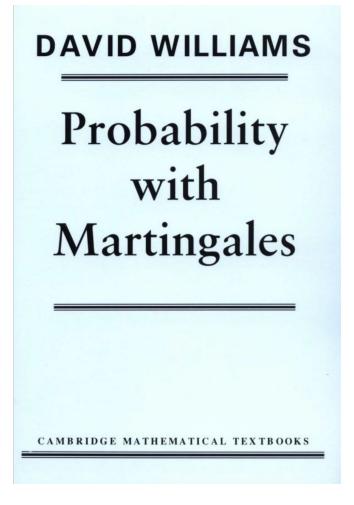
High-Dimensional Probability and Statistics

MATH/STAT/ECE 888: Topics in Mathematical Data Science Sebastien Roch (Math+Stat) UW-Madison Fall 2021

Lecture 5 (09/17/21)

Today's slides based on Williams (but results can be found in any graduate-level probability textbook)



More Probability Facts

Lp norm

6.7. Monotonicity of \mathcal{L}^p norms

▶▶For $1 \leq p < \infty$, we say that $X \in \mathcal{L}^p = \mathcal{L}^p(\Omega, \mathcal{F}, \mathbf{P})$ if

$$\mathsf{E}(|X|^p)<\infty,$$

and then we define

$$||X||_p := \{ \mathsf{E}(|X|^p) \}^{\frac{1}{p}}.$$

The monotonicity property referred to in the section title is the following:

▶(a) if
$$1 \le p \le r < \infty$$
 and $Y \in \mathcal{L}^r$, then $Y \in \mathcal{L}^p$ and

$$||Y||_p \leq ||Y||_r.$$

More on Lp spaces

Vector-space property of \mathcal{L}^p

(b) Since, for $a, b \in \mathbb{R}^+$, we have

$$(a+b)^p \le [2\max(a,b)]^p \le 2^p(a^p+b^p),$$

 \mathcal{L}^p is obviously a vector space.

6.10. Completeness of \mathcal{L}^p $(1 \le p < \infty)$

Let $p \in [1, \infty)$.

The following result (a) is important in functional analysis, and will be crucial for us in the case when p = 2. It is instructive to prove it as an exercise in our probabilistic way of thinking, and we now do so.

(a) If (X_n) is a Cauchy sequence in \mathcal{L}^p in that

$$\sup_{r,s\geq k} \|X_r - X_s\|_p \to 0 \qquad (k \to \infty)$$

then there exists X in \mathcal{L}^p such that $X_r \to X$ in \mathcal{L}^p :

$$||X_r - X||_p \to 0 \qquad (r \to \infty).$$

Note. We already know that \mathcal{L}^p is a vector space. Property (a) is important in showing that \mathcal{L}^p can be made into a Banach space L^p by a quotienting technique of the type mentioned at the end of the preceding section.

More on Lp spaces cont'd

Let (S, Σ, μ) be a measure space. Suppose that

p > 1 and $p^{-1} + q^{-1} = 1$.

Write $f \in \mathcal{L}^p(S, \Sigma, \mu)$ if $f \in m\Sigma$ and $\mu(|f|^p) < \infty$, and in that case define

$$||f||_p := {\mu(|f|^p)}^{1/p}.$$

THEOREM

Suppose that $f, g \in \mathcal{L}^p(S, \Sigma, \mu), h \in \mathcal{L}^q(S, \Sigma, \mu)$. Then

▶(a) (Hölder's inequality) $fh \in \mathcal{L}^1(S, \Sigma, \mu)$ and

$$|\mu(fh)| \le \mu(|fh|) \le ||f||_p ||h||_q;$$

►(b) (Minkowski's inequality)

$$||f+g||_p \leq ||f||_p + ||g||_p.$$

Orlicz spaces

2.7.1 A more general view: Orlicz spaces

Sub-gaussian distributions can be introduced within a more general framework of Orlicz spaces. A function $\psi:[0,\infty)\to[0,\infty)$ is called an Orlicz function if ψ is convex, increasing, and satisfies

$$\psi(0) = 0, \quad \psi(x) \to \infty \text{ as } x \to \infty.$$

For a given Orlicz function ψ , the Orlicz norm of a random variable X is defined as

$$||X||_{\psi} := \inf \{t > 0 : \mathbb{E} \psi(|X|/t) \le 1\}.$$

The Orlicz space $L_{\psi} = L_{\psi}(\Omega, \Sigma, \mathbb{P})$ consists of all random variables X on the probability space $(\Omega, \Sigma, \mathbb{P})$ with finite Orlicz norm, i.e.

$$L_{\psi} := \{X : \|X\|_{\psi} < \infty\}.$$

Orlicz spaces cont'd

Example 2.7.12 (L^p space). Consider the function

$$\psi(x) = x^p,$$

which is obviously an Orlicz function for $p \geq 1$. The resulting Orlicz space L_{ψ} is the classical space L^{p} .

Example 2.7.13 (L_{ψ_2} space). Consider the function

$$\psi_2(x) := e^{x^2} - 1,$$

which is obviously an Orlicz function. The resulting Orlicz norm is exactly the sub-gaussian norm $\|\cdot\|_{\psi_2}$ that we defined in (2.13). The corresponding Orlicz space L_{ψ_2} consists of all sub-gaussian random variables.

Jensen's inequality

▶A function $c: G \to \mathbb{R}$, where G is an open subinterval of \mathbb{R} , is called convex on G if its graph lies below any of its chords: for $x,y \in G$ and $0 \le p = 1 - q \le 1$,

$$c(px+qy) \le pc(x) + qc(y).$$

It will be explained below that c is automatically continuous on G. If c is twice-differentiable on G, then c is convex if and only if $c'' \geq 0$.

▶ Important examples of convex functions: $|x|, x^2, e^{\theta x} (\theta \in \mathbb{R})$.

THEOREM. Jensen's inequality

Suppose that $c: G \to \mathbb{R}$ is a convex function on an open subinterval G of \mathbb{R} and that X is a random variable such that

$$\mathsf{E}(|X|) < \infty, \qquad \mathsf{P}(X \in G) = 1, \qquad \mathsf{E}|c(X)| < \infty.$$

Then

$$Ec(X) \ge c(E(X)).$$