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Today's slides based on Williams (but results can be
found in any graduate-level probability textbook)

DAVID WILLIAMS

Probability
with
Martingales

CAMBRIDGE MATHEMATICAL TEXTBOOKS

See e.g. https://people.math.wisc.edu/~roch/grad-prob/



https://people.math.wisc.edu/~roch/grad-prob/

More Probability Facts



Lp norm

6.7. Monotonicity of £? norms
»»For 1 < p < oo, we say that X € £? = L?(Q,F,P) if
E(1X]P) < oo,
and then we define
> 1X1 = {E(1X1)} .
The monotonicity property referred to in the section title is the following:

»(a)if l<p<r<ooandY € L", thenY € L? and

1Yl < 1Y ]lr-



More on Lp spaces

Vector-space property of £?

(b)  Since, for a,b € R*, we have
(a + b)? < [2max(a,d)]? < 2P(a? + bP),

L? i3 obuviously a vector space.
6.10. Completeness of L? (1 < p < o0)
Let p € [1, 00).

The following result (a) is important in functional analysis, and will
be crucial for us in the case when p = 2. It is instructive to prove it as an
exercise in our probabilistic way of thinking, and we now do so.

(a)  If(Xn) ts a Cauchy sequence in LP in that

sup || Xy — X,fj, = 0 (k — oo)
r,s>k

then there exists X in LP such that X, — X in LP:
1Xr =Xllp =0 (r— o).
Note. We already know that L? is a vector space. Property (a) is important

in showing that £? can be made into a Banach space L? by a quotienting
technique of the type mentioned at the end of the preceding section.



More on Lp spaces cont'd

Let (S, X, ) be a measure space. Suppose that
g p>landp l4q¢q1=1.
Write f € £P(S, %, ) if f € m¥ and p(|f|P) < oo, and in that case define

I£llp == {u(I£IP)}?.

THEOREM
Suppose that f,g € LP(S,Z,u), h € LI(S,Z,u). Then
»(a) (Holder’s inequality) fh € L1(S, X, 1) and

lu(fR)] < u(lFR]) < N FllpliRllas
»(b) (Minkowski’s inequality)

If +glls < W71l + llglls-



Orlicz spaces

2.7.1 A more general view: Orlicz spaces

Sub-gaussian distributions can be introduced within a more general framework
of Orlicz spaces. A function 1 : [0,00) — [0, 00) is called an Orlicz function if ¢
is convex, increasing, and satisfies

»(0) =0, P(x)—> o0asz— oo.

For a given Orlicz function v, the Orlicz norm of a random variable X is defined
as

1X ||y = inf {t > 0: Ey(|X]|/t) < 1}.

The Orlicz space L, = L,;(,X,P) consists of all random variables X on the
probability space (2, %, P) with finite Orlicz norm, i.e.

Ly:={X: |X|ly < oo}.



Orlicz spaces cont'd

Example 2.7.12 (L? space). Consider the function
Y(z) = 2P,

which is obviously an Orlicz function for p > 1. The resulting Orlicz space L, is
the classical space LP.

Example 2.7.13 (L,, space). Consider the function

2

Po(x) :=€e" — 1,
which is obviously an Orlicz function. The resulting Orlicz norm is exactly the
sub-gaussian norm || - ||y, that we defined in (2.13). The corresponding Orlicz

space L,, consists of all sub-gaussian random variables.



Jensen’s inequality

»A function ¢ : G — R, where G is an open subinterval of R, is called
convex on G if its graph lies below any of its chords: for z,y € G and
0<p=1- g <1,

c(pz + qy) < pe(z) + qc(y).

It will be explained below that ¢ is automatically continuous on G. If ¢ is
twice-differentiable on G, then c is convex if and only if ¢/’ > 0.

»Important examples of convez functions: |z|,z?,e%*(8 € R).

THEOREM. Jensen’s inequality

> > Suppose that c : G — R is a convez function on an open subinterval
G of R and that X is a random variable such that

E(|X]) < oo, P(X eG) =1, Elc(X)| < o0.

Then
Ec(X) 2> ¢(E(X)).



