
Chapter 2

Moments and tails

In this chapter we look at the moments of a random variable. Specifically we
demonstrate that moments capture useful information about the tail of a random
variable while often being simpler to compute or at least bound. Several well-
known inequalities quantify this intuition. Although they are straightforward to
derive, such inequalities are surprisingly powerful. Through a range of applica-
tions, we illustrate the utility of controlling the tail of a random variable, typically
by allowing one to dismiss certain “bad events” as rare. We begin in Section 2.1
by recalling the classical Markov and Chebyshev’s inequalities. Then we discuss
three of the most fundamental tools in discrete probability and probabilistic com-
binatorics. In Sections 2.2 and 2.3, we derive the complementary first and second
moment methods, and give several standard applications, especially to phase tran-
sitions in random graphs and percolation. In Section 2.4 we develop the Chernoff-
Cramér method, which relies on the moment-generating function and is the build-
ing block for a large class of tail bounds. Two key applications in data science are
briefly introduced: sparse recovery and empirical risk minimization.

2.1 Background

We start with a few basic definitions and standard inequalities. See Appendix B for
a refresher on random variables and their expectation.
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CHAPTER 2. MOMENTS AND TAILS 28

2.1.1 Definitions

Moments As a quick reminder, let X be a random variable with E|X|k < +∞
for some non-negative integer k. In that case we write X ∈ Lk. Recall that
the quantities E[Xk] and E[(X − EX)k], which are well-defined when X ∈ Lk,
are called respectively the k-th moment and k-th central moment of X . The first moments
moment and the second central moment are known as the mean and variance, the
square root of which is the standard deviation. A random variable is said to be
centered if its mean is 0. Recall that for a non-negative random variable X , the
k-th moment can be expressed as

E[Xk] =

∫ +∞

0
kxk−1P [X > x] dx. (2.1.1)

The moment-generating function (or exponential moment) of X is the function moment-

generating

function
MX(s) := E

[
esX
]
,

defined for all s ∈ R where it is finite, which includes at least s = 0. If MX(s) is
defined on (−s0, s0) for some s0 > 0 then X has finite moments of all orders, for
any k ∈ Z,

dk

ds
MX(s) = E

[
XkesX

]
, (2.1.2)

and the following expansion holds

MX(s) =
∑
k≥0

sk

k!
E[Xk], |s| < s0.

The moment-generating function plays nicely with sums of independent random
variables. Specifically, if X1 and X2 are independent random variables with MX1

and MX2 defined over a joint interval (−s0, s0), then for s in that interval

MX1+X2(s) = E
[
es(X1+X2)

]
= E

[
esX1esX2

]
= E

[
esX1

]
E
[
esX2

]
= MX1(s)MX2(s), (2.1.3)

where we used independence in the third equality.
One more piece of notation: if A is an event and X ∈ L1, then we use the

shorthand

E[X;A] = E[X1A].
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Tails We refer to a probability of the form P[X ≥ x] as an upper tail (or right tail)
probability. Typically x is (much) greater than the mean or median ofX . Similarly

tail
we refer to P[X ≤ x] as a lower tail (or left tail) probability. Our general goal in
this chapter is to bound tail probabilities using moments and moment-generating
functions.

Tail bounds arise naturally in many contexts, as events of interest can often
be framed in terms of a random variable being unusually large or small. Such
probabilities are often hard to compute directly however. As we will see in this
chapter, moments offer an effective means to control tail probabilities for two main
reasons: (i) moments contain information about the tails of a random variable,
as (2.1.1) below makes explicit for instance; and (ii) they are typically easier to
compute—or, at least, to approximate.

As we will see, tail bounds are also useful to study the maximum of a collection
of random variables.

2.1.2 Basic inequalities

Markov’s inequality Our first bound on the tail of a random variable is Markov’s
inequality. In words, for a non-negative random variable: the heavier the tail, the
larger the expectation. This simple inequality is in fact a key ingredient in more
sophisticated tail bounds as we will see.

Markov’s

inequality
Theorem 2.1.1 (Markov’s inequality). Let X be a non-negative random variable.
Then, for all b > 0,

P[X ≥ b] ≤ EX
b
. (2.1.4)

Proof.
EX ≥ E[X;X ≥ b] ≥ E[b;X ≥ b] = bP[X ≥ b].

See Figure 2.1 for a proof by picture. Note that this inequality is non-trivial only
when b > EX .

Chebyshev’s inequality An application of Markov’s inequality (Theorem 2.1.1)
to |X−EX|2 gives a classical tail bound featuring the second moment of a random
variable.

Chebyshev’s

inequality
Theorem 2.1.2 (Chebyshev’s inequality). LetX be a random variable withEX2 <
+∞. Then, for all β > 0,

P[|X − EX| > β] ≤ Var[X]

β2
. (2.1.5)
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Figure 2.1: Proof of Markov’s inequality: taking expectations of the two functions
depicted above yields the inequality.

Proof. This follows immediately by applying (2.1.4) to |X − EX|2 with b = β2.

Of course this bound is non-trivial only when β is larger than the standard devia-
tion. Results of this type that quantify the probability of deviating from the mean
are referred to as concentration inequalities. Chebyshev’s inequality is perhaps the

concentration in-

equalities
simplest instance—we will derive many more. To bound the variance, the follow-
ing standard formula is sometimes useful

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] + 2
∑
i<j

Cov[Xi, Xj ], (2.1.6)

where recall that the covariance of Xi and Xj is
covariance

Cov[Xi, Xj ] := E[XiXj ]− E[Xi]E[Xj ].

When Xi and Xj are independent, then Cov[Xi, Xj ] = 0.

Example 2.1.3. Let X be a Gaussian random variable with mean µ and variance
Gaussian

σ2, that is, whose density is

fX(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
, x ∈ R.
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Figure 2.2: Comparison of Markov’s and Chebyshev’s inequalities: the squared de-
viation from the mean (solid) gives a better approximation of the indicator function
(dotted) close to the mean than the absolute deviation (dashed).

We write X ∼ N(µ, σ2). A direct computation shows that E|X − µ| = σ
√

2
π .

Hence Markov’s inequality gives

P[|X − µ| ≥ b] ≤ E|X − µ|
b

=

√
2

π
· σ
b
,

while Chebyshev’s inequality (Theorem 2.1.2) gives

P[|X − µ| ≥ b] ≤
(σ
b

)2
.

Hence, for b large enough, Chebyshev’s inequality produces a stronger bound. See
Figure 2.2 for some insight. J

Example 2.1.4 (Coupon collector’s problem). Let (Xt)t∈N be i.i.d. uniform ran-
dom variables over [n], that is, that are equally likely to take any value in [n]. Let

uniform
Tn,i be the first time that i elements of [n] have been picked, that is,

Tn,i = inf {t ≥ 1 : |{X1, . . . , Xt}| = i} ,

with Tn,0 := 0. We prove that the time it takes to pick all elements at least once—
or “collect each coupon”—has the following tail. For any ε > 0, we have as coupon

collectorn→ +∞:
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Claim 2.1.5.

P

∣∣∣∣∣∣Tn,n − n
n∑
j=1

j−1

∣∣∣∣∣∣ ≥ ε n log n

→ 0.

To prove this claim we note that the time elapsed between Tn,i−1 and Tn,i, which
we denote by τn,i := Tn,i − Tn,i−1, is geometric with success probability 1− i−1

n .
And all τn,is are independent. Recall that a geometric random variable Z with

geometric
success probability p has probability mass function P[Z = z] = (1 − p)z−1p for
z ∈ N and has mean 1/p and variance (1−p)/p2. So, the expectation and variance
of Tn,n =

∑n
i=1 τn,i are

E[Tn,n] =

n∑
i=1

(
1− i− 1

n

)−1

= n

n∑
j=1

j−1 = Θ(n log n), (2.1.7)

and

Var[Tn,n] ≤
n∑
i=1

(
1− i− 1

n

)−2

= n2
n∑
j=1

j−2 ≤ n2
+∞∑
j=1

j−2 = Θ(n2). (2.1.8)

So by Chebyshev’s inequality

P

∣∣∣∣∣∣Tn,n − n
n∑
j=1

j−1

∣∣∣∣∣∣ ≥ ε n log n

 ≤ Var[Tn,n]

(ε n log n)2

≤
n2
∑+∞

j=1 j
−2

(ε n log n)2

→ 0,

by (2.1.7) and (2.1.8). J

A classical implication of Chebyshev’s inequality is (a version of) the law of
large numbers. Recall that a sequence of random variables (Xn)n≥1 converges in
probability to a random variable X , denoted by Xn →p X , if for all ε > 0

lim
n→+∞

P[|Xn −X| ≥ ε]→ 0.

Theorem 2.1.6 (L2 weak law of large numbers). Let X1, X2, . . . be uncorrelated
uncorrelated

random variables, that is, E[XiXj ] = E[Xi]E[Xj ] for i 6= j, with E[Xi] = µ <
+∞ and supi Var[Xi] < +∞. Then

1

n

∑
k≤n

Xk →p µ.
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See Exercise 2.5 for a proof. When the Xks are i.i.d. and integrable (but not nec-
essarily square integrable), convergence is almost sure. That result, the strong law
of large numbers, also follows from Chebyshev’s inequality (and other ideas), but
we will not prove it here.

2.2 First moment method

In this section, we develop some techniques based on the first moment. Recall
that the expectation of a random variable has an elementary, yet handy, property:
linearity. That is, if random variables X1, . . . , Xk defined on a joint probability
space have finite first moments, then

E[X1 + · · ·+Xk] = E[X1] + · · ·+ E[Xk], (2.2.1)

without any further assumption. In particular linearity holds whether or not theXis
are independent.

2.2.1 The probabilistic method

A key technique of probabilistic combinatorics is the so-called probabilistic method.
The idea is that one can establish the existence of an object satisfying a certain
property—without having to construct one explicitly. Instead one argues that a
randomly chosen object exhibits the given property with positive probability. The
following “obvious” observation, sometimes referred to as the first moment princi-
ple, plays a key role in this context.

first

moment

principle

Theorem 2.2.1 (First moment principle). Let X be a random variable with finite
expectation. Then, for any µ ∈ R,

EX ≤ µ =⇒ P[X ≤ µ] > 0.

Proof. We argue by contradiction. Assume EX ≤ µ and P[X ≤ µ] = 0.
Write {X ≤ µ} =

⋂
n≥1{X < µ + 1/n}. That implies by monotonicity (see

Lemma B.2.6) that, for any ε ∈ (0, 1), it holds that P[X < µ + 1/n] < ε for n
large enough. Hence, because we assume that P[X ≤ µ] = 0,

µ ≥ EX
= E[X;X < µ+ 1/n] + E[X;X ≥ µ+ 1/n]

≥ µP[X < µ+ 1/n] + (µ+ 1/n)(1− P[X < µ+ 1/n])

= µ+ n−1(1− P[X < µ+ 1/n])

> µ+ n−1(1− ε)
> µ,
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a contradiction.

The power of this principle is easier to appreciate on an example.

Example 2.2.2 (Balancing vectors). Let v1, . . . ,vn be arbitrary unit vectors inRn.
How small can we make the 2-norm of the linear combination

x1v1 + · · ·+ xnvn

by appropriately choosing x1, . . . , xn ∈ {−1,+1}? We claim that it can be as
small as

√
n, for any collection of vis. At first sight, this may appear to be a

complicated geometry problem. But the proof is trivial once one thinks of choosing
the xis at random. Let X1, . . . , Xn be independent random variables uniformly
distributed in {−1,+1}. Then, since E[XiXj ] = E[Xi]E[Xj ] = 0 for all i 6= j
but E[X2

i ] = 1 for all i,

E‖X1v1 + · · ·+Xnvn‖22 = E

∑
i,j

XiXj〈vi,vj〉


=

∑
i,j

E[XiXj〈vi,vj〉]

=
∑
i,j

〈vi,vj〉E[XiXj ]

=
∑
i

‖vi‖22

= n,

where we used the linearity of expectation on the second line. Hence the random
variable Z = ‖X1v1 + · · · + Xnvn‖2 has expectation EZ = n and must take a
value ≤ n with positive probability by the first moment principle (Theorem 2.2.1).
In other words, there must be a choice of Xis such that Z ≤ n. That proves the
claim. J

Here is a slightly more subtle example of the probabilistic method, where one
has to modify the original random choice.

Example 2.2.3 (Independent sets). For d ∈ N, letG = (V,E) be a d-regular graph
with n vertices. Such a graph necessarily has m = nd/2 edges. Our goal is derive
a lower bound on the size, α(G), of the largest independent set inG. Recall that an
independent set is a set of vertices in a graph, no two of which are adjacent. Again,
at first sight, this may seem like a rather complicated graph-theoretic problem. But
an appropriate random choice gives a non-trivial bound. Specifically:
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Claim 2.2.4.
α(G) ≥ n

2d
.

Proof. The proof proceeds in two steps:

1. We first prove the existence of a subset S of vertices with relatively few
edges.

2. We remove vertices from S to obtain an independent set.

Step 1. Let 0 < p < 1 to be chosen below. To form the set S, pick each vertex
in V independently with probability p. Letting X be the number of vertices in S,
we have by the linearity of expectation that

EX = E

[∑
v∈V

1v∈S

]
= np,

where we used that E[1v∈S ] = p. Letting Y be the number of edges between
vertices in S, we have by the linearity of expectation that

EY = E

 ∑
{i,j}∈E

1i∈S1j∈S

 =
nd

2
p2,

where we also used that E[1i∈S1j∈S ] = p2 by independence. Hence, subtracting,

E[X − Y ] = np− nd

2
p2,

which, as a function of p, is maximized at p = 1/dwhere it takes the value n/(2d).
As a result, by the first moment principle applied to X − Y , there must exist a set
S of vertices in G such that

|S| − |{{i, j} ∈ E : i, j ∈ S}| ≥ n

2d
. (2.2.2)

Step 2. For each edge e connecting two vertices in S, remove one of the endver-
tices of e. By construction, the remaining set of vertices: (i) forms an independent
set; and (ii) has a size larger or equal than the left hand side of (2.2.2). That in-
equality implies the claim.

Note that a graph G made of n/(d + 1) cliques of size d + 1 (with no edge
between the cliques) has α(G) = n/(d+ 1), showing that our bound is tight up to
a constant. This is known as a Turán graph. J
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Remark 2.2.5. The previous result can be strengthened to

α(G) ≥
∑
v∈V

1

δ(v) + 1
,

for a general graph G = (V,E), where δ(v) is the degree of v. This bound is achieved for
Turán graphs. See, for example, [AS11, The probabilistic lens: Turán’s theorem].

The previous example also illustrates the important indicator trick, that is, writ-
indicator

trick
ing a random variable as a sum of indicators, which is naturally used in combina-
tion with the linearity of expectation.

2.2.2 Boole’s inequality

One implication of the first moment principle (Theorem 2.2.1) is that: if a non-
negative, integer-valued random variableX has expectation strictly smaller than 1,
then its value is 0 with positive probability. The following application of Markov’s
inequality (Theorem 2.1.1) adds a quantitative twist: if that same X has a “small”
expectation, then its value is 0 with “large” probability.

Theorem 2.2.6 (First moment method). If X is a non-negative, integer-valued
random variable, then

P[X > 0] ≤ EX. (2.2.3)

Proof. Take b = 1 in Markov’s inequality.

This simple fact is typically used in the following manner: one wants to show
that a certain “bad event” does not occur with probability approaching 1; the ran-
dom variable X then counts the number of such “bad events.” In that case, X is a
sum of indicators and Theorem 2.2.6 reduces simply to the standard union bound,

union

bound
also known as Boole’s inequality. We record one useful version of this setting in
the next corollary.

Corollary 2.2.7. Let Bn = An,1 ∪ · · · ∪ An,mn , where An,1, . . . , An,mn is a col-
lection of events for each n. Then, letting

µn :=

mn∑
i=1

P[An,i],

we have
P[Bn] ≤ µn.

In particular, if µn → 0 as n→ +∞, then P[Bn]→ 0.
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Proof. Take X := Xn =
∑mn

i=1 1An,i in Theorem 2.2.6.

A useful generalization of the union bound is given in Exercise 2.2. We will refer
to applications of Theorem 2.2.6 as the first moment method.

first

moment

method
Example 2.2.8 (Random k-SAT threshold). For r ∈ R+, let Φn,r : {0, 1}n →
{0, 1} be a random k-CNF formula on n Boolean variables z1, . . . , zn with drne
clauses. That is, Φn,r is an AND of drne ORs, each obtained by picking indepen-
dently k literals uniformly at random (with replacement). Recall that a literal is
a variable zi or its negation z̄i. The formula Φn,r is said to be satisfiable if there
exists an assignment z = (z1, . . . , zn) such that Φn,r(z) = 1. Clearly the higher
the value of r, the less likely it is for Φn,r to be satisfiable. In fact it is natural to
conjecture that a sharp transition takes place, that is, that there exists an r∗k ∈ R+

(depending on k but not on n) such that

lim
n→∞

P[Φn,r is satisfiable] =

{
0, if r > r∗k,

1, if r < r∗k.
(2.2.4)

Studying such threshold phenomena is a major theme of modern discrete probabil-
threshold

phenomenon
ity. Using the first moment method (Theorem 2.2.6), we give an upper bound on
the threshold. Formally:

Claim 2.2.9.

r > 2k log 2 =⇒ lim sup
n→∞

P[Φn,r is satisfiable] = 0.

Proof. How to start the proof should be obvious: letXn be the number of satisfying
assignments of Φn,r. Applying the first moment method, since

P[Φn,r is satisfiable] = P[Xn > 0],

it suffices to show that EXn → 0. To compute EXn, we use the indicator trick

Xn =
∑

z∈{0,1}n
1{z satisfies Φn,r}.

There are 2n possible assignments. Each fixed assignment satisfies the random
choice of clauses Φn,r with probability (1 − 2−k)drne. Indeed note that the rn
clauses are picked independently and each clause literal picked is satisfied with
probability 1/2. Therefore, by the assumption on r, for ε > 0 small enough and n
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large enough

EXn = 2n(1− 2−k)drne

≤ 2n(1− 2−k)(2k log 2)(1+ε)n

≤ 2ne−(log 2)(1+ε)n

= 2−εn

→ 0,

where we used that (1 − 1/`)` ≤ e−1 for all ` ∈ N (see Exercise 1.16). Theo-
rem 2.2.6 implies the claim.

Remark 2.2.10. Bounds in the other direction are also known. For instance, for k ≥ 3, it
has been shown that if r < 2k log 2− k

lim inf
n→∞

P[Φn,r is satisfiable] = 1.

See [ANP05]. For the k = 2 case, it is known that (2.2.4) in fact holds with r∗2 = 1 [CR92].
A breakthrough of [DSS22] also establishes (2.2.4) for large k; the threshold r∗k is charac-
terized as the root of a certain equation coming from statistical physics.

J

2.2.3 . Random permutations: longest increasing subsequence

In this section, we bound the expected length of a longest increasing subsequence
in a random permutation. Let σn = (σn(1), . . . , σn(n)) be a uniformly random
permutation of [n] := {1, . . . , n} (i.e., a bijection of [n] to itself chosen uniformly

random

permutation
at random among all such mappings) and let Ln be the length of a longest in-
creasing subsequence of σn (i.e., a sequence of indices i1 < · · · < ik such that
σn(i1) < · · · < σn(ik)).

Claim 2.2.11.
ELn = Θ(

√
n).

Proof. We first prove that

lim sup
n→∞

ELn√
n
≤ e, (2.2.5)

which implies half of the claim. Bounding the expectation of Ln is not straightfor-
ward as it is the expectation of a maximum. A natural way to proceed is to find a
value ` for which P[Ln ≥ `] is “small.” More formally, we bound the expectation
as follows

ELn ≤ `P[Ln < `] + nP[Ln ≥ `] ≤ `+ nP[Ln ≥ `], (2.2.6)
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for an ` chosen below. To bound the probability on the right-hand side, we appeal to
the first moment method (Theorem 2.2.6) by lettingXn be the number of increasing
subsequences of length `. We also use the indicator trick, that is, we think of Xn

as a sum of indicators over subsequences (not necessarily increasing) of length `.
There are

(
n
`

)
such subsequences, each of which is increasing with probability

1/`!. Note that these subsequences are not independent. Nevertheless, by the
linearity of expectation and the first moment method,

P[Ln ≥ `] = P[Xn > 0] ≤ EXn =
1

`!

(
n

`

)
≤ n`

(`!)2
≤ n`

e2[`/e]2`
≤
(
e
√
n

`

)2`

,

where we used a standard bound on factorials recalled in Appendix A. Note that, in
order for this bound to go to 0, we need ` > e

√
n. Then (2.2.5) follows by taking

` = (1 + δ)e
√
n in (2.2.6), for an arbitrarily small δ > 0.

For the other half of the claim, we show that

ELn√
n
≥ 1.

This part does not rely on the first moment method (and may be skipped). We seek
a lower bound on the expected length of a longest increasing subsequence. The
proof uses the following two ideas. First observe that there is a natural symme-
try between the lengths of the longest increasing and decreasing subsequences—
they are identically distributed. Moreover if a permutation has a “short” longest
increasing subsequence, then intuitively it must have a “long” decreasing subse-
quence, and vice versa. Combining these two observations gives a lower bound
on the expectation of Ln. Formally, let Dn be the length of a longest decreasing
subsequence. By symmetry and the arithmetic mean-geometric mean inequality,
note that

ELn = E
[
Ln +Dn

2

]
≥ E

√
LnDn.

We show that LnDn ≥ n, which proves the claim. Let L(k)
n be the length of a

longest increasing subsequence ending at position k, and similarly for D(k)
n . It

suffices to show that the pairs (L
(k)
n , D

(k)
n ), 1 ≤ k ≤ n, are distinct. Indeed, noting

that L(k)
n ≤ Ln and D(k)

n ≤ Dn, the number of pairs in [Ln] × [Dn] is at most
LnDn which must then be at least n.

Let 1 ≤ j < k ≤ n. If σn(k) > σn(j) then we see that L(k)
n > L

(j)
n by

appending σn(k) to the subsequence ending at position j achieving L(j)
n . If the

opposite holds, then we have instead D(k)
n > D

(j)
n . Either way, (L

(j)
n , D

(j)
n ) and

(L
(k)
n , D

(k)
n ) must be distinct. This clever combinatorial argument is known as the

Erdős-Szekeres Theorem. That concludes the proof of the second claim.
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Remark 2.2.12. It has been shown that in fact

ELn = 2
√
n+ cn1/6 + o(n1/6),

as n→ +∞, where c = −1.77... [BDJ99].

2.2.4 . Percolation: existence of a non-trivial critical value on Z2

In this section we use the first moment method (Theorem 2.2.6) to prove the exis-
tence of a non-trivial threshold in bond percolation on the two-dimensional lattice.
We begin with some background.

Critical value in bond percolation Consider bond percolation (Definition 1.2.1)
on the two-dimensional lattice L2 (see Section 1.1.1) with density p. Let Pp denote
the corresponding probability measure. Recall that paths are “self-avoiding” by
definition (see Section 1.1.1). We say that a path is open if all edges in the induced

open path
subgraph are open. Writing x ⇔ y if x, y ∈ L2 are connected by an open path,
recall that the open cluster of x is

Cx := {y ∈ Z2 : x⇔ y}.

The percolation function is defined as
percolation

functionθ(p) := Pp[|C0| = +∞],

that is, θ(p) is the probability that the origin is connected by open paths to infinitely
many vertices. It is intuitively clear that the function θ(p) is non-decreasing. Indeed
consider the following alternative representation of the percolation process: to each
edge e, assign a uniform [0, 1] random variable Ue and declare the edge open if
Ue ≤ p. Using the same Ues for densities p1 < p2, it follows immediately from
the monotonicity of the construction that θ(p1) ≤ θ(p2). (We will have much more
to say about this type of “coupling” argument in Chapter 4.) Moreover note that
θ(0) = 0 and θ(1) = 1. The critical value is defined as

critical value

pc(L2) := sup{p ≥ 0 : θ(p) = 0},

the point at which the probability that the origin is contained in an infinite open
cluster becomes positive. Note that by a union bound over all vertices, when
θ(p) = 0, we have that Pp[∃x, |Cx| = +∞] = 0. Conversely, because {∃x, |Cx| =
+∞} is a tail event (see Definition B.3.9) for any enumeration of the edges, by Kol-
mogorov’s 0-1 law (Theorem B.3.11) it holds that Pp[∃x, |Cx| = +∞] = 1 when
θ(p) > 0.
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Using the first moment method we show that the critical value is non-trivial,
that is, it is strictly between 0 and 1. This is a different example of a threshold
phenomenon.

Claim 2.2.13.
pc(L2) ∈ (0, 1).

Proof. We first show that, for any p < 1/3, θ(p) = 0. In order to apply the first
moment method, roughly speaking, we need to reduce the problem to counting the
number of instances of an appropriately chosen substructure. The key observation
is the following:

An infinite C0 contains an open path starting at 0 of infinite length and,
as a result, of all lengths.

Hence, we let Xn be the number of open paths of length n starting at 0. Then, by
monotonicity,

Pp[|C0| = +∞] ≤ Pp[∩n{Xn > 0}] = lim
n
Pp[Xn > 0] ≤ lim sup

n
Ep[Xn],

(2.2.7)
where the last inequality follows from Theorem 2.2.6. We bound the number of
paths of length n (each of which is open with probability pn) by noting that they
cannot backtrack. That gives 4 choices at the first step, and at most 3 choices at
each subsequent step. Hence, we get the following bound

EpXn ≤ 4(3n−1)pn.

The right-hand side goes to 0 for all p < 1/3. When combined with (2.2.7), that
proves half of the claim:

pc(L2) > 0.

For the other direction, we show that θ(p) > 0 for p close enough to 1. This
time, we count “dual cycles.” This type of proof is known as a contour argument, or
Peierls’ argument, and is based on the following construction. Consider the dual
lattice L̃2 whose vertices are Z2 + (1/2, 1/2) and whose edges connect vertices

dual lattice
u, v with ‖u − v‖1 = 1. See Figure 2.3. Note that each edge in the primal lattice
L2 has a unique corresponding edge in the dual lattice which crosses it perpendic-
ularly. We make the same assignment, open or closed, for corresponding primal
and dual edges. The following graph-theoretic lemma, whose proof is sketched
below, forms the basis of contour arguments. Recall that cycles are “self-avoiding”
by definition (see Section 1.1.1). We say that a cycle is closed if all edges in the
induced subgraph are closed, that is, are not open.
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Figure 2.3: Primal (solid) and dual (dotted) lattices.

contour lemmaLemma 2.2.14 (Contour lemma). If |C0| < +∞, then there is a closed cycle
around the origin in the dual lattice L̃2.

To prove that θ(p) > 0 for p close enough to 1, the idea is to apply the first moment
method to Zn equal to the number of closed dual cycles of length n surrounding
the origin. We bound from above the number of dual cycles of length n around the
origin by the number of choices for the starting edge across the upper y-axis and
for each n− 1 subsequent non-backtracking choices. Namely,

P[|C0| < +∞] ≤ P[∃n ≥ 4, Zn > 0]

≤
∑
n≥4

P[Zn > 0]

≤
∑
n≥4

EZn

≤
∑
n≥4

n

2
3n−1(1− p)n

=
33(1− p)4

2

∑
m≥1

(m+ 3)(3(1− p))m−1

=
33(1− p)4

2

(
1

(1− 3(1− p))2
+ 3

1

1− 3(1− p)

)
,
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when p > 2/3, where the first term in parentheses on the last line comes from
differentiating with respect to q the geometric series

∑
m≥0 q

m and setting q := 1−
p. The expression on the last line can be made smaller than 1 if we let p approach
1. We have shown that θ(p) > 0 for p close enough to 1, and that concludes the
proof. (Exercise 2.3 sketches a proof that θ(p) > 0 for all p > 2/3.)

It is straightforward to extend the claim to Ld. (Exercise 2.4 asks for the de-
tails.)

Proof of the contour lemma We conclude this section by sketching the proof of
the contour lemma, which relies on topological arguments.

Proof of Lemma 2.2.14. Assume |C0| < +∞. Imagine identifying each vertex in
L2 with a square of side 1 centered around it so that the sides line up with dual
edges. Paint green the squares of vertices in C0. Paint red the squares of vertices
in Cc0 which share a side with a green square. Leave the other squares white.
Let u0 be a highest vertex in C0 along the y-axis and let v0 and v1 be the dual
vertices corresponding to the upper left and right corners respectively of the square
of u0. Because u0 is highest, it must be that the square above it is red. Walk
along the dual edge {v0, v1} separating the squares of u0 and u0 + (0, 1) from v0

to v1. Notice that this edge satisfies what we call the red-green property: as you
traverse it from v0 to v1, a red square sits on your left and a green square is on your
right. Proceed further by iteratively walking along an incident dual edge with the
following rule. Choose an edge satisfying the red-green property, with the edges
to your left, straight ahead, and to your right in decreasing order of priority. Stop
when a previously visited dual vertex is reached. The claim is that this procedure
constructs the desired cycle. Let v0, v1, v2, . . . be the dual vertices visited. By
construction {vi−1, vi} is a dual edge for all i.

- A dual cycle is produced. We first argue that this procedure cannot get stuck.
Let {vi−1, vi} be the edge just crossed and assume that it has the red-green
property. If there is a green square to the left ahead, then the edge to the
left, which has highest priority, has the red-green property. If the left square
ahead is not green, but the right one is, then the left square must in fact be
red by construction (i.e., it cannot be white). In that case, the edge straight
ahead has the red-green property. Finally, if neither square ahead is green,
then the right square must in fact be red because the square behind to the
right is green by assumption. That implies that the edge to the right has
the red-green property. Hence we have shown that the procedure does not
get stuck. Moreover, because by assumption the number of green squares
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is finite, this procedure must eventually terminate when a previously visited
dual vertex is reached, forming a cycle (of length at least 4).

- The origin lies within the cycle. The inside of a cycle in the plane is well-
defined by the Jordan curve theorem. So the dual cycle produced above has
its adjacent green squares either on the inside (negative orientation) or on the
outside (positive orientation). In the former case the origin must lie inside
the cycle as otherwise the vertices corresponding to the green squares on the
inside would not be in C0, as they could not be connected to the origin with
open paths.

So it remains to consider the latter case, where through a similar reasoning
the origin must lie outside the cycle. Let vj be the repeated dual vertex.
Assume first that vj 6= v0 and let vj−1 and vj+1 be the dual vertices preced-
ing and following vj during the first visit to vj . Let vk be the dual vertex
preceding vj on the second visit. After traversing the edge from vj−1 to vj ,
vk cannot be to the left or to the right because in those cases the red-green
properties of the two corresponding edges (i.e., {vj−1, vj} and {vk, vj}) are
not compatible. So vk is straight ahead and, by the priority rules, vj+1 must
be to the left upon entering vj the first time. But in that case, for the origin
to lie outside the cycle as we are assuming and for the cycle to avoid the path
v0, . . . , vj−1, we must traverse the cycle with a negative orientation, that is,
the green squares adjacent to the cycle must be on the inside, a contradiction.

So, finally, assume v0 is the repeated vertex. If the cycle is traversed with a
positive orientation and the origin is on the outside, it must be that the cycle
crosses the y-axis at least once above u0 + (0, 1), again a contradiction.

Hence we have shown that the origin is inside the cycle.

That concludes the proof.

Remark 2.2.15. It turns out that pc(L2) = 1/2. We will prove pc(L2) ≥ 1/2, known as
Harris’ Theorem, in Section 4.2.5. The other direction is due to Kesten [Kes80].

2.3 Second moment method

The first moment method (Theorem 2.2.6) gives an upper bound on the probability
that a non-negative, integer-valued random variable is positive—which is nontrivial
provided its expectation is small enough. In this section we seek a lower bound on
that probability. We first note that a large expectation does not suffice in general.
Say Xn is n2 with probability 1/n, and 0 otherwise. Then EXn = n → +∞, yet
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Figure 2.4: Second moment method: if the standard deviation σX of X is less than
its expectation µX , then the probability that X is 0 is bounded away from 1.

P[Xn > 0] → 0. That is, although the expectation diverges, the probability that
Xn is positive can be arbitrarily small.

So we turn to the second moment. Intuitively the basis for the so-called second
moment method is that, if the expectation of Xn is large and its variance is rela-
tively small, then we can bound the probability that Xn is close to 0. As we will
see in applications, the first and second moment methods often work hand in hand.

2.3.1 Paley-Zygmund inequality

As an immediate corollary of Chebyshev’s inequality (Theorem 2.1.2), we get a
first version of the second moment method: if the standard deviation of X is less
than its expectation, then the probability that X is 0 is bounded away from 1. See
Figure 2.4. Formally, letX be a nonnegative random variable (not identically zero).
Then

P[X > 0] ≥ 1− Var[X]

(EX)2
. (2.3.1)

Indeed, by (2.1.5),

P[X = 0] ≤ P[|X − EX| ≥ EX] ≤ Var[X]

(EX)2
.
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The following tail bound, a simple application of Cauchy-Schwarz (Theo-
rem B.4.8), leads to an improved version of this inequality.

Paley-Zygmund

inequality
Theorem 2.3.1 (Paley-Zygmund inequality). LetX be a nonnegative random vari-
able. For all 0 < θ < 1,

P[X ≥ θEX] ≥ (1− θ)2 (EX)2

E[X2]
. (2.3.2)

Proof. We have

EX = E[X1{X<θEX}] + E[X1{X≥θEX}]

≤ θEX +
√
E[X2]P[X ≥ θEX],

where we used Cauchy-Schwarz. Rearranging gives the result.

As an immediate application:

second

moment

method

Theorem 2.3.2 (Second moment method). Let X be a nonnegative random vari-
able (not identically zero). Then

P[X > 0] ≥ (EX)2

E[X2]
. (2.3.3)

Proof. Take θ ↓ 0 in (2.3.2).

Since
(EX)2

E[X2]
= 1− Var[X]

(EX)2 + Var[X]
,

we see that (2.3.3) is stronger than (2.3.1).
We typically apply the second moment method to a sequence of random vari-

ables (Xn). The previous theorem gives a uniform lower bound on the probability
that {Xn > 0} when E[X2

n] ≤ CE[Xn]2 for some C > 0. Just like the first
moment method, the second moment method is often applied to a sum of indica-
tors (but see Section 2.3.3 for a weighted case). We record in the next corollary a
convenient version of the method.

Corollary 2.3.3. Let Bn = An,1 ∪ · · · ∪ An,mn , where An,1, . . . , An,mn is a col-
lection of events for each n. Write i n∼ j if i 6= j and An,i and An,j are not
independent. Then, letting

µn :=

mn∑
i=1

P[An,i], γn :=
∑
i
n∼j

P[An,i ∩An,j ],
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where the second sum is over ordered pairs, we have limn P[Bn] > 0 whenever
µn → +∞ and γn ≤ Cµ2

n for some C > 0. If moreover γn = o(µ2
n) then

limn P[Bn] = 1.

Proof. We apply the second moment method to Xn :=
∑mn

i=1 1An,i so that Bn =
{Xn > 0}. Note that

Var[Xn] =
∑
i

Var[1An,i ] +
∑
i 6=j

Cov[1An,i ,1An,j ],

where
Var[1An,i ] = E[(1An,i)

2]− (E[1An,i ])
2 ≤ P[An,i],

and, if An,i and An,j are independent,

Cov[1An,i ,1An,j ] = 0,

whereas, if i n∼ j,

Cov[1An,i ,1An,j ] = E[1An,i1An,j ]− E[1An,i ]E[1An,j ] ≤ P[An,i ∩An,j ].

Hence
Var[Xn]

(EXn)2
≤ µn + γn

µ2
n

=
1

µn
+
γn
µ2
n

.

Noting

(EXn)2

E[X2
n]

=
(EXn)2

(EXn)2 + Var[Xn]
=

1

1 + Var[Xn]/(EXn)2
,

and applying Theorem 2.3.2 gives the result.

2.3.2 . Random graphs: subgraph containment and connectivity in the
Erdős-Rényi model

Threshold phenomena are also common in random graphs. We consider here the
Erdős-Rényi random graph model (Definition 1.2.2). In this context a threshold
function for a graph property P is a function r(n) such that

threshold

function
lim
n
Pn,pn [Gn has property P ] =

{
0, if pn � r(n)

1, if pn � r(n),

where Gn ∼ Gn,pn is a random graph with n vertices and density pn. In this
section, we illustrate this type of phenomenon on two properties: the containment
of small subgraphs and connectivity.
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Subgraph containment

We first consider the clique number, then we turn to more general subgraphs.

Cliques Let ω(G) be the clique number of a graphG, that is, the size of its largest
clique

number
clique.

Claim 2.3.4. The property ω(Gn) ≥ 4 has threshold function n−2/3.

Proof. LetXn be the number of 4-cliques in the random graphGn ∼ Gn,pn . Then,
noting that there are

(
4
2

)
= 6 edges in a 4-clique,

En,pn [Xn] =

(
n

4

)
p6
n = Θ(n4p6

n),

which goes to 0 when pn � n−2/3. Hence the first moment method (Theo-
rem 2.2.6) gives one direction: Pn,pn [ω(Gn) ≥ 4]→ 0 in that case.

For the other direction, we apply the second moment method for sums of in-
dicators, that is, Corollary 2.3.3. We use the notation from that corollary. For an
enumeration S1, . . . , Smn of the 4-tuples of vertices in Gn, let An,1, . . . , An,mn be
the events that the corresponding 4-clique is present. By the calculation above we
have µn = Θ(n4p6

n) which goes to +∞ when pn � n−2/3. Also µ2
n = Θ(n8p12

n )
so it suffices to show that γn = o(n8p12

n ). Note that two 4-cliques with disjoint
edge sets (but possibly sharing one vertex) are independent (i.e., their presence or
absence is independent). Suppose Si and Sj share 3 vertices. Then i n∼ j and

Pn,pn [An,i |An,j ] = p3
n,

as the event An,j implies that all edges between three of the vertices in Si are al-
ready present, and there are 3 edges between the remaining vertex and the rest of Si.
Similarly, if |Si ∩ Sj | = 2, we have again i n∼ j and this time Pn,pn [An,i |An,j ] =
p5
n. Putting these together, we get by the definition of the conditional probability
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(see Appendix B) and the fact that Pn,pn [An,j ] = p6
n

γn =
∑
i
n∼j

P[An,i ∩An,j ]

=
∑
i
n∼j

Pn,pn [An,j ]Pn,pn [An,i |An,j ]

=
∑
j

Pn,pn [An,j ]
∑
i:i
n∼j

Pn,pn [An,i |An,j ]

=

(
n

4

)
p6
n

[(
4

3

)
(n− 4)p3

n +

(
4

2

)(
n− 4

2

)
p5
n

]
= O(n5p9

n) +O(n6p11
n )

= O

(
n8p12

n

n3p3
n

)
+O

(
n8p12

n

n2pn

)
= o(n8p12

n )

= o(µ2
n),

where we used that pn � n−2/3 (so that for example n3p3
n � 1). Corollary 2.3.3

gives the result: Pn,pn [∪iAn,i]→ 1 when pn � n−2/3.

Roughly speaking, the first and second moments suffice to pinpoint the thresh-
old in this case because the indicators in Xn are “mostly” pairwise independent
and, as a result, the sum is “concentrated around its mean.”

General subgraphs The methods of Claim 2.3.4 can be applied to more general
subgraphs. However the situation is somewhat more complicated than it is for
cliques. For a graph H0, let vH0 and eH0 be the number of vertices and edges of
H0 respectively. Let Xn be the number of (not necessarily induced) copies of H0

in Gn ∼ Gn,pn . By the first moment method,

P[Xn > 0] ≤ E[Xn] = Θ(nvH0p
eH0
n )→ 0,

when pn � n−vH0
/eH0 . The constant factor, which does not play a role in the

asymptotics, accounts in particular for the number of automorphisms of H0. In-
deed note that a fixed set of vH0 vertices can contain several distinct copies of H0,
depending on its structure (and unlike the clique case).

From the proof of Claim 2.3.4, one might guess that the threshold function is
n−vH0

/eH0 . That is not the case in general. To see what can go wrong, consider
the graph H0 in Figure 2.5 whose edge density is eH0

vH0
= 6

5 . When pn � n−5/6,
edge density
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Figure 2.5: Graph H0 and subgraph H .

the expected number of copies of H0 in Gn tends to +∞. But observe that the
subgraph H of H0 has the higher density 5/4 and, hence, when n−5/6 � pn �
n−4/5 the expected number of copies ofH tends to 0. By the first moment method,
the probability that a copy of H0—and therefore H—is present in that regime
is asymptotically negligible despite its diverging expectation. This leads to the
following definition

rH0 := max

{
eH
vH

: subgraphs H ⊆ H0, eH > 0

}
.

Assume H0 has at least one edge.

Claim 2.3.5. “Having a copy of H0” has threshold n−1/rH0 .

Proof. We proceed as in Claim 2.3.4. Let H∗0 be a subgraph of H0 achieving rH0 .
When pn � n−1/rH0 , the probability that a copy of H∗0 is in Gn tends to 0 by the
argument above. Therefore the same conclusion holds for H0 itself.

Assume pn � n−1/rH0 . Let S1, . . . , Smn be an enumeration of the copies (as
subgraphs) of H0 in a complete graph on the vertices of Gn. Let An,i be the event
that Si ⊆ Gn. Using again the notation of Corollary 2.3.3,

µn = Θ(nvH0p
eH0
n ) = Ω(ΦH0(n)),

where
ΦH0(n) := min {nvHpeHn : subgraphs H ⊆ H0, eH > 0} .
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Note that ΦH0(n) → +∞ when pn � n−1/rH0 by definition of rH0 . The events
An,i and An,j are independent if Si and Sj share no edge. Otherwise we write
i
n∼ j. Note that there are Θ(nvHn2(vH0

−vH)) pairs Si, Sj whose intersection is
isomorphic to H . The probability that both Si and Sj of such a pair are present in

Gn is Θ(peHn p
2(eH0

−eH)
n ). Hence

γn =
∑
i
n∼j

P[An,i ∩An,j ]

=
∑

H⊆H0,eH>0

Θ
(
n2vH0

−vHp
2eH0

−eH
n

)
≤ Θ(µ2

n)

Θ(ΦH0(n))

= o(µ2
n),

where we used that ΦH0(n)→ +∞. The result follows from Corollary 2.3.3.

Going back to the example of Figure 2.5, the proof above confirms that when
n−5/6 � pn � n−4/5 the second moment method fails forH0 since ΦH0(n)→ 0.
In that regime, although there is in expectation a large number of copies of H0,
those copies are highly correlated as they are produced from a small (vanishing
in expectation) number of copies of H—producing a large variance that helps to
explain the failure of the second moment method.

Connectivity threshold

Next we use the second moment method to show that the threshold function for
connectivity in the Erdős-Rényi random graph model is logn

n . In fact we prove this
result by deriving the threshold function for the presence of isolated vertices. The
connection between the two is obvious in one direction. Isolated vertices imply a
disconnected graph. What is less obvious is that it also works the other way in the
following sense: the two thresholds actually coincide.

Isolated vertices We begin with isolated vertices.

Claim 2.3.6. “Not having an isolated vertex” has threshold function logn
n .

Proof. LetXn be the number of isolated vertices in the random graphGn ∼ Gn,pn .
Using 1− x ≤ e−x for all x ∈ R (see Exercise 1.16),

En,pn [Xn] = n(1− pn)n−1 ≤ elogn−(n−1)pn → 0, (2.3.4)
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when pn � logn
n . So the first moment method gives one direction: Pn,pn [Xn >

0]→ 0.
For the other direction, we use the second moment method. Let An,j be the

event that vertex j is isolated. By the computation above, using 1 − x ≥ e−x−x
2

for x ∈ [0, 1/2] (see Exercise 1.16 again),

µn =
∑
i

Pn,pn [An,i] = n(1− pn)n−1 ≥ elogn−npn−np2
n , (2.3.5)

which goes to +∞ when pn � logn
n . Note that An,i and An,j are not independent

for all i 6= j (because the absence of an edge between i and j is part of both events)
and

Pn,pn [An,i ∩An,j ] = (1− pn)2(n−2)+1,

so that
γn =

∑
i 6=j
Pn,pn [An,i ∩An,j ] = n(n− 1)(1− pn)2n−3.

Because γn is not o(µ2
n), we cannot apply Corollary 2.3.3. Instead we use Theo-

rem 2.3.2 directly. We have

En,pn [X2
n]

En,pn [Xn]2
=

µn + γn
µ2
n

≤ n(1− pn)n−1 + n2(1− pn)2n−3

n2(1− pn)2n−2

≤ 1

n(1− pn)n−1
+

1

1− pn
, (2.3.6)

which is 1+o(1) when pn � logn
n by (2.3.5). The second moment method implies

that Pn,pn [Xn > 0]→ 1 in that case.

Connectivity We use Claim 2.3.6 to study the threshold for connectivity.

Claim 2.3.7. Connectivity has threshold function logn
n .

Proof. We start with the easy direction. If pn � logn
n , Claim 2.3.6 implies that the

graph has at least one isolated vertex—and therefore is necessarily disconnected—
with probability going to 1 as n→ +∞.

Assume now that pn � logn
n . Let Dn be the event that Gn is disconnected.

To bound Pn,pn [Dn], we let Yk be the number of subsets of k vertices that are
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disconnected from all other vertices in the graph for k ∈ {1, . . . , n/2}. Then, by
the first moment method,

Pn,pn [Dn] = Pn,pn

n/2∑
k=1

Yk > 0

 ≤ n/2∑
k=1

En,pn [Yk].

The expectation of Yk is straightforward to bound. Using that k ≤ n/2 and
(
n
k

)
≤

nk,

En,pn [Yk] =

(
n

k

)
(1− pn)k(n−k) ≤

(
n(1− pn)n/2

)k
.

The expression in parentheses is o(1) when pn � logn
n by a calculation similar

to (2.3.4). Summing over k,

Pn,pn [Dn] ≤
+∞∑
k=1

(
n(1− pn)n/2

)k
= O(n(1− pn)n/2) = o(1),

where we used that the geometric series (started at k = 1) is dominated asymp-
totically by its first term. So the probability of being disconnected goes to 0 when
pn � logn

n and we have proved the claim.

A closer look We have shown that connectivity and the absence of isolated ver-
tices have the same threshold function. In fact, in a sense, isolated vertices are the
“last obstacle” to connectivity. A slight modification of the proof above leads to
the following more precise result. For k ∈ {1, . . . , n/2}, let Zk be the number
of connected components of size k in Gn. In particular, Z1 is the number of iso-
lated vertices. We consider the “critical window” pn = cn

n where cn := log n + s
for some fixed s ∈ R. We show that, in that regime, asymptotically the graph is
typically composed of a large connected component together with some isolated
vertices. Formally, we prove the following claim which says that with probabil-
ity close to one: either the graph is connected or there are some isolated vertices
together with a (necessarily unique) connected component of size greater than n/2.

Claim 2.3.8.

Pn,pn [Z1 > 0] ≥ 1

1 + es
+ o(1) and Pn,pn

n/2∑
k=2

Zk > 0

 = o(1).

The limit of Pn,pn [Z1 > 0] can be computed explicitly using the method of mo-
ments. See Exercise 2.19.
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Proof of Claim 2.3.8. We first consider isolated vertices. From (2.3.5), (2.3.6) and
the second moment method,

Pn,pn [Z1 > 0] ≥
(
e− logn+npn+np2

n +
1

1− pn

)−1

=
1

1 + es
+ o(1),

as n→ +∞ by our choice of pn.
To bound the number of components of size k > 1, we note first that the

random variable Yk used in the previous claim (which imposes no condition on
the edges between the vertices in the subsets of size k) is too loose to provide a
suitable bound. Instead, to bound the probability that a subset of k vertices forms
a connected component, we observe that a connected component is characterized
by two properties: it is disconnected from the rest of the graph; and it contains
a spanning tree. Formally, for k = 2, . . . , n/2, we let Z ′k be the number of (not
necessarily induced) maximal trees of size k or, put differently, the number of
spanning trees of connected components of size k. Then, by the first moment
method, the probability that a connected component of size > 1 is present in Gn is
bounded by

Pn,pn

n/2∑
k=2

Zk > 0

 ≤ Pn,pn
n/2∑
k=2

Z ′k > 0

 ≤ n/2∑
k=2

En,pn [Z ′k]. (2.3.7)

To bound the expectation of Z ′k, we use Cayley’s formula which states that there
are kk−2 trees on a set of k labeled vertices. Recall further that a tree on k vertices
has k − 1 edges (see Exercise 1.7). Hence,

En,pn [Z ′k] =

(
n

k

)
kk−2︸ ︷︷ ︸

(a)

pk−1
n︸︷︷︸
(b)

(1− pn)k(n−k)︸ ︷︷ ︸
(c)

,

where (a) is the number of trees of size k (as subgraphs) in a complete graph of
size n, (b) is the probability that such a tree is present in the graph, and (c) is
the probability that this tree is disconnected from every other vertex in the graph.
Using that k! ≥ (k/e)k (see Appendix A) and 1 − x ≤ e−x for all x ∈ R (see
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Exercise 1.16),

En,pn [Z ′k] ≤
nk

k!
kk−2pk−1

n (1− pn)k(n−k)

≤ nkek

kk
kknpkne

−pnk(n−k)

= n
(
ecne

−(1− k
n)cn

)k
= n

(
e(log n+ s)e−(1− k

n)(logn+s)
)k
.

For k ≤ n/2, the expression in parentheses is o(1). In fact, for 2 ≤ k ≤ n/2,
En,pn [Z ′k] = o(1). Furthermore, summing over k > 2,

n/2∑
k=3

En,pn [Z ′k] ≤
+∞∑
k=3

n
(
e(log n+ s)e−

1
2

(logn+s)
)k

= O(n−1/2 log3 n) = o(1).

Plugging this back into (2.3.7) gives the second claim in the statement.

2.3.3 . Percolation: critical value on trees and branching number

Consider bond percolation (see Definition 1.2.1) on the infinite d-regular tree Td.
Root the tree arbitrarily at a vertex 0 and let C0 be the open cluster of the root. In
this section we illustrate the use of the first and second moment methods on the
identification of the critical value

pc(Td) = sup{p ∈ [0, 1] : θ(p) = 0},

where recall that the percolation function is θ(p) = Pp[|C0| = +∞]. We then
consider general trees, introduce the branching number, and present a weighted
version of the second moment method.

Regular tree Our main result for Td is the following.

Claim 2.3.9.
pc(Td) =

1

d− 1
.

Proof. Let ∂n be the n-th level of Td, that is, the set of vertices at graph distance n
from 0. LetXn be the number of vertices in ∂n∩C0. In order for the open cluster of
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Figure 2.6: Most recent common ancestor of x and y.

the root to be infinite, there must be at least one vertex on the n-th level connected
to the root by an open path. By the first moment method (Theorem 2.2.6),

θ(p) = Pp[|C0| = +∞] ≤ Pp[Xn > 0] ≤ EpXn = d(d− 1)n−1pn → 0, (2.3.8)

as n → +∞, for any p < 1
d−1 . Here we used that there is a unique path be-

tween 0 and any vertex in the tree to deduce that Pp[x ∈ C0] = pn for x ∈ ∂n.
Equation (2.3.8) implies half of the claim: pc(Td) ≥ 1

d−1 .
The second moment method gives a lower bound on Pp[Xn > 0]. To simplify

the notation, it is convenient to introduce the “branching ratio” b := d − 1. We
say that x is a descendant of z if the path between 0 and x goes through z. Each
z 6= 0 has d− 1 descendant subtrees, that is, subtrees of Td rooted at z made of all
descendants of z. Let x∧y be the most recent common ancestor of x and y, that is,
the furthest vertex from 0 that lies on both the path from 0 to x and the path from
0 to y; see Figure 2.6. Letting

µn := Ep[Xn] = Ep

∑
x∈∂n

1{x∈C0}

 = (b+ 1)bn−1pn,

we have
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Ep[X2
n] = Ep

∑
x∈∂n

1{x∈C0}

2
=

∑
x,y∈∂n

Pp[x, y ∈ C0]

=
∑
x∈∂n

Pp[x ∈ C0] +

n−1∑
m=0

∑
x,y∈∂n

1{x∧y∈∂m}p
mp2(n−m)

= µn + (b+ 1)bn−1
n−1∑
m=0

(b− 1)b(n−m)−1p2n−m

≤ µn + (b+ 1)(b− 1)b2n−2p2n
+∞∑
m=0

(bp)−m

= µn + µ2
n ·

b− 1

b+ 1
· 1

1− (bp)−1
,

where, on the fourth line, we used that all vertices on the n-th level are equivalent
and that, for a fixed x, the set {y : x∧y ∈ ∂m} is composed of those vertices in ∂n
that are descendants of x ∧ y but not in the descendant subtree of x ∧ y containing
x. When p > 1

d−1 = 1
b , dividing by (EpXn)2 = µ2

n → +∞, we get

Ep[X2
n]

(EpXn)2
≤ 1

µn
+
b− 1

b+ 1
· 1

1− (bp)−1
(2.3.9)

≤ 1 +
b− 1

b+ 1
· 1

1− (bp)−1

=: Cb,p.

By the second moment method (Theorem 2.3.2) and monotonicity,

θ(p) = Pp[|C0| = +∞] = Pp[∀n, Xn > 0] = lim
n
Pp[Xn > 0] ≥ C−1

b,p > 0,

which concludes the proof. (Note that the version of the second moment method
in Equation (2.3.1) does not work here. Subtract 1 in (2.3.9) and take p close to
1/b.)

The argument above relies crucially on the fact that, in a tree, any two vertices
are connected by a unique path. For instance, approximating Pp[x ∈ C0] is much
harder on a lattice. Note furthermore that, intuitively, the reason why the first mo-
ment captures the critical threshold exactly in this case is that bond percolation on
Td is a “branching process” (defined formally and studied at length in Chapter 6),
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where Xn represents the “population size at generation n.” The qualitative behav-
ior of a branching process is governed by its expectation: when the mean number of
children bp exceeds 1, the process grows exponentially on average and “explodes”
with positive probability (see Theorem 6.1.6). We will come back to this point of
view in Section 6.2.4 where branching processes are used to give a more refined
analysis of bond percolation on Td.

General trees Let T be a locally finite tree (i.e., all its degrees are finite) with
root 0. For an edge e, let ve be the endvertex of e furthest from the root. We denote
by |e| the graph distance between 0 and ve. Generalizing a previous definition
from Section 1.1.1 to infinite, locally finite graphs, a cutset separating 0 and +∞ is
a finite set of edges Π such that all infinite paths (which, recall, are self-avoiding by
definition) starting at 0 go through Π. (For our purposes, it will suffice to assume
that cutsets are finite by default.) For a cutset Π, we let Πv := {ve : e ∈ Π}.
Repeating the argument in (2.3.8), for any cutset Π,

θ(p) = Pp[|C0| = +∞]

≤ Pp[C0 ∩Πv 6= ∅]

≤
∑
u∈Πv

Pp[u ∈ C0]

=
∑
e∈Π

p|e|. (2.3.10)

This bound naturally leads to the following definition.

Definition 2.3.10 (Branching number). The branching number of T is given by
branching

number

br(T ) = sup

{
λ ≥ 1 : inf

cutset Π

∑
e∈Π

λ−|e| > 0

}
. (2.3.11)

Using the max-flow min-cut theorem (Theorem 1.1.15), the branching number can
also be characterized in terms of a “flow to +∞.” We will not do this here. (But
see Theorem 3.3.30.)

Equation (2.3.10) implies that pc(T ) ≥ 1
br(T ) . Remarkably, this bound is

tight. The proof is based on a “weighted” second moment method argument.

Claim 2.3.11. For any rooted, locally finite tree T ,

pc(T ) =
1

br(T )
.
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Proof. Suppose p < 1
br(T ) . Then p−1 > br(T ) and the sum in (2.3.10) can be

made arbitrarily small by definition of the branching number, that is, θ(p) = 0.
Hence we have shown that pc(T ) ≥ 1

br(T ) .
To argue in the other direction, let p > 1

br(T ) , p−1 < λ < br(T ), and ε > 0
such that ∑

e∈Π

λ−|e| ≥ ε (2.3.12)

for all cutsets Π. The existence of such an ε is guaranteed by the definition of the
branching number. As in the proof of Claim 2.3.9, we use that θ(p) is the limit
as n → +∞ of the probability that C0 reaches the n-th level (i.e., the vertices at
graph distance n from the root 0, which is necessarily a finite set in a locally finite
tree). However, this time, we use a weighted count on the n-th level. Let Tn be
the first n levels of T and, as before, let ∂n be the vertices on the n-th level. For a
probability measure νn on ∂n, we define the weighted count

Xn =
∑
z∈∂n

1{z∈C0}
νn(z)

Pp[z ∈ C0]
.

The purpose of the denominator is normalization, that is,

EpXn =
∑
z∈∂n

νn(z) = 1.

Observe that, while νn(z) may be 0 for some zs (but not all), we still have that
Xn > 0,∀n implies {|C0| = +∞}, which is what we need to apply the second
moment method.

Because of (2.3.12), a natural choice of νn follows from the max-flow min-
cut theorem (Theorem 1.1.15) applied to Tn with source 0, sink ∂n and capacity
constraint |φ(x, y)| ≤ κ(e) := ε−1λ−|e| for all edges e = {x, y}. Indeed, for all
cutsets Π in Tn separating 0 and ∂n, we have

∑
e∈Π κ(e) =

∑
e∈Π ε

−1λ−|e| ≥ 1
by (2.3.12). That then guarantees by Theorem 1.1.15 the existence of a unit flow
φ from 0 to ∂n satisfying the capacity constraints. Define νn(z) to be the flow
entering z ∈ ∂n under φ. In particular, because φ is a unit flow, νn defines a
probability measure. It remains to bound the second moment of Xn under this



CHAPTER 2. MOMENTS AND TAILS 60

choice. We have

EpX2
n = Ep

∑
z∈∂n

1{z∈C0}
νn(z)

Pp[z ∈ C0]

2
=

∑
x,y∈∂n

νn(x)νn(y)
Pp[x, y ∈ C0]

Pp[x ∈ C0]Pp[y ∈ C0]

=
n∑

m=0

∑
x,y∈∂n

1{x∧y∈∂m}νn(x)νn(y)
pmp2(n−m)

p2n

=
n∑

m=0

p−m
∑
z∈∂m

 ∑
x,y∈∂n

1{x∧y=z}νn(x)νn(y)

 .

In the expression in parentheses, for each x descendant of z, the sum over y is at
most νn(x)νn(z) by the definition of a flow; then the sum over those xs gives at
most νn(z)2. So

EpX2
n ≤

n∑
m=0

p−m
∑
z∈∂m

νn(z)2

≤
n∑

m=0

p−m
∑
z∈∂m

(ε−1λ−m)νn(z)

≤ ε−1
+∞∑
m=0

(pλ)−m

=
ε−1

1− (pλ)−1
=: Cε,λ,p < +∞,

where the second line follows from the capacity constraint, and we used pλ > 1
on the last line. From the second moment method (recalling that EpXn = 1),

θ(p) = Pp[|C0| = +∞] ≥ Pp[∀n, Xn > 0] = lim
n
Pp[Xn > 0] ≥ C−1

ε,λ,p > 0,

where the second equality follows from the construction of νn. It follows that

θ(p) ≥ C−1
ε,λ,p > 0,

and pc(T ) ≤ 1
br(T ) . That concludes the proof.

Note that Claims 2.3.9 and 2.3.11 imply that br(Td) = d−1. The next example
is more striking and insightful.
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Example 2.3.12 (The 3–1 tree). The 3–1 tree T̂3−1 is an infinite rooted tree. We
give a planar description. The root ρ (level 0) is at the top. It has two children
below it (level 1). Then on level n, for n ≥ 1, the first 2n−1 vertices starting from
the left have exactly 1 child and the next 2n−1 vertices have exactly 3 children. In
particular level n has 2n vertices, which we denote by un,1, . . . , un,2n . For vertex
un,j we refer to j/2n as its relative position (on level n). So vertices have 1 or 3

relative

position
children according to whether their relative position is ≤ 1/2 or > 1/2.

Because the level size is growing at rate 2, it is tempting to conjecture that the
branching number is 2—but that turns out to be way off.

Claim 2.3.13. br(T̂3−1) = 1.

What makes this tree entirely different from the infinite 2-ary tree, despite hav-
ing the same level growth, is that each infinite path from the root in T̂3−1 eventually
“stops branching,” with the sole exception of the rightmost path which we refer to
as the main path. Indeed, let Γ = v0 ∼ v1 ∼ v2 ∼ · · · with v0 = ρ be an infinite

main path
path distinct from the main path. Let xi be the relative position of vi, i ≥ 1. Let vk
be the first vertex of Γ not on the main path. It lies on the k-th level.

Lemma 2.3.14. Let v be a vertex that is not on the main path with relative position
x and assume that 0 ≤ x ≤ α < 1. Let w be a child of v and denote by y its
relative position. Then

y ≤

{
1
2x if x ≤ 1/2,

x− 1
2(1− α) otherwise.

Proof. Assume without loss of generality that v = un,j for some n and j < 2n. If
j ≤ 2n−1, then by construction v has exactly one child with relative position

y =
j

2n+1
=

1

2
x.

That proves the first claim.
If j > 2n−1, then all vertices to the right of v have 3 children, all of whom are

to the right of the children of v. Hence the children of v have relative position at
most

y ≤ 2n+1 − 3(2n − j)
2n+1

=
3j − 2n

2n+1
=

3

2
x− 1

2
.

Subtracting x and using x ≤ α gives the second claim.

We now apply Lemma 2.3.14 to vk as defined above and its descendants on Γ with
α = 1 − 1/2k. We get that the relative position decreases from vk by 1/2k+1 on
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each level until it falls below 1/2 at which point it gets cut in half at each level.
Once this last regime is reached, each vertex on Γ from then on has exactly one
child—that is, there is no more branching.

We are now ready to prove the claim.

Proof of Claim 2.3.13. Take any λ > 1. From the definition of the branching num-
ber (Definition 2.3.10), it suffices to find a sequence of cutsets (Πn)n such that∑

e∈Πn

λ−|e| → 0,

as n→ +∞. What does not work is to choose Πn := Λn to be the edges between
level n− 1 and level n, since we then have∑

e∈Λn

λ−|e| = 2nλ−n,

which diverges whenever λ < 2. Instead we construct a new cutset Φn based on
Λn as follows. We divide up Λn into the disjoint union Λ−n ∪ Λ+

n , where Λ−n are
the edges whose endvertex on level n has relative position ≤ 1/2 and Λ+

n are the
rest of the edges. Start with Φn := ∅.
Step 1. For each edge e in Λ−n , letting v be the endvertex of e on level n, add to Φn

the edge {v′, v′′} where v′ and v′′ are the unique descendants of v on level mn− 1
and mn respectively. The value of mn ≥ n is chosen so that

2n−1λ−mn ≤ 1

2n
. (2.3.13)

Any infinite path from the root going through one of the edges in Λ−n has to go
through the edge that replaced it in Φn since there is no branching below that point
by Lemma 2.3.14.
Step 2. We also add to Φn the edge {w′, w′′} on the main path where w′ =
u`n−1,2`n−1 is on level `n − 1 and w′′ = u`n,2`n is on level `n. We mean for
the value of `n to be such that any infinite path going through an edge in Λ+

n has
to go through {w′, w′′} first. That is, we need all vertices of level n with relative
position > 1/2 to be a descendant of w′′. The number of descendants of w′′ on
level J > `n is 3J−`n until the last J such that it is ≤ 2J−1, which we denote by
J∗. A quick calculation gives

J∗ =

⌊
`n log 3− log 2

log 3− log 2

⌋
.
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After level J∗, the leftmost descendant of w′′ has relative position ≤ 1/2 by
Lemma 2.3.14. Therefore we need n > J∗ to ensure that w′′ has the desired
property. Taking

`n =

⌊
log 3/2

log 3
n

⌋
, (2.3.14)

will do for n large enough.
Finishing up. By construction, Φn is a cutset for all n ≥ n0. Moreover∑

e∈Φn

λ−|e| = 2n−1λ−mn + λ−`n <
1

n
,

for n large enough, where we used (2.3.13) and (2.3.14). Taking n → +∞ gives
the claim.

As a consequence of Claims 2.3.11 and 2.3.13, |Cρ| < +∞ almost surely for
all p < 1 on T̂3−1. J

2.4 Chernoff-Cramér method

Chebyshev’s inequality (Theorem 2.1.2) gives a bound on the concentration around
its mean of a square integrable random variable. It is, in general, best possible. In-
deed takeX to be µ+bσ or µ−bσ with probability (2b2)−1 each, and µ otherwise.
Then EX = µ, VarX = σ2, and for β = bσ,

P[|X − EX| ≥ β] = P[|X − EX| = β] =
1

b2
=

VarX

β2
.

However, in many cases, much stronger bounds can be derived. For instance, if
X ∼ N(0, 1), by the following lemma

P[|X − EX| ≥ β] ∼
√

2

π
β−1 exp(−β2/2)� 1

β2
, (2.4.1)

as β → +∞. Indeed:

Lemma 2.4.1. For x > 0,

(x−1 − x−3) e−x
2/2 ≤

∫ +∞

x
e−y

2/2dy ≤ x−1 e−x
2/2.
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Proof. By the change of variable y = x+ z and using e−z
2/2 ≤ 1∫ +∞

x
e−y

2/2dy ≤ e−x2/2

∫ +∞

0
e−xzdz = e−x

2/2x−1.

For the other direction, by differentiation∫ +∞

x
(1− 3y−4) e−y

2/2dy = (x−1 − x−3) e−x
2/2.

In this section we discuss the Chernoff-Cramér method, which produces exponen-
tial tail bounds, provided the moment-generating function (see Section 2.1.1) is
finite in a neighborhood of 0.

2.4.1 Tail bounds via the moment-generating function

Under a finite variance, squaring within Markov’s inequality (Theorem 2.1.1) pro-
duces Chebyshev’s inequality (Theorem 2.1.2). This “boosting” can be pushed
further when stronger integrability conditions hold.

Chernoff-Cramér We refer to (2.4.2) in the next lemma as the Chernoff-Cramér
bound.

Chernoff-

Cramér

bound
Lemma 2.4.2 (Chernoff-Cramér bound). Assume X is a random variable such
that MX(s) < +∞ for s ∈ (−s0, s0) for some s0 > 0. For any β > 0 and s > 0,

P[X ≥ β] ≤ exp [−{sβ −ΨX(s)}] , (2.4.2)

where

ΨX(s) := logMX(s),

is the cumulant-generating function of X .

Proof. Exponentiating within Markov’s inequality gives for s > 0

P[X ≥ β] = P[esX ≥ esβ] ≤ MX(s)

esβ
= exp [−{sβ −ΨX(s)}] .
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Returning to the Gaussian case, let X ∼ N(0, ν) where ν > 0 is the variance
and note that

MX(s) =

∫ +∞

−∞
esx

1√
2πν

e−
x2

2ν dx

=

∫ +∞

−∞
e
s2ν
2

1√
2πν

e−
(x−sν)2

2ν dx

= exp

(
s2ν

2

)
.

By straightforward calculus, the optimal choice of s in (2.4.2) gives the exponent

sup
s>0

(sβ − s2ν/2) =
β2

2ν
, (2.4.3)

achieved at sβ = β/ν. For β > 0, this leads to the bound

P[X ≥ β] ≤ exp

(
−β

2

2ν

)
, (2.4.4)

which is much sharper than Chebyshev’s inequality for large β—compare to (2.4.1).
As another toy example, we consider simple random walk on Z.

Lemma 2.4.3 (Chernoff bound for simple random walk on Z). Let Z1, . . . , Zn
be independent Rademacher variables, that is, they are {−1, 1}-valued random

Rademacher

variable
variables with P[Zi = 1] = P[Zi = −1] = 1/2. Let Sn =

∑
i≤n Zi. Then, for any

β > 0,

P[Sn ≥ β] ≤ e−β2/2n. (2.4.5)

Proof. The moment-generating function of Z1 can be bounded as follows

MZ1(s) =
es + e−s

2
=
∑
j≥0

s2j

(2j)!
≤
∑
j≥0

(s2/2)j

j!
= es

2/2. (2.4.6)

Using independence and taking s = β/n in the Chernoff-Cramér bound (2.4.2),
we get

P[Sn ≥ β] ≤ exp (−sβ + nΨZ1(s))

≤ exp
(
−sβ + ns2/2

)
= e−β

2/2n,

which concludes the proof.
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Observe the similarity between (2.4.5) and the Gaussian bound (2.4.4), if one
takes ν to be the variance of Sn, that is,

ν = Var[Sn] = nVar[Z1] = nE[Z2
1 ] = n,

where we used that Z1 is centered. The central limit theorem says that simple
random walk is well approximated by a Gaussian in the “bulk” of the distribu-
tion; the bound above extends the approximation in the “large deviation” regime.
The bounding technique used in the proof of Lemma 2.4.3 will be substantially
extended in Section 2.4.2.

Example 2.4.4 (Set balancing). Let v1, . . . ,vm be arbitrary non-zero vectors in
{0, 1}n. Think of vi = (vi,1, . . . , vi,n) as representing a subset of [n] = {1, . . . , n}:
vi,j = 1 indicates that j is in subset i. Suppose we want to partition [n] into two
groups such that the subsets corresponding to the vis are as balanced as possible,
that is, are as close as possible to having the same number of elements from each
group. More formally, we seek a vector x = (x1, . . . , xn) ∈ {−1,+1}n such that
B∗ = maxi=1,...,m |x · vi| is as small as possible.

A simple random choice does well: select each xi independently, uniformly at
random in {−1,+1}. Fix ε > 0. We claim that

P
[
B∗ ≥

√
2n(logm+ log(2ε−1))

]
≤ ε. (2.4.7)

Indeed, by (2.4.5) (considering only the non-zero entries of vi),

P
[
|x · vi| ≥

√
2n(logm+ log(2ε−1))

]
≤ 2 exp

(
−2n(logm+ log(2ε−1))

2‖vi‖1

)
≤ ε

m
,

where we used that ‖vi‖1 ≤ n. Taking a union bound over the m vectors gives
the result. In (2.4.7), the

√
n term on the right-hand side of the inequality is to

be expected since it is the standard deviation of |x · vi| in the worst case. The
power of the exponential tail bound (2.4.5) appears in the logarithmic terms, which
would have been replaced with something much larger if one had used Chebyshev’s
inequality instead. J

The Chernoff-Cramér bound is particularly useful for sums of independent ran-
dom variables as the moment-generating function then factorizes; see (2.1.3). Let

Ψ∗X(β) = sup
s∈R+

(sβ −ΨX(s)),

be the Fenchel-Legendre dual of the cumulant-generating function of X .
Fenchel-

Legendre

dual



CHAPTER 2. MOMENTS AND TAILS 67

Theorem 2.4.5 (Chernoff-Cramér method). Let Sn =
∑

i≤nXi, where the Xis
are i.i.d. random variables. Assume MX1(s) < +∞ on s ∈ (−s0, s0) for some
s0 > 0. For any β > 0,

P[Sn ≥ β] ≤ exp

(
−nΨ∗X1

(
β

n

))
. (2.4.8)

In particular, in the large deviations regime, that is, when β = bn for some b > 0,
we have

− lim sup
n

1

n
logP[Sn ≥ bn] ≥ Ψ∗X1

(b) . (2.4.9)

Proof. Observe that, by taking a logarithm in (2.1.3), it holds that

Ψ∗Sn(β) = sup
s>0

(sβ − nΨX1(s)) = sup
s>0

n

(
s

(
β

n

)
−ΨX1(s)

)
= nΨ∗X1

(
β

n

)
.

Now optimize over s in (2.4.2).

We use the Chernoff-Cramér method to derive a few standard bounds.

Poisson variables We start with the Poisson case. Let Z ∼ Poi(λ) be Poisson
Poisson

with mean λ, where recall that

P[Z = k] = e−λ
λk

k!
, k ∈ Z+.

Letting X = Z − λ,

ΨX(s) = log

∑
`≥0

e−λ
λ`

`!
es(`−λ)


= log

e−(1+s)λ
∑
`≥0

(esλ)`

`!


= log

(
e−(1+s)λee

sλ
)

= λ(es − s− 1),

so that straightforward calculus gives for β > 0

Ψ∗X(β) = sup
s>0

(sβ − λ(es − s− 1))

= λ

[(
1 +

β

λ

)
log

(
1 +

β

λ

)
− β

λ

]
=: λh

(
β

λ

)
,
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achieved at sβ = log
(

1 + β
λ

)
, where h is defined as the expression in square

brackets above. Plugging Ψ∗X(β) into Theorem 2.4.5 leads for β > 0 to the bound

P[Z ≥ λ+ β] ≤ exp

(
−λh

(
β

λ

))
. (2.4.10)

A similar calculation for −(Z − λ) gives for β < 0

P[Z ≤ λ+ β] ≤ exp

(
−λh

(
β

λ

))
. (2.4.11)

If Sn is a sum of n i.i.d. Poi(λ) variables, then by (2.4.9) for a > λ

− lim sup
n

1

n
logP[Sn ≥ an] ≥ λh

(
a− λ
λ

)
= a log

(a
λ

)
− a+ λ

=: IPoi
λ (a), (2.4.12)

and similarly for a < λ

− lim sup
n

1

n
logP[Sn ≤ an] ≥ IPoi

λ (a). (2.4.13)

In fact, these bounds follow immediately from (2.4.10) and (2.4.11) by noting that
Sn ∼ Poi(nλ) (see, e.g., Exercise 6.7).

Binomial variables and Chernoff bounds Let Z ∼ Bin(n, p) be a binomial
random variable with parameters n and p. Recall that Z is a sum of i.i.d. indicators

binomial
Y1, . . . , Yn equal to 1 with probability p. The Yis are also known as Bernoulli
random variables or Bernoulli trials, and their law is denote by Ber(p). We also
refer to p as the success probability. Letting Xi = Yi − p and Sn = Z − np,

Bernoulli

ΨX1(s) = log (pes + (1− p))− ps.

For b ∈ (0, 1− p), letting a = b+ p, direct calculation gives

Ψ∗X1
(b) = sup

s>0
(sb− (log [pes + (1− p)]− ps))

= (1− a) log
1− a
1− p

+ a log
a

p
=: D(a‖p), (2.4.14)

achieved at sb = log (1−p)a
p(1−a) . The function D(a‖p) in (2.4.14) is the so-called

Kullback-Leibler divergence or relative entropy between two Bernoulli variables
Kullback-Leibler

divergence
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with parameters a and p respectively. By (2.4.8) for β > 0

P[Z ≥ np+ β] ≤ exp (−nD (p+ β/n‖p)) .

Applying the same argument to Z ′ = n− Z gives a bound in the other direction.

Remark 2.4.6. In the large deviations regime, it can be shown that the previous bound is
tight in the sense that

− 1

n
logP[Z ≥ np+ bn]→ D (p+ b‖p) =: IBin

n,p (b),

as n → +∞. The theory of large deviations provides general results of this type. See for
example [Dur10, Section 2.6]. Upper bounds will be enough for our purposes.

The following related bounds, proved in Exercise 2.7, are often useful.

Theorem 2.4.7 (Chernoff bounds for Poisson trials). Let Y1, . . . , Yn be indepen-
dent {0, 1}-valued random variables with P[Yi = 1] = pi and µ =

∑
i pi. These

are called Poisson trials. Let Z =
∑

i Yi. Then:
Poisson

trials(i) Above the mean

(a) For any δ > 0,

P[Z ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

(b) For any 0 < δ ≤ 1,

P[Z ≥ (1 + δ)µ] ≤ e−µδ2/3.

(ii) Below the mean

(a) For any 0 < δ < 1,

P[Z ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
.

(b) For any 0 < δ < 1,

P[Z ≤ (1− δ)µ] ≤ e−µδ2/2.

2.4.2 Sub-Gaussian and sub-exponential random variables

The bounds in Section 2.4.1 were obtained by computing the moment-generating
function explicitly (possibly with some approximations). This is not always possi-
ble. In this section, we give some important examples of tail bounds derived from
the Chernoff-Cramér method for broad classes of random variables under natural
conditions on their distributions.
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Sub-Gaussian random variables

We begin with sub-Gaussian random variables which, as the name suggests, have
a moment-generating function that is bounded by that of a Gaussian.

General case Here is our key definition.

Definition 2.4.8 (Sub-Gaussian random variables). We say that a random variable
X with mean µ is sub-Gaussian with variance factor ν if

sub-Gaussian

variable
ΨX−µ(s) ≤ s2ν

2
, ∀s ∈ R, (2.4.15)

for some ν > 0. We use the notation X ∈ sG(ν).

Note that the right-hand side in (2.4.15) is the cumulant-generating function of
a N(0, ν). By the Chernoff-Cramér method and (2.4.3) it follows immediately that

P [X − µ ≤ −β] ∨ P [X − µ ≥ β] ≤ exp

(
−β

2

2ν

)
, (2.4.16)

where we used that X ∈ sG(ν) implies −X ∈ sG(ν). As a quick example, note
that this is the approach we took in Lemma 2.4.3, that is, we showed that a uniform
random variable in {−1, 1} (i.e., a Rademacher variable) is sub-Gaussian with
variance factor 1.

When considering (weighted) sums of independent sub-Gaussian random vari-
ables, we get the following.

Theorem 2.4.9 (General Hoeffding inequality). SupposeX1, . . . , Xn are indepen-
dent random variables where, for each i, Xi ∈ sG(νi) with 0 < νi < +∞. For
w1, . . . , wn ∈ R, let Sn =

∑
i≤nwiXi. Then

Sn ∈ sG

(
n∑
i=1

w2
i νi

)
.

In particular, for all β > 0,

P [Sn − ESn ≥ β] ≤ exp

(
− β2

2
∑n

i=1w
2
i νi

)
.

Proof. Assume the Xis are centered. By independence and (2.1.3),

ΨSn(s) =
∑
i≤n

ΨwiXi(s) =
∑
i≤n

ΨXi(swi) ≤
∑
i≤n

(swi)
2νi

2
=
s2
∑

i≤nw
2
i νi

2
.
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Bounded random variables For bounded random variables, the previous in-
equality reduces to a standard bound.

Theorem 2.4.10 (Hoeffding’s inequality for bounded variables). Let X1, . . . , Xn

be independent random variables where, for each i, Xi takes values in [ai, bi] with
−∞ < ai ≤ bi < +∞. Let Sn =

∑
i≤nXi. For all β > 0,

P[Sn − ESn ≥ β] ≤ exp

(
− 2β2∑

i≤n(bi − ai)2

)
.

By Theorem 2.4.9, it suffices to show that Xi ∈ sG(νi) with νi = 1
4(bi − ai)2. We

first give a quick proof of a weaker version that uses a trick called symmetrization.
symmetrization

Suppose the Xis are centered and satisfy |Xi| ≤ ci for some ci > 0. Let X ′i be an
independent copy of Xi and let Zi be an independent uniform random variable in
{−1, 1}. For any s,

E
[
esXi

]
= E

[
esE[Xi−X′i |Xi]

]
≤ E

[
E
[
es(Xi−X

′
i)
∣∣∣Xi

]]
= E

[
es(Xi−X

′
i)
]
,

where the first line comes from the taking out what is known lemma (Lemma B.6.16)
and the fact that X ′i is centered and independent of Xi, the second line follows
from the conditional Jensen’s inequality (Lemma B.6.12), and the third line uses
the tower property (Lemma B.6.16). Observe that Xi − X ′i is symmetric, that is,
identically distributed to −(Xi −X ′i). Hence, using that Zi is independent of both
Xi and X ′i, we get

E
[
es(Xi−X

′
i)
]

= E
[
E
[
es(Xi−X

′
i)
∣∣∣Zi]]

= E
[
E
[
esZi(Xi−X

′
i)
∣∣∣Zi]]

= E
[
esZi(Xi−X

′
i)
]

= E
[
E
[
esZi(Xi−X

′
i)
∣∣∣Xi, X

′
i

]]
.

From (2.4.6) (together with Lemma B.6.15), the last line above is

≤ E
[
e(s(Xi−X′i))2/2

]
≤ e4c2i s

2/2,
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since |Xi|, |X ′i| ≤ ci. Putting everything together, we arrive at

E
[
esXi

]
≤ e4c2i s

2/2.

That is, Xi is sub-Gaussian with variance factor 4c2
i . By Theorem 2.4.9, Sn is

sub-Gaussian with variance factor
∑

i≤n 4c2
i and

P[Sn ≥ t] ≤ exp

(
− t2

8
∑

i≤n c
2
i

)
.

Proof of Theorem 2.4.10. As pointed out above, it suffices to show that Xi is sub-
Gaussian with variance factor 1

4(bi−ai)2. This is the content of Hoeffding’s lemma
below (which we will use again in Chapter 3). First an observation:

Lemma 2.4.11 (Variance of bounded random variables). For any random variable
Z taking values in [a, b] with −∞ < a ≤ b < +∞, we have

Var[Z] ≤ 1

4
(b− a)2.

Proof. Indeed ∣∣∣∣Z − a+ b

2

∣∣∣∣ ≤ b− a
2

,

and

Var[Z] = Var

[
Z − a+ b

2

]
≤ E

[(
Z − a+ b

2

)2
]
≤
(
b− a

2

)2

.

Hoeffding’s

lemma
Lemma 2.4.12 (Hoeffding’s lemma). Let X be a random variable taking values
in [a, b] for −∞ < a ≤ b < +∞. Then X ∈ sG

(
1
4(b− a)2

)
.

Proof. Note first thatX−EX ∈ [a−EX, b−EX] and 1
4((b−EX)−(a−EX))2 =

1
4(b − a)2. So without loss of generality we assume that EX = 0. Because X is
bounded, MX(s) is finite for all s ∈ R. Hence, by (2.1.2),

ΨX(0) = logMX(0) = 0, Ψ′X(0) =
M ′X(0)

MX(0)
= EX = 0,

and by a Taylor expansion

ΨX(s) = ΨX(0) + sΨ′X(0) +
s2

2
Ψ′′X(s∗) =

s2

2
Ψ′′X(s∗),
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for some s∗ ∈ [0, s]. Therefore it suffices to show that for all s

Ψ′′X(s) ≤ 1

4
(b− a)2. (2.4.17)

Note that

Ψ′′X(s) =
M ′′X(s)

MX(s)
−
(
M ′X(s)

MX(s)

)2

=
1

MX(s)
E
[
X2esX

]
−
(

1

MX(s)
E
[
XesX

])2

= E
[
X2 esX

MX(s)

]
−
(
E
[
X

esX

MX(s)

])2

.

The trick to conclude is to notice that esx

MX(s) defines a density on [a, b] with respect
to the law of X . The variance under this density—the last line above—is less than
1
4(b−a)2 by Lemma 2.4.11. This establishes (2.4.17) and concludes the proof.

Remark 2.4.13. The change of measure above is known as tilting and is a standard trick
in large deviations theory. See for example [Dur10, Section 2.6].

Since we have shown that Xi is sub-Gaussian with variance factor 1
4(bi− ai)2,

Theorem 2.4.10 follows from Theorem 2.4.9.

Sub-exponential random variables

Unfortunately, not every random variable of interest is sub-Gaussian. A simple
example is the square of a Gaussian variable. Indeed, suppose X ∼ N(0, 1). Then
W = X2 is χ2-distributed and its moment-generating function can be computed
explicitly. Using the change of variable u = x

√
1− 2s, for s < 1/2,

MW (s) =
1√
2π

∫ +∞

−∞
esx

2
e−x

2/2 dx

=
1√

1− 2s
× 1√

2π

∫ +∞

−∞
e−u

2/2 du

=
1

(1− 2s)1/2
. (2.4.18)

When s ≥ 1/2, however, we have MW (s) = +∞. In particular, W cannot be
sub-Gaussian for any variance factor ν > 0. (Note that centering W produces an
additional factor of e−s in the moment-generating function which does not prevent
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it from diverging.) Further confirming this observation, arguing as in (2.4.1), the
upper tail of W decays as

P[W ≥ β] = P[X ≥
√
β]

∼
√

1

2π
[
√
β]−1 exp(−[

√
β]2/2)

∼
√

1

2πβ
exp(−β/2),

as β → +∞. That is, it decays exponentially with β, but slower than the Gaussian
tail.

General case We now define a broad class of distributions which have such ex-
ponential tail decay.

Definition 2.4.14 (Sub-exponential random variable). We say that a random vari-
able X with mean µ is sub-exponential with parameters (ν, α) if

sub-exponential

variable
ΨX−µ(s) ≤ s2ν

2
, ∀|s| ≤ 1

α
, (2.4.19)

for some ν, α > 0. We write X ∈ sE(ν, α).*

Observe that the key difference between (2.4.15) and (2.4.19) is the interval of s
over which it holds. As we will see below, the parameter α dictates the exponential
decay rate of the tail. The specific form of the bound in (2.4.19) is natural once one
notices that, as |s| → 0, a centered random variable with variance ν (and a finite
moment-generating function) should roughly satisfy

logE[esX ] ≈ log

{
1 + sE[X] +

s2

2
E[X2]

}
≈ log

{
1 +

s2ν

2

}
≈ s2ν

2
.

*More commonly, “sub-exponential” refers to the case α =
√
ν.
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Returning to the χ2 distribution, note that from (2.4.18) we have for |s| ≤ 1/4

ΨW−1(s) = −s− 1

2
log(1− 2s)

= −s− 1

2

[
−

+∞∑
i=1

(2s)i

i

]

=
s2

2

[
4

+∞∑
i=2

(2s)i−2

i

]

≤ s2

2

[
2

+∞∑
i=2

|1/2|i−2

]

≤ s2

2
× 4.

Hence W ∈ sE(4, 4).
Using the Chernoff-Cramér bound (Lemma 2.4.2), we obtain the following tail

bound for sub-exponential variables.

Theorem 2.4.15 (Sub-exponential tail bound). Suppose the random variable X
with mean µ is sub-exponential with parameters (ν, α). Then for all β ∈ R+

P[X − µ ≥ β] ≤

{
exp(−β2

2ν ), if 0 ≤ β ≤ ν/α,
exp(− β

2α), if β > ν/α.
(2.4.20)

In words, the tail decays exponentially fast at large deviations but behaves as in the
sub-Gaussian case for smaller deviations. We will see below that this double-tail
allows to extrapolate naturally between different regimes. First we prove the claim.

Proof of Theorem 2.4.15. We start by applying the Chernoff-Cramér bound. For
any β > 0 and |s| ≤ 1/α

P[X − µ ≥ β] ≤ exp (−sβ + ΨX(s)) ≤ exp
(
−sβ + s2ν/2

)
.

At this point, the proof diverges from the sub-Gaussian case because the optimal
choice of s depends on β because of the additional constraint |s| ≤ 1/α. When
s∗ = β/ν satisfies s∗ ≤ 1/α, the quadratic function of s in the exponent is mini-
mized at s∗, giving the bound

P[X ≥ β] ≤ exp

(
−β

2

2ν

)
,

for 0 ≤ β ≤ ν/α.
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On the other hand, when β > ν/α, the exponent is strictly decreasing over
the interval s ≤ 1/α. Hence the optimal choice is s∗ = 1/α, which produces the
bound

P[X ≥ β] ≤ exp

(
−β
α

+
ν

2α2

)
< exp

(
−β
α

+
β

2α

)
= exp

(
− β

2α

)
,

where we used that ν < βα on the second line.

For (weighted) sums of independent sub-exponential random variables, we get
the following.

Theorem 2.4.16 (General Bernstein inequality). Suppose X1, . . . , Xn are inde-
pendent random variables where, for each i, Xi ∈ sE(νi, αi) with 0 < νi, αi <
+∞. For w1, . . . , wn ∈ R, let Sn =

∑
i≤nwiXi. Then

Sn ∈ sE

(
n∑
i=1

w2
i νi,max

i
|wi|αi

)
.

In particular, for all β > 0,

P [Sn − ESn ≥ β] ≤

exp
(
− β2

2
∑n
i=1 w

2
i νi

)
, if 0 ≤ β ≤

∑n
i=1 w

2
i νi

maxi |wi|αi ,

exp
(
− β

2 maxi |wi|αi

)
, if β >

∑n
i=1 w

2
i νi

maxi |wi|αi .

Proof. By independence and (2.1.3),

ΨSn(s) =
∑
i≤n

ΨwiXi(s) =
∑
i≤n

ΨXi(swi) ≤
∑
i≤n

(swi)
2νi

2
=
s2
∑

i≤nw
2
i νi

2
,

provided |swi| ≤ 1/αi for all i, that is,

|s| ≤ 1

maxi |wi|αi
.



CHAPTER 2. MOMENTS AND TAILS 77

Bounded random variables: revisited We apply the previous result to bounded
random variables.

Theorem 2.4.17 (Bernstein’s inequality for bounded variables). Let X1, . . . , Xn

be independent random variables where, for each i, Xi has mean µi, variance σ2
i

and satisfies |Xi − µi| ≤ c for some 0 < c < +∞. Let Sn =
∑

i≤nXi. For all
β > 0,

P [Sn − ESn ≥ β] ≤

exp
(
− β2

4
∑n
i=1 σ

2
i

)
, if 0 ≤ β ≤

∑n
i=1 σ

2
i

c ,

exp
(
− β

4c

)
, if β >

∑n
i=1 σ

2
i

c .

Proof. We claim that Xi ∈ sE(2σ2
i , 2c). To establish the claim, we derive a bound

on all moments of Xi. Note that for all integers k ≥ 2

E|Xi − µi|k ≤ ck−2E|Xi − µi|2 = ck−2σ2
i .

Hence, first applying the dominated convergence theorem (Proposition B.4.14) to
establish the limit, we have for |s| ≤ 1

2c

E[es(Xi−µi)] =
+∞∑
k=0

sk

k!
E[(Xi − µi)k]

≤ 1 + sE[(Xi − µi)] +

+∞∑
k=2

sk

k!
ck−2σ2

i

≤ 1 +
s2σ2

i

2
+
s2σ2

i

3!

+∞∑
k=3

(cs)k−2

= 1 +
s2σ2

i

2

{
1 +

1

3

cs

1− cs

}
≤ 1 +

s2σ2
i

2

{
1 +

1

3

1/2

1− 1/2

}
≤ 1 +

s2

2
2σ2

i

≤ exp

(
s2

2
2σ2

i

)
.

Using the general Bernstein inequality (Theorem 2.4.16) gives the result.

It may seem counter-intuitive to derive a tail bound based on the sub-exponential
property of bounded random variables when we have already done so using their
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sub-Gaussian behavior. After all, the latter is on the surface a strengthening of the
former. However, note that we have obtained a better bound in Theorem 2.4.17
than we did in Theorem 2.4.10—when β is not too large. That improvement stems
from the use of the (actual) variance for moderate deviations. This is easier to
appreciate on an example.

Example 2.4.18 (Erdős-Rényi: maximum degree). Let Gn = (Vn, En) ∼ Gn,pn
be a random graph with n vertices and density pn under the Erdős-Rényi model
(Definition 1.2.2). Recall that two vertices u, v ∈ Vn are adjacent if {u, v} ∈ En
and that the set of adjacent vertices of v, denoted by N(v), is called the neighbor-
hood of v. The degree of v is the size of its neighborhood, that is, δ(v) = |N(v)|.
Here we study the maximum degree of Gn

Dn = max
v∈Vn

δ(v).

We focus on the regime npn = ω(log n). Note that, for any vertex v ∈ Vn, its
degree is Bin(n − 1, pn) by independence of the edges. In particular its expected
degree is (n−1)pn. To prove a high-probability upper bound on the maximumDn,
we need to control the deviation of the degree of each vertex from its expectation.
Observe that the degrees are not independent. Instead we apply a union bound over
all vertices, after using a tail bound.

Claim 2.4.19. For any ε > 0, as n→ +∞,

P
[
|Dn − (n− 1)pn| ≥ 2

√
(1 + ε)npn log n

]
→ 0.

Proof. For a fixed vertex v, think of δ(v) = Sn−1 ∼ Bin(n − 1, pn) as a sum
of n− 1 independent {0, 1}-valued random variables, one for each possible edge.
That is, Sn−1 =

∑n−1
i=1 Xi where the Xis are bounded random variables. The

mean of Xi is pn and its variance is pn(1 − pn). So in Bernstein’s inequality
(Theorem 2.4.17), we can take µi := pn, σ2

i := pn(1 − pn) and c := 1 for all i.
We get

P [Sn−1 ≥ (n− 1)pn + β] ≤

exp
(
−β2

4ν

)
, if 0 ≤ β ≤ ν,

exp
(
−β

4

)
, if β > ν.

where ν = (n− 1)pn(1− pn) = ω(log n) by assumption. We choose β to be the
smallest value that will produce a tail probability less than n−1−ε for ε > 0, that
is,

β =
√

4(n− 1)pn(1− pn)×
√

(1 + ε) log n = o(ν),
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which falls in the lower regime of the tail bound. In particular, β = o(npn) (i.e.,
the deviation is much smaller than the expectation). Finally by a union bound over
v ∈ Vn

P
[
Dn ≥ (n− 1)pn +

√
4(1 + ε)pn(1− pn)(n− 1) log n

]
≤ n× 1

n1+ε
→ 0.

The same holds in the other direction. That proves the claim.

Had we used Hoeffding’s inequality (Theorem 2.4.10) in the proof of Claim 2.4.19
we would have had to take β =

√
(1 + ε)n log n. That would have produced a

much weaker bound when pn = o(1). Indeed the advantage of Bernstein’s in-
equality is that it makes explicit use of the variance, which when pn = o(1) is
much smaller than the worst case for bounded variables. J

2.4.3 . Probabilistic analysis of algorithms: knapsack problem

In a knapsack problem, we have n items. Item i has weight Wi ∈ [0, 1] and value
Vi ∈ [0, 1]. Given a weight boundW , we want to pack as valuable a collection of
items in the knapsack under the constraint that the total weight is less or equal than
W . Formally we seek a solution to the optimization problem

Z∗ = max


n∑
j=1

xjVj : x1, . . . , xn ∈ [0, 1],

n∑
j=1

xjWj ≤ W

 . (2.4.21)

This is the fractional knapsack problem, where we allow a fraction of an item to be
knapsack

problem
added to the knapsack.

It is used as a computationally tractable relaxation of the 0-1 knapsack problem,
which also includes the combinatorial constraint xj ∈ {0, 1},∀j. Indeed, it turns
out that the optimization problem (2.4.21) is solved exactly by a simple greedy
solution (see Exercise 2.8 for a formal proof of correctness): let π be a permutation
of {1, . . . , n} that puts the items in decreasing order of value per unit weight

Vπ(1)

Wπ(1)
≥

Vπ(2)

Wπ(2)
≥ · · · ≥

Vπ(n)

Wπ(n)
;

add the items in that order until the first time the weight constraints is violated;
include whatever fraction of that last item that will fit. This greedy algorithm has
a natural geometric interpretation, depicted in Figure 2.7, that will be useful. We
associate item j to a point (Wj , Vj) ∈ [0, 1]2 and keep only those items falling on or
above a line with slope θ chosen to satisfy the total weight constraint. Specifically,
let

∆θ = {j ∈ [n] : Vj > θWj} ,
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Figure 2.7: Vizualization of the greedy algorithm.



CHAPTER 2. MOMENTS AND TAILS 81

Λθ = {j ∈ [n] : Vj = θWj} ,

and
Θ∗ = inf {θ ≥ 0 : W∆θ

<W} .

where, for a subset of items J ⊂ [n], WJ =
∑

j∈JWj (and VJ is similarly de-
fined).

We consider a stochastic version of the fractional knapsack problem where the
weights and values are i.i.d. random variables picked uniformly at random in [0, 1].
Characterizing Z∗ (e.g., its moments or distribution) is not straightforward. Here
we show that Z∗ is highly concentrated around a natural quantity. Observe that,
under our probabilistic model, almost surely |Λθ| ∈ {0, 1} for any θ ≥ 0. Hence,
there are two cases. Either Θ∗ = 0, in which case all items fit in the knapsack so
Z∗ =

∑n
j=1 Vj . Or Θ∗ > 0, in which case |ΛΘ∗ | = 1 and

Z∗ = V∆Θ∗ +
W −W∆Θ∗

WΛΘ∗
VΛΘ∗ . (2.4.22)

One interesting regime isW = τn for some constant τ > 0. Clearly, τ > 1 is
trivial. In fact, because

E

 n∑
j=1

Wj

 = nE[W1] =
1

2
n,

we assume that τ ≤ 1/2. To further simplify the calculations, we restrict ourselves
to the case τ ∈ (1/6, 1/2). (See Exercise 2.8 for the remaining case.) In this
regime, we show that Z∗ grows linearly with n and give a bound on its deviation.

Although Z∗ is technically a sum of random variables, the choice of Θ∗ corre-
lates them and we cannot apply our concentration bounds directly. Instead we show
that Θ∗ itself can be controlled well. It is natural to conjecture that Θ∗ is approx-
imately equal to a solution θτ of the expected constraint equation E[W∆θτ

] = W ,
that is,

nw̄θτ = nτ, (2.4.23)
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where w̄θ is defined through

E[W∆θ
] = E

∑
j∈∆θ

Wj


= E

 n∑
j=1

1{Vj > θWj}Wj


= nE [1{V1 > θW1}W1]

=: nw̄θ.

Similarly, we define
v̄θ := E [1{V1 > θW1}V1] .

We see directly from the definitions that both w̄θ and v̄θ are monotone as functions
of θ.

Our main claim is the following.

Claim 2.4.20. There is a constant c > 0 such that for any δ > 0

P
[
|Z∗ − nv̄θτ | ≥

√
cn log δ−1

]
≤ δ,

for all n large enough.

Proof. Because all weights and values are in [0, 1], it follows from (2.4.22) that

V∆Θ∗ ≤ Z
∗ ≤ V∆Θ∗ + 1, (2.4.24)

and it will suffice to work with V∆Θ∗ . The idea of the proof is to show that Θ∗

is close to θτ by establishing that W∆θ
is highly likely to be less than τn when

θ > θτ , while the opposite holds when θ < θτ . For this, we view W∆θ
as a sum

of independent bounded random variables and use Hoeffding’s inequality (Theo-
rem 2.4.10).

Controlling Θ∗. First, it will be useful to compute w̄θ and θτ analytically. By
definition,

w̄θ = E [1{V1 > θW1}W1]

=

∫ 1

0

∫ 1

0
1{y > θx}x dy dx

=

∫ 1∧1/θ

0
(1− θx)x dx

=

{
1
2 −

1
3θ if θ ≤ 1,

1
6θ2 otherwise.

(2.4.25)
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Plugging back into (2.4.23), we get the unique solution

θτ := 3

(
1

2
− τ
)
∈ (0, 1),

for the range τ ∈ (1/6, 1/2).
Now observe that, for each fixed θ, the quantity

W∆θ
=

n∑
j=1

1{Vj > θWj}Wj ,

is a sum of independent random variables taking values in [0, 1]. Hence, for any
β > 0, Hoeffding’s inequality gives

P [W∆θ
− nw̄θ ≥ β] ≤ exp

(
−2β2

n

)
.

Using this inequality with θ = θτ + C√
n

(with n large enough that θ < 1) and
β = (C/3)

√
n gives

P
[
W∆

θτ+ C√
n

− n
(

1

2
− 1

3
θτ −

C/3√
n

)
≥ (C/3)

√
n

]
≤ exp

(
−2(C/3)2

)
,

where we used (2.4.25). After rearranging and using that n
(

1
2 −

1
3θτ
)

= nτ
by (2.4.23) and (2.4.25), this gives

P
[
Θ∗ ≥ θτ +

C√
n

]
= P

[
W∆

θτ+ C√
n

≥ nτ
]
≤ exp

(
−2(C/3)2

)
.

