for the
eigenvector associated with the eigenvalue A; (resp. AY). Additionally, we take

U — [Hl, T ’ur] = ]Rﬂxrﬂ UJ_ = [uTila T :-u'ﬂ-] € RHH(H—T}j
A= dlag([/\lﬁ T ‘.I‘}‘“.l"])!l A= diag([A-,=+1, Ty }*ﬂ])-

The matrices U™, U*, A*, and A% are defined analogously.

dist({U,U*) .= min |[UR—U"*|; (2.10a)
RO 7
distr(U,U*) := min |[UR— U* (2.10b)
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Corollary 2.8. Consider the settings in Section 2.3.1. Suppose that |A]| = [A3] = -+ = |AF] >
Ariq] 2 2 |2 and [Aq]| = [A2] > --- > |Ay] (i.e., the eigenvalues are sorted by their magnitudes).
If | Ef < (1 — 1/V2)(IA] = X7 4al), then

o|But| 2B
M= el = = el

2/T|| E
AF] = Mml AR = (Al

dist(U,U*) < v2||sin@®|| < (2.18a)

distr (U, U*) < V2||5in O|fp <




log n

Theorem 4.6. Fix any constant € > 0, and consider the setting of Section 3.4.1. Suppose p = =22~
and g = 2 lff * for some sufficiently large constants @ > 8 > 0.! In addition, assume that
logn

(VP— ) 2 2(14e) 7o

With probability 1 — o(1), the spectral method in Section 3.4.2 yields

(4.45)

ri=ux; foralll<i<n, or z;=—x foralll <i<n.



Next, we turn to vector and matrix norms. For any vector v, we denote by ||v||2, ||v]||1 and ||v]« its
{5 norm, £1 norm and £, norm, respectively. For any matrix A = [A; ;]1<i<m 1<i<n, We let || A]|, || 4],
|Allr and || Al represent respectively its spectral norm (i.e., the largest singular value of A), its
nuclear norm (i.e., the sum of singular values of A), its Frobenius norm (i.e., ||A||r = \/ > A7), and
its entrywise o, norm (i.e., || A/ = max; ; |A; ;|). We also refer to || A2~ as the 3o norm of A,
defined as || A||2,c0 = max; ||A;.||2. Similarly, we define the £, 2 norm of A as ||Alc2 = ||A"|2.00-
In addition, for any matrices A = [A; ;]i<i<m, i<j<n and B = [B; j|li<i<m,1<j<n, the inner product




Ground truth. Consider a rank-r symmetric matrix M™* ¢ R**" with eigenvectors uj, - ,u,, and

associated eigenvalues Aj,--- , A% obeying

M| 2 [A3 = -- 2 A >0 and A, =---=A;=0. (4.22)
We shall write the eigendecomposition M* = U*A*U*' as usual, where A* := diag([A}, -+, AX])
and U* == |[u}, -+ ,u)] € R™*". Denote the condition number of M* as
k= [AT] / [A7]: (4.23)
Akin to Definition 3.1, the incoherence parameter of M™ is defined as
n||U*3
= | ”lx‘} (4.24)
r

a parameler that captures how well the energy ol U* is spread out across all rows and that obeys

(see Remark 3.12)
L<u<n/r (4.25)



Observed data. What we observe is a corrupted version
M=M"+EcR"", (4.26)
where I is a symmetric noise matrix. We denote by {A; }1<ij<, the set of eigenvalues of A7 obeying
ALl = (A2 = - = A, (4.27

and let w; be the cigenvector of M associated with A;. We shall introduce the diagonal matrix
ACR™ as A =diag(|A1,--,A]).

Noise assumptions. 'T'his section aims to cover a fairly broad class of scenarios of independent
noisc. In particular, the noisc matrix considered hercin is assumed to satisly the mild conditions
listed below.

Assumption 4.1. The entries in the lower triangular part of £ = [Ef,:_;j]@f,:jjin are independently
generated obeying

K[F: ] = 0, ]E['“'i'] —rol. <a® |F

2. < < B, foralli>j. (4.28)

In particular, o2 is taken Lo be the smallest choice salislying (4.28). Further, it is assurned that

b _
i o — O(J'J' (4.29]
ov/n/(plogn)

Cp =




Goal and algorithm. We seek to estimate U™ based on M. Towards this, a simple spectral method
computes the matrix U = [uq, -+ .4, ] € R™*" that comprises the top-r leading eigenvectors of M.

4.2.2 ¢4 and £, theoretical guarantees

The leave-one-out argument introduced before, when properly strengthened, enables powerful £9 o
performance guarantees for the spectral estimate U, which concern row-wise perturbation of the
cigenspace. Before continuing, we remind the readers of the global rotation ambiguity, namely, in
general we cannot expect U to be close to U™ unless suitable global rotation is taken into account.
In light of this, we introduce the following notation that helps identify a proper rotation matrix.

Definition 4.1. For any matrix Z with SVD Z = Uz EEVET (where Uz and Vz represent respectively
the left and right singular matrices of #Z, and ¥z is a diagonal matrix composed of the singular
values), define

sen(Z) =UzV, (4.30)

to be the matrix sign function of Z.

Remark 4.1. The matrix sign function is commonly encountered when aligning two matrices—
classically known as the orthogonal Procrustes problem (Schénemann, 1966). Consider any {wo
matrices B, , B € R™" with r < n. Among all rotation matrices, the one that best aligns B with B
is precisely sgn (ETB) (see, e.g., (Ma et al., 2020, Appendix D.2.1})), namely.

sgn(B" B) = argmin | BO — B||4.
O €O xr



Theorem 4.2. Consider the settings and assumptions in Section 4.2.1. Define H := U 'U*. With
probability exceeding 1 — O(n "), one has

. oK+ /UT + oy/Tlogn
|Usgn(H) —U ngm < B 1 (4.31a)
|Usgn(H) — MU*(A*)"|,
2 ' 3
< VT \/’I‘HlﬂgTL—I-JB\/,[LTng 'n,! (4.31b)

Xl (A%)?

provided that ov/nlogn < c,|A%| for some sufficiently small constant ¢, > 0.







