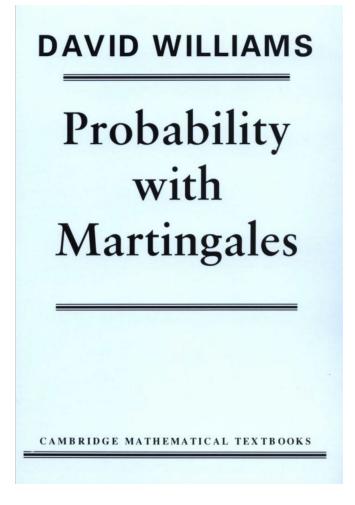
High-Dimensional Probability and Statistics

MATH/STAT/ECE 888: Topics in Mathematical Data Science Sebastien Roch (Math+Stat) UW-Madison Fall 2021

Lecture 9 (09/27/21)

Today's slides based on Williams (but results can be found in any graduate-level probability textbook)



Facts About Conditional Expectation

Conditional Expectation: Definition

9.2. Fundamental Theorem and Definition (Kolmogorov, 1933)

- Let (Ω, \mathcal{F}, P) be a triple, and X a random variable with $E(|X|) < \infty$. Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Then there exists a random variable Y such that
 - (a) Y is G measurable,
 - (b) $\mathsf{E}(|Y|) < \infty$,
 - (c) for every set G in \mathcal{G} (equivalently, for every set G in some π -system which contains Ω and generates \mathcal{G}), we have

$$\int_{G} Y d\mathbf{P} = \int_{G} X d\mathbf{P}, \qquad \forall G \in \mathcal{G}.$$

Moreover, if \tilde{Y} is another RV with these properties then $\tilde{Y} = Y$, a.s., that is, $P[\tilde{Y} = Y] = 1$. A random variable Y with properties (a)-(c) is called a version of the conditional expectation $E(X|\mathcal{G})$ of X given \mathcal{G} , and we write $Y = E(X|\mathcal{G})$, a.s.

Conditional Expectation: Definition cont'd

9.6. Agreement with traditional usage

The case of two RVs will suffice to illustrate things. So suppose that X and Z are RVs which have a joint probability density function (pdf)

$$f_{X,Z}(x,z)$$
.

Then $f_Z(z) = \int_{\mathbf{R}} f_{X,Z}(x,z) dx$ acts as a probability density function for Z. Define the elementary conditional pdf $f_{X|Z}$ of X given Z via

$$f_{X|Z}(x|z) := \begin{cases} f_{X,Z}(x,z)/f_{Z}(z) & \text{if } f_{Z}(z) \neq 0; \\ 0 & \text{otherwise.} \end{cases}$$

Let h be a Borel function on R such that

$$\mathsf{E}|h(X)| = \int_{\mathbf{R}} |h(x)| f_X(x) dx < \infty,$$

where of course $f_X(x) = \int_{\mathbf{R}} f_{X,Z}(x,z) dz$ gives a pdf for X. Set

$$g(z) := \int_{\mathbf{R}} h(x) f_{X|Z}(x|z) dx.$$

Then Y := g(Z) is a version of the conditional expectation of h(X) given $\sigma(Z)$.

Conditional Expectation: Definition cont'd

Proof. The typical element of $\sigma(Z)$ has the form $\{\omega : Z(\omega) \in B\}$, where $B \in \mathcal{B}$. Hence, we must show that

(a)
$$L := \mathsf{E}[h(X)\mathsf{I}_B(Z)] = \mathsf{E}[g(Z)\mathsf{I}_B(Z)] =: R.$$

But .

$$L = \int \int h(x) I_B(z) f_{X,Z}(x,z) dx dz, \quad R = \int g(z) I_B(z) f_Z(z) dz,$$

and result (a) follows from Fubini's Theorem.

Independence

Let X and Y be two random variables. The (joint) law $\mathcal{L}_{X,Y}$ of the pair (X,Y) is the map

$$\mathcal{L}_{X,Y}:\mathcal{B}(\mathsf{R})\times\mathcal{B}(\mathsf{R})\to[0,1]$$

defined by

$$\mathcal{L}_{X,Y}(\Gamma) := \mathbf{P}[(X,Y) \in \Gamma].$$

8.4. Independence and product measure

Let X and Y be two random variables with laws \mathcal{L}_X , \mathcal{L}_Y respectively and distribution functions F_X , F_Y respectively. Then the following three statements are equivalent:

- (i) X and Y are independent;
- (ii) $\mathcal{L}_{X,Y} = \mathcal{L}_X \times \mathcal{L}_Y$;
- (iii) $F_{X,Y}(x,y) = F_X(x)F_Y(y);$

moreover, if (X,Y) has 'joint' pdf $f_{X,Y}$ then each of (i)-(iii) is equivalent to

(iv) $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for Leb × Leb almost every (x,y).

You do not wish to know more about this either.