Applying the same argument to −W∆θ
with θ = θτ − C√

n
and combining with the

previous inequality gives

P
[
|Θ∗ − θτ | >

C√
n

]
≤ 2 exp

(
−2(C/3)2

)
, (2.4.26)

assuming n is large enough.
Controlling Z∗. We conclude by applying Hoeffding’s inequality to V∆θ

. Ar-
guing as above with the same θ’s and β (but the roles of the two cases reversed),
we obtain

P
[
V∆

θτ− C√
n

− nv̄θτ− C√
n
≥ (C/3)

√
n

]
≤ exp

(
−2(C/3)2

)
, (2.4.27)
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and

P
[
V∆

θτ+ C√
n

− nv̄θτ+ C√
n
≤ −(C/3)

√
n

]
≤ exp

(
−2(C/3)2

)
. (2.4.28)

Again, it will be useful to compute v̄θ analytically. By definition,

v̄θ = E [1{V1 > θW1}V1]

=

∫ 1

0

∫ 1

0
1{y > θx}y dx dy

=

∫ 1∧θ

0

y2

θ
dy +

∫ 1

1∧θ
y dy

=

{
1
2 −

1
6θ

2 if θ ≤ 1,
1
3θ otherwise.

Assuming n is large enough (recall that θτ < 1), we get

v̄θτ − v̄θτ+ C√
n

=
1

6

(
2
C√
n
θτ +

C2

n

)
≤ C√

n
.

A quick check reveals that, similarly, v̄θτ− C√
n
−v̄θτ ≤ C√

n
. Plugging back into (2.4.27)

and (2.4.28) gives

P
[
V∆

θτ− C√
n

≥ nv̄θτ + 2C
√
n

]
≤ exp

(
−2(C/3)2

)
, (2.4.29)

and

P
[
V∆

θτ+ C√
n

≤ nv̄θτ − 2C
√
n

]
≤ exp

(
−2(C/3)2

)
. (2.4.30)

Observe that the following monotonicity property holds almost surely

θ0 ≤ θ1 ≤ θ2 =⇒ V∆θ0
≥ V∆θ1

≥ V∆θ2
. (2.4.31)

Combining (2.4.24), (2.4.26), (2.4.29), (2.4.30) and (2.4.31), we obtain

P
[
|Z∗ − nv̄θτ | > 2C

√
n
]
≤ 4 exp

(
−2(C/3)2

)
,

for n large enough. Choosing C appropriately gives the claim.

A similar bound is proved for the 0-1 knapsack problem in Exercise 2.9.
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2.4.4 Epsilon-nets and chaining

Suppose we are interested in bounding the expectation or tail of the supremum of
a stochastic process

sup
t∈T

Xt,

where T is an arbitrary index set and theXts are real-valued random variables. To
avoid measurability issues, we assume throughout that T is countable.† Note that
t does not in general need to be a “time” index.

So far we have developed tools that can handle cases where T is finite. When
the supremum is over an infinite index set, however, new ideas are required. One
way to proceed is to apply a tail inequality to a sufficiently dense finite subset of the
index set and then extend the resulting bound by a Lipschitz continuity argument.
We present this type of approach in this section, as well as a multi-scale version
known as chaining.

First we summarize one important special case that will be useful below: T is
finite and Xt is sub-Gaussian.

Theorem 2.4.21 (Maximal inequalities: sub-Gaussian case). Let {Xt}t∈T be a
stochastic process with finite index set T . Assume that there is ν > 0 such that,
for all t, Xt ∈ sG(ν) and E[Xt] = 0. Then

E
[
sup
t∈T

Xt

]
≤
√

2ν log |T |,

and, for all β > 0,

P
[
sup
t∈T

Xt ≥
√

2ν log |T |+ β

]
≤ exp

(
−β

2

2ν

)
.

Proof. For the expectation, we apply a variation on the Chernoff-Cramér method
(Section 2.4). Naively, we could bound the supremum supt∈T Xt by the sum∑

t∈T |Xt|, but that would lead to a bound growing linearly with the cardinality
|T |. Instead we first take an exponential, which tends to amplify the largest term
and produces a much stronger bound. Specifically, by Jensen’s inequality (Theo-
rem B.4.15), for any s > 0

E
[
sup
t∈T

Xt

]
=

1

s
E
[
sup
t∈T

sXt

]
≤ 1

s
logE

[
exp

(
sup
t∈T

sXt

)]
.

†Technically, it suffices to assume that there is a countable T0 ⊆ T such that supt∈T Xt =
supt∈T0

Xt almost surely.
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Since ea∨b ≤ ea + eb by the non-negativity of the exponential, we can bound

E
[
sup
t∈T

Xt

]
≤ 1

s
log

[∑
t∈T

E [exp (sXt)]

]

=
1

s
log

[∑
t∈T

MXt(s)

]

≤ 1

s
log

[
|T | e

s2ν
2

]
=

log |T |
s

+
sν

2
.

The optimal choice of s (i.e., leading to the least upper bound) is when the two
terms in the sum above are equal, that is, s =

√
2ν−1 log |T |, which gives finally

E
[
sup
t∈T

Xt

]
≤
√

2ν log |T |,

as claimed.
For the tail inequality, we use a union bound and (2.4.16)

P
[
sup
t∈T

Xt ≥
√

2ν log |T |+ β

]
≤
∑
t∈T

P
[
Xt ≥

√
2ν log |T |+ β

]
≤ |T | exp

(
−

(
√

2ν log |T |+ β)2

2ν

)

≤ exp

(
−β

2

2ν

)
,

as claimed, where we used that β > 0 on the last line.

Epsilon-nets and covering numbers

Moving on to infinite index sets, we first define the notion of an ε-net. This notion
requires that a pseudometric ρ (i.e., ρ : T × T → R+ is symmetric and satisfies
the triangle inequality) be defined over T .

Definition 2.4.22 (ε-net). Let T be a subset of a pseudometric space (M,ρ) and
let ε > 0. The collection of points N ⊆M is called an ε-net of T if

ε-net

T ⊆
⋃
t∈N

Bρ(t, ε),
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where Bρ(t, ε) = {s ∈ T : ρ(s, t) ≤ ε}, that is, each element of T is within
distance ε of an element in N . The smallest cardinality of an ε-net of T is called
the covering number

covering number

N (T , ρ, ε) = inf{|N | : N is an ε-net of T }.

A natural way to construct an ε-net is the following algorithm. Start with N = ∅
and successively add a point from T to N at distance at least ε from all other pre-
vious points until it is not possible to do so anymore. Provided T is compact, this
procedure will terminate after a finite number of steps. This leads to the following
dual perspective.

Definition 2.4.23 (ε-packing). Let T be a subset of a pseudometric space (M,ρ)
and let ε > 0. The collection of points N ⊆ T is called an ε-packing of T if

t /∈ Bρ(t′, ε), ∀t 6= t′ ∈ N

that is, every pair of elements ofN is at distance strictly greater than ε. The largest
cardinality of an ε-packing of T is called the packing number

packing number

P(T , ρ, ε) = sup{|N | : N is an ε-packing of T }.

Lemma 2.4.24 (Covering and packing numbers). For any T ⊆M and all ε > 0,

N (T , ρ, ε) ≤ P(T , ρ, ε).

Proof. Observe that a maximal ε-packing N is an ε-net. Indeed, by maximality,
any element of T \N is at distance at most ε from an element of N .

Example 2.4.25 (Sphere in Rk). We let Bk(x, ε) be the ball of radius ε around
x ∈ Rk with the Euclidean metric. We let Sk−1 be the sphere of radius 1 centered
around the origin 0, that is, the surface of Bk(0, 1). Let 0 < ε < 1.

Claim 2.4.26. For S := Sk−1,

N (S, ρ, ε) ≤
(

3

ε

)k
.

Proof. Let N be any maximal ε-packing of S. We show that |N | ≤ (3/ε)k, which
implies the claim by Lemma 2.4.24. The balls of radius ε/2 around points in N ,
{Bk(xi, ε/2) : xi ∈ N}, satisfy two properties:

1. They are pairwise disjoint: if z ∈ Bk(xi, ε/2) ∩ Bk(xj , ε/2), then ‖xi −
xj‖2 ≤ ‖xi − z‖2 + ‖xj − z‖2 ≤ ε, a contradiction.
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2. They are included in the ball of radius 3/2 around the origin: if z ∈ Bk(xi, ε/2),
then ‖z‖2 ≤ ‖z − xi‖2 + ‖xi‖ ≤ ε/2 + 1 ≤ 3/2.

The volume of a ball of radius ε/2 is πk/2(ε/2)k

Γ(k/2+1) and that of a ball of radius 3/2 is
πk/2(3/2)k

Γ(k/2+1) . Dividing one by the other proves the claim.

This bound will be useful later. J

The basic approach to use an ε-net for controlling the supremum of a stochastic
process is the following. We say that a stochastic process {Xt}t∈T is Lipschitz for

Lipschitz

process
pseudometric ρ on T if there is a random variable 0 < K < +∞ such that

|Xt −Xs| ≤ Kρ(s, t), ∀s, t ∈ T .

If in additionXt is sub-Gaussian for all t, then we can bound the expectation or tail
probability of the supremum of {Xt}t∈T —if we can bound the expectation or tail
probability of the (random) Lipschitz constant K itself. To see this, let N ⊆ T be
an ε-net of T and, for each t ∈ T , let π(t) be the closest element of N to t. We
will refer to π as the projection map of N . We then have the inequality

sup
t∈T

Xt ≤ sup
t∈T

(Xt −Xπ(t)) + sup
t∈T

Xπ(t) ≤ Kε+ sup
s∈N

Xs, (2.4.32)

where we can use Theorem 2.4.21 to bound the last term.‡ We give an example of
this type of argument next (although we do not apply the above bound directly).
Another example (where (2.4.32) is used this time) can be found in Section 2.4.5.

Example 2.4.27 (Spectral norm of a random matrix). For an m × n matrix A ∈
Rm×n, the spectral norm (or induced 2-norm, or 2-norm for short) is defined as

spectral

norm
‖A‖2 := sup

x∈Rn\{0}

‖Ax‖2
‖x‖2

= sup
x∈Sn−1

‖Ax‖2 = sup
x∈Sn−1

y∈Sm−1

〈Ax,y〉, (2.4.33)

where Sn−1 is the sphere of Euclidean radius 1 around the origin in Rn. The right-
most expression, which is central to our developments, is justified in Exercise 5.4.

We will be interested in the case where A is a random matrix with independent
entries. One key observation is that the quantity 〈Ax,y〉 can then be seen as a
linear combination of independent random variables

〈Ax,y〉 =
∑
i,j

xjyiAij .

‡If the ε-net N is not included in T , the Lipschitz condition has to hold on a larger subset that
includes both.
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Hence we will be able to apply our previous tail bounds. However, we also need to
deal with the supremum.

Theorem 2.4.28 (Upper tail of the spectral norm). Let A ∈ Rm×n be a random
matrix whose entries are centered, independent and sub-Gaussian with variance
factor ν. Then there exists a constant 0 < C < +∞ such that, for all t > 0,

‖A‖2 ≤ C
√
ν(
√
m+

√
n+ t),

with probability at least 1− e−t2 .

Without the independence assumption, the norm can be much larger in general (see
Exercise 2.15).

Proof. Fix ε = 1/4. By Claim 2.4.26, there is an ε-net N ⊆ Sn−1 (respectively
M ⊆ Sm−1) of Sn−1 (respectively Sm−1) with |N | ≤ 12n (respectively |M | ≤
12m). We proceed in two steps:

1. We first apply the general Hoeffding inequality (Theorem 2.4.9) to control
the deviations of the supremum in (2.4.33) restricted to N and M .

2. We then extend the bound to the full supremum by Lipschitz continuity.

Formally, the result follows from the following two lemmas.

Lemma 2.4.29. Let N and M be as above. There is a constant C large enough
(not depending on n, m) such that, for all t > 0,

P

max
x∈N
y∈M

〈Ax,y〉 ≥ 1

2
C
√
ν(
√
m+

√
n+ t)

 ≤ e−t2 .
Lemma 2.4.30. For any ε-nets N ⊆ Sn−1 and M ⊆ Sm−1 of Sn−1 and Sm−1

respectively, the following inequalities hold

sup
x∈N
y∈M

〈Ax,y〉 ≤ ‖A‖2 ≤
1

1− 2ε
sup
x∈N
y∈M

〈Ax,y〉.

Proof of Lemma 2.4.29. Recall that

〈Ax,y〉 =
∑
i,j

xjyiAij ,
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is a linear combination of independent random variables. By the general Hoeffding
inequality, 〈Ax,y〉 is sub-Gaussian with variance factor∑

i,j

(xiyj)
2 ν = ‖x‖22 ‖y‖22 ν = ν,

for all x ∈ N and y ∈M . In particular, for all β > 0,

P [〈Ax,y〉 ≥ β] ≤ exp

(
−β

2

2ν

)
.

Hence, by a union bound over N and M ,

P

max
x∈N
y∈M

〈Ax,y〉 ≥ 1

2
C
√
ν(
√
m+

√
n+ t)


≤
∑
x∈N
y∈M

P
[
〈Ax,y〉 ≥ 1

2
C
√
ν(
√
m+

√
n+ t)

]

≤ |N ||M | exp

(
− 1

2ν

{
1

2
C
√
ν(
√
m+

√
n+ t)

}2
)

≤ 12n+m exp

(
−C

2

8

{
m+ n+ t2

})
≤ e−t2 ,

for C2/8 = log 12 ≥ 1, where in the third inequality we ignored all cross-products
since they are nonnegative.

Proof of Lemma 2.4.30. The first inequality is immediate by definition of the spec-
tral norm. For the second inequality, we will use the following observation

〈Ax,y〉 − 〈Ax0,y0〉 = 〈Ax,y − y0〉+ 〈A(x− x0),y0〉. (2.4.34)

Fix x ∈ Sn−1 and y ∈ Sm−1 such that 〈Ax,y〉 = ‖A‖2 (which exist by compact-
ness), and let x0 ∈ N and y0 ∈M such that

‖x− x0‖2 ≤ ε and ‖y − y0‖2 ≤ ε.

Then (2.4.34), Cauchy-Schwarz and the definition of the spectral norm imply

‖A‖2 − 〈Ax0,y0〉 ≤ ‖A‖2‖x‖2‖y − y0‖2 + ‖A‖2‖x− x0‖2‖y0‖2 ≤ 2ε‖A‖2.

Rearranging gives the claim.

Putting the two lemmas together concludes the proof of Theorem 2.4.28.

We will give an application of this bound in Section 5.1.4. J
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Chaining method

We go back to the inequality

sup
t∈T

Xt ≤ sup
t∈T

(Xt −Xπ(t)) + sup
t∈T

Xπ(t). (2.4.35)

Previously we controlled the first term on the right-hand side with a random Lips-
chitz constant and the second term with a maximal inequality for finite sets. Now
we consider cases where we may not have a good almost sure bound on the Lip-
schitz constant, but where we can control increments uniformly in the following
probabilistic sense. We say that a stochastic process {Xt}t∈T has sub-Gaussian
increments on (T , ρ) if there exists a deterministic constant 0 < K < +∞ such

sub-Gaussian

increments
that

Xt −Xs ∈ sG(K2ρ(s, t)2), ∀s, t ∈ T .

Even with this assumption, in (2.4.35) the first term on the right-hand side remains
a supremum over an infinite set. To control it, the chaining method repeats the

chaining method
argument above at progressively smaller scales, leading to the following inequality.
The diameter of T , denoted by diam(T ), is defined as

diam(T ) = sup{ρ(s, t) : s, t,∈ T }.

Theorem 2.4.31 (Discrete Dudley inequality). Let {Xt}t∈T be a zero-mean stoch-
astic process with sub-Gaussian increments on (T , ρ) and assume diam(T ) ≤ 1.
Then

E
[
sup
t∈T

Xt

]
≤ C

+∞∑
k=0

2−k
√

logN (T , ρ, 2−k).

for some constant 0 ≤ C < +∞.

Proof. Recall that we assume that T is countable. Let Tj ⊆ T , j ≥ 1, be a
sequence of finite sets such that Tj ↑ T . By monotone convergence (Proposi-
tion B.4.14),

E
[
sup
t∈T

Xt

]
= sup

j≥1
E

[
sup
t∈Tj

Xt

]
.

Moreover, N (Tj , ρ, ε) ≤ N (T , ρ, ε) for any ε > 0 since Tj ⊆ T . Hence it
suffices to handle the case |T | < +∞.
ε-nets at all scales. For each k ≥ 0, let Nk be an 2−k-net of T with |Nk| =
N (T , ρ, 2−k) and projection map πk. Because diam(T ) ≤ 1, we can set N0 =
{t0} where t0 ∈ T can be taken arbitrarily. Moreover, because T is finite, there
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is 1 ≤ κ < +∞ such that we can take Nk = T for all k ≥ κ§. In particular,
πκ(t) = t for all t ∈ T . By a telescoping argument,

Xt = Xt0 +
κ−1∑
k=0

(
Xπk+1(t) −Xπk(t)

)
.

Taking a supremum and then an expectation gives

E
[
sup
t∈T

Xt

]
≤

κ−1∑
k=0

E
[
sup
t∈T

(
Xπk+1(t) −Xπk(t)

)]
, (2.4.36)

where we used E[Xt0 ] = 0.
Sub-Gaussian bound. We use the maximal inequality (Theorem 2.4.21) to bound
the expectation in (2.4.36). For each k, the number of distinct elements in the
supremum is at most

|{(πk(t), πk+1(t)) : t ∈ T }| ≤ |Nk ×Nk+1|
= |Nk| × |Nk+1|
≤ N (T , ρ, 2−k−1)2.

For any t ∈ T , by the triangle inequality,

ρ(πk(t), πk+1(t)) ≤ ρ(πk(t), t) + ρ(t, πk+1(t)) ≤ 2−k + 2−k−1 ≤ 2−k+1,

so that
Xπk+1(t) −Xπk(t) ∈ sG(K22−2k+2),

for some 0 < K < +∞ by the sub-Gaussian increments assumption. We can
therefore apply Theorem 2.4.21 to get

E
[
sup
t∈T

(
Xπk+1(t) −Xπk(t)

)]
≤
√

2K22−2k+2 log(N (T , ρ, 2−k−1)2)

≤ C2−k−1
√

logN (T , ρ, 2−k−1),

for some constant 0 ≤ C < +∞ (depending on K).
To finish the argument, we plug back into (2.4.36),

E
[
sup
t∈T

Xt

]
≤

κ−1∑
k=0

C2−k−1
√

logN (T , ρ, 2−k−1),

which implies the claim.
§Technically, T could be part of a larger countable space by the discussion above.
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Using a similar argument, one can derive a tail inequality.

Theorem 2.4.32 (Chaining tail inequality). Let {Xt}t∈T be a zero-mean stoch-
astic process with sub-Gaussian increments on (T , ρ) and assume that diam(T ) ≤
1. Then, for all t0 ∈ T and β > 0,

P

[
sup
t∈T

(Xt −Xt0) ≥ C
+∞∑
k=0

2−k
√

logN (T , ρ, 2−k) + β

]
≤ C exp

(
−β

2

C

)
,

for some constant 0 ≤ C < +∞.

We give an application of the discrete Dudley inequality in Section 2.4.6.

2.4.5 . Data science: Johnson-Lindenstrauss lemma and application to
compressed sensing

In this section we discuss an application of the Chernoff-Cramér method (Sec-
tion 2.4.1) to dimension reduction in data science. We use once again an ε-net
argument (Section 2.4.4).

Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma states roughly that, for any collection of points
in a high-dimensional Euclidean space, one can find an embedding of much lower
dimension that roughly preserves the metric relationships of the points, that is,
their distances. Remarkably, no structure is assumed on the original points and the
result is independent of the input dimension. The method of proof simply involves
performing a random projection.

Lemma 2.4.33 (Johnson-Lindenstrauss lemma). For any set of points x(1), . . . ,x(m)

in Rn and θ ∈ (0, 1), there exists a mapping f : Rn → Rd with d = Θ(θ−2 logm)
such that the following holds: for all i, j

(1− θ)‖x(i) − x(j)‖2 ≤ ‖f(x(i))− f(x(j))‖2 ≤ (1 + θ)‖x(i) − x(j)‖2. (2.4.37)

We use the probabilistic method: we derive a “distributional” version of the
result that, in turn, implies Lemma 2.4.33 by showing that a mapping with the de-
sired properties exists with positive probability. Before stating this claim formally,
we define the explicit random linear mapping we will employ. Let A be a d × n
matrix whose entries are independent N(0, 1). Note that, for any fixed z ∈ Rn,

E ‖Az‖22 = E

 d∑
i=1

 n∑
j=1

Aijzj

2 = dVar

 n∑
j=1

A1jzj

 = d‖z‖22, (2.4.38)
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where we used the independence of the Aijs (and, in particular, of the rows of A)
and the fact that

E

 n∑
j=1

Aijzj

 = 0. (2.4.39)

Hence the normalized mapping

L =
1√
d
A,

preserves the squared Euclidean norm “on average,” that is, E ‖Lz‖22 = ‖z‖22. We
use the Chernoff-Cramér method to prove a high-probability result.

Lemma 2.4.34. Fix δ, θ ∈ (0, 1). Then the random linear mapping L above with
d = Θ(θ−2 log δ−1) is such that for any z ∈ Rn with ‖z‖2 = 1

P [|‖Lz‖2 − 1| ≥ θ] ≤ δ. (2.4.40)

Before proving Lemma 2.4.34, we argue that it implies the Johnson-Lindenstrauss
lemma (Lemma 2.4.33). Simply take δ = 1/(2

(
m
2

)
), apply the previous lemma to

each normalized pairwise difference z = (x(i) − x(j))/‖x(i) − x(j)‖2, and use
a union bound over all

(
m
2

)
such pairs. The probability that any of the inequali-

ties (2.4.37) is not satisfied by the linear mapping f(z) = Lz is then at most 1/2.
Hence a mapping with the desired properties exists for d = Θ(θ−2 logm).

Proof of Lemma 2.4.34. We prove one direction. Specifically, we establish

P [‖Lz‖2 ≥ 1 + θ] ≤ exp

(
−3

4
dθ2

)
. (2.4.41)

Note that the right-hand side is ≤ δ for d = Θ(θ−2 log δ−1). An inequality in the
other direction can be proved similarly by working with −W (where W is defined
below).

Recall that a sum of independent Gaussians is Gaussian (just compute the con-
volution and complete the squares). So

(Az)k ∼ N(0, ‖z‖22) = N(0, 1), ∀k,

where we argued as in (2.4.38) to compute the variance. Hence

W = ‖Az‖22 =

d∑
k=1

(Az)2
k,
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is a sum of squares of independent Gaussians, that is, χ2-distributed random vari-
ables. By (2.4.18) and independence,

MW (s) =
1

(1− 2s)d/2
.

Applying the Chernoff-Cramér bound (2.4.2) with s = 1
2(1− d/β) gives

P[W ≥ β] ≤ MW (s)

esβ
=

1

esβ(1− 2s)d/2
= e(d−β)/2

(
β

d

)d/2
.

(Alternatively, we could have used the general Bernstein inequality (Theorem 2.4.16).)
Finally, take β = d(1 + θ)2. Rearranging we get

P[‖Lz‖2 ≥ 1 + θ] = P[‖Az‖22 ≥ d(1 + θ)2]

= P[W ≥ β]

≤ ed[1−(1+θ)2]/2
[
(1 + θ)2

]d/2
= exp

(
−d(θ + θ2/2− log(1 + θ))

)
≤ exp

(
−3

4
dθ2

)
,

where we used that log(1 + x) ≤ x− x2/4 on [0, 1] (see Exercise 1.16).

Remark 2.4.35. The Johnson-Lindenstrauss lemma is essentially optimal [Alo03, Sec-
tion 9]: any set of n points with all pairwise distances in [1 − θ, 1 + θ] requires at least
Ω(log n/(θ2 log θ−1)) dimensions. Note however that it relies crucially on the use of the
Euclidean norm [BC03].

To give some further geometric insights into the proof, we make a series of
observations:

1. The d rows of 1√
n
A are “on average” orthonormal. Indeed, note that for

i 6= j

E

[
1

n

n∑
k=1

AikAjk

]
= E[Ai1]E[Aj1] = 0,

by independence and

E

[
1

n

n∑
k=1

A2
ik

]
= E[A2

i1] = 1,
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since the Aiks have mean 0 and variance 1. When n is large, those two
quantities are concentrated around their mean. Fix a unit vector z. Then

1√
n
Az corresponds approximately to an orthogonal projection of z onto a

uniformly chosen random subspace of dimension d.

2. Now observe that projecting z on a uniform random subspace of dimension
d can be done in the following way: first apply a uniformly chosen random
rotation to z; and then project the resulting vector on the first d dimensions.
In other words, 1√

n
‖Az‖2 is approximately distributed as the norm of the

first d components of a uniform unit vector in Rn. To analyze this quantity,
note that a vector in Rn whose components are independent N(0, 1), when
divided by its norm, produces a uniform vector in Rn. When d is large, the
norm of the first d components of that vector is therefore a ratio whose nu-
merator is concentrated around

√
d and whose denominator is concentrated

around
√
n (by calculations similar to those in the first point above).

3. Hence ‖Lz‖2 =
√

n
d ×

1√
n
‖Az‖2 should be concentrated around 1.

The Johnson-Lindenstrauss lemma makes it possible to solve certain compu-
tational problems (e.g., finding the nearest point to a query) more efficiently by
working in a smaller dimension. We discuss a different application of the “random
projection method” next.

Compressed sensing

In the compressed sensing problem, one seeks to recover a signal x ∈ Rn from a
small number of linear measurements (Lx)i, i = 1, . . . , d. In complete generality,
one needs n such measurements to recover any unknown x ∈ Rn as the sensing
matrix L must be invertible (or, more precisely, injective). However, by imposing

sensing matrix
extra structure on the signal and choosing the sensing matrix appropriately, much
better results can be obtained. Compressed sensing relies on sparsity.

Definition 2.4.36 (Sparse vectors). We say that a vector z ∈ Rn is k-sparse if it
k-sparse vector

has at most k non-zero entries. We let S n
k be the set of k-sparse vectors in Rn.

Note that S n
k is a union of

(
n
k

)
linear subspaces, one for each support of the

nonzero entries.
To solve the compressed sensing problem over k-sparse vectors, it suffices to

find a sensing matrix L satisfying that all subsets of 2k columns are linearly inde-
pendent. Indeed, if x,x′ ∈ S n

k , then x−x′ has at most 2k nonzero entries. Hence,
in order to have L(x− x′) = 0, it must be that x− x′ = 0 under the previous con-
dition on L. That implies the required injectivity. The implication goes in the other
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direction as well. Observe for instance that the matrix used in the proof of the
Johnson-Lindenstrauss lemma satisfies this property as long as d ≥ 2k: because
of the continuous density of its entries, the probability that 2k of its columns are
linearly dependent is 0 when d ≥ 2k. For practical applications, however, other
requirements must be met, in particular, computational efficiency and robustness.
We describe such an approach.

The following definition will play a key role. Roughly speaking, a restricted
isometry preserves enough of the metric structure of S n

k to be invertible on its
image.

Definition 2.4.37 (Restricted isometry property). A d× n linear mapping L satis-
fies the (k, θ)-restricted isometry property (RIP) if for all z ∈ S n

k restricted

isometry

property
(1− θ)‖z‖2 ≤ ‖Lz‖2 ≤ (1 + θ)‖z‖2. (2.4.42)

We say that L is (k, θ)-RIP.

Given a (k, θ)-RIP matrix L, can we recover z ∈ S n
k from Lz? And how small

can d be? The next two claims answer these questions.

Lemma 2.4.38 (Sensing matrix). Let A be a d × n matrix whose entries are
i.i.d. N(0, 1) and let L = 1√

d
A. There is a constant 0 < C < +∞ such that

if d ≥ Ck log n then L is (10k, 1/3)-RIP with probability at least 1− 1/n.

Lemma 2.4.39 (Sparse signal recovery). Let L be (10k, 1/3)-RIP. Then for any
x ∈ S n

k , the unique solution to the following minimization problem

min
z∈Rn

‖z‖1 subject to Lz = Lx, (2.4.43)

is z∗ = x.

It may seem that a more natural approach, compared to (2.4.43), would be to in-
stead minimize the number of non-zero entries in z, that is, ‖z‖0. However the
advantage of the `1 norm is that the problem can then be formulated as a linear
program, that is, the minimization of a linear objective subject to linear inequal-
ities (see Exercise 2.13). This permits much faster computation of the solution
using standard techniques—while still leading to a sparse solution. See Figure 2.8
for some insights into to why `1 indeed promotes sparsity.

Putting the two lemmas together shows that:

Claim 2.4.40. LetL be as above with d = Θ(k log n) as required by Lemma 2.4.38.
With probability 1−o(1), any x ∈ S n

k can be recovered from the input Lx by solv-
ing (2.4.43).

Note that d can in general be much smaller than n and not far from the 2k bound
we derived above.
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Figure 2.8: Because `1 balls (squares) have corners, minimizing the `1 norm over
a linear subspace (line) tends to produce sparse solutions.
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ε-net argument We start with the proof of Lemma 2.4.38. The claim does
not follow immediately from the (distributional) Johnson-Lindenstrauss lemma
(i.e., Lemma 2.4.34). Indeed that lemma implies that a (normalized) matrix with
i.i.d. standard Gaussian entries is an approximate isometry on a finite set of points.
Here we need a linear mapping that is an approximate isometry for all vectors in
S n
k , an uncountable space.

For a subset of indices J ⊆ [n] and a vector y ∈ Rn, we let yJ be the vector y
restricted to the entries in J , that is, the subvector (yj)j∈J . Fix a subset of indices
I ⊆ [n] of size 10k. We need the RIP condition (Definition 2.4.37) to hold for all
z ∈ Rn with non-zero entries in I (and all such I). The way to achieve this is to
use an ε-net argument, as described in Section 2.4.4. Indeed, notice that, for z 6= 0,
the function ‖Lz‖2/‖z‖2:

1. does not depend on the norm of z, so that we can restrict ourselves to the
compact set ∂BI := {z : z[n]\I = 0, ‖z‖2 = 1}; and

2. is continuous on ∂BI , so that it suffices to construct a fine enough covering
of ∂BI by a finite collection of balls (i.e., an ε-net) and apply Lemma 2.4.34
to the centers of those balls.

Proof of Lemma 2.4.38. Let I ⊆ [n] be a subset of indices of size k′ := 10k.
There are

(
n
k′

)
≤ nk

′
= exp(k′ log n) such subsets and we denote their collection

by I(k′, n). We let NI be an ε-net of ∂BI . By Claim 2.4.26, we can choose one in
∂BI of size at most (3/ε)k

′
. We take

ε =
1

C ′
√

6n log n
,

for a constant C ′ that will be determined below. The reason for this choice will
become clear when we set C ′. The union of all ε-nets has size∣∣∪I∈I(k′,n)NI

∣∣ ≤ nk′ (3

ε

)k′
≤ exp(C ′′k′ log n),

for some C ′′ > 0. Our goal is to show that

sup
z∈∪I∈I(k′,n)∂BI

|‖Lz‖2 − 1| ≤ 1

3
. (2.4.44)

We seek to apply the inequality (2.4.32).

Applying the “distributional” Johnson-Lindenstrauss lemma to the ε-nets: The
first step is to control the supremum in (2.4.44)—restricted to the ε-nets. Lemma 2.4.34
is exactly what we need for this. Take θ = 1/6, δ = 1/(2n| ∪I NI |), and

d = Θ
(
θ−2 log(2n| ∪I NI |)

)
= Θ(k′ log n),
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as required by the lemma. Then, by a union bound over the NIs, with probability
1− 1/(2n) we have

sup
z∈∪INI

|‖Lz‖2 − 1| ≤ 1

6
. (2.4.45)

Lipschitz continuity: The next step is to establish Lipschitz continuity of |‖Lz‖2−
1|. For vectors y, z ∈ Rn, by repeated applications of the triangle inequality, we
have

||‖Lz‖2 − 1| − |‖Ly‖2 − 1|| ≤ |‖Lz‖2 − ‖Ly‖2| ≤ ‖L(z− y)‖2.

To bound the rightmost expression, we let A∗ be the largest entry of A in absolute
value and note that

‖L(z− y)‖22 =

d∑
i=1

 n∑
j=1

Lij(zj − yj)

2

≤
d∑
i=1

 n∑
j=1

L2
ij

 n∑
j=1

(zj − yj)2


≤ dn

(
1√
d
A∗

)2

‖z− y‖22

≤ nA2
∗‖z− y‖22,

where we used Cauchy-Schwarz (Theorem B.4.8) on the second line. Taking a
square root, we see that the (random) Lipschitz constant of |‖Lz‖2 − 1| (with
respect to the Euclidean metric) is at most K :=

√
nA∗.

Controlling the Lipschitz constant: So it remains to control A∗. For this we use
the Chernoff-Cramér bound for Gaussians (see (2.4.4)) which implies by a union
bound over the entries of A that

P[A∗ ≥ C ′
√

log n] ≤ P
[
∃i, j, |