Conditional expectation as least squares

9.4. Conditional expectation as least-squares-best predictor

If $E(X^2) < \infty$, then the conditional expectation $Y = E(X|\mathcal{G})$ is a version of the orthogonal projection (see Section 6.11) of X onto $\mathcal{L}^2(\Omega,\mathcal{G},P)$. Hence, Y is the least-squares-best \mathcal{G} -measurable predictor of X: amongst all \mathcal{G} -measurable functions (i.e. amongst all predictors which can be computed from the available information), Y minimizes

$$\mathsf{E}[(Y-X)^2].$$

Conditional Expectation Cheat Sheet

These properties are proved in Section 9.8. All X's satisfy $E(|X|) < \infty$ in this list of properties. Of course, \mathcal{G} and \mathcal{H} denote sub- σ -algebras of \mathcal{F} . (The use of 'c' to denote 'conditional' in (cMON), etc., is obvious.)

- (a) If Y is any version of $E(X|\mathcal{G})$ then E(Y) = E(X). (Very useful, this.)
- (b) If X is \mathcal{G} measurable, then $E(X|\mathcal{G}) = X$, a.s.
- (c) (Linearity) $\mathsf{E}(a_1X_1 + a_2X_2|\mathcal{G}) = a_1\mathsf{E}(X_1|\mathcal{G}) + a_2\mathsf{E}(X_2|\mathcal{G})$, a.s. Clarification: if Y_1 is a version of $\mathsf{E}(X_1|\mathcal{G})$ and Y_2 is a version of $\mathsf{E}(X_2|\mathcal{G})$, then $a_1Y_1 + a_2Y_2$ is a version of $\mathsf{E}(a_1X_1 + a_2X_2|\mathcal{G})$.
- (d) (Positivity) If $X \ge 0$, then $E(X|\mathcal{G}) \ge 0$, a.s.
- (e) (cMON) If $0 \le X_n \uparrow X$, then $E(X_n | \mathcal{G}) \uparrow E(X | \mathcal{G})$, a.s.
- (f) (cFATOU) If $X_n \ge 0$, then $\mathsf{E}[\liminf X_n | \mathcal{G}] \le \liminf \mathsf{E}[X_n | \mathcal{G}]$, a.s.
- (g) (cDOM) If $|X_n(\omega)| \leq V(\omega)$, $\forall n, EV < \infty$, and $X_n \to X$, a.s., then

$$\mathsf{E}(X_n|\mathcal{G}) \to \mathsf{E}(X|\mathcal{G}),$$
 a.s.

Conditional Expectation Cheat Sheet cont'd

(h) (cJENSEN) If $c: \mathbb{R} \to \mathbb{R}$ is convex, and $E|c(X)| < \infty$, then

$$\mathsf{E}[c(X)|\mathcal{G}] \ge c(\mathsf{E}[X|\mathcal{G}]),$$
 a.s.

Important corollary: $\|\mathsf{E}(X|\mathcal{G})\|_p \leq \|X\|_p$ for $p \geq 1$.

(i) (Tower Property) If \mathcal{H} is a sub- σ -algebra of \mathcal{G} , then

$$\mathsf{E}[\mathsf{E}(X|\mathcal{G})|\mathcal{H}] = \mathsf{E}[X|\mathcal{H}],$$
 a.s.

Note. We shorthand LHS to $E[X|\mathcal{G}|\mathcal{H}]$ for tidiness.

(j) ('Taking out what is known') If Z is G-measurable and bounded, then

(*)
$$\mathsf{E}[ZX|\mathcal{G}] = Z\mathsf{E}[X|\mathcal{G}], \quad \text{a.s.}$$

If p > 1, $p^{-1} + q^{-1} = 1$, $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathsf{P})$ and $Z \in \mathcal{L}^q(\Omega, \mathcal{G}, \mathsf{P})$, then (*) again holds. If $X \in (\mathsf{m}\mathcal{F})^+$, $Z \in (\mathsf{m}\mathcal{G})^+$, $\mathsf{E}(X) < \infty$ and $\mathsf{E}(ZX) < \infty$, then (*) holds.

(k) (Rôle of independence) If \mathcal{H} is independent of $\sigma(\sigma(X), \mathcal{G})$, then

$$\mathsf{E}[X|\sigma(\mathcal{G},\mathcal{H})] = \mathsf{E}(X|\mathcal{G}),$$
 a.s.

In particular, if X is independent of \mathcal{H} , then $E(X|\mathcal{H}) = E(X)$, a.s

A Useful Fact [From Vershynin]

Lemma 6.1.2. Let Y and Z be independent random variables such that $\mathbb{E} Z = 0$. Then, for every convex function F, one has

$$\mathbb{E} F(Y) \leq \mathbb{E} F(Y+Z).$$

Proof This is a simple consequence of Jensen's inequality. First let us fix an arbitrary $y \in \mathbb{R}$ and use $\mathbb{E} Z = 0$ to get

$$F(y) = F(y + \mathbb{E} Z) = F(\mathbb{E}[y + Z]) \le \mathbb{E} F(y + Z).$$

Now choose y = Y and take expectations of both sides to complete the proof. (To check if you understood this argument, find where the independence of Y and Z was used!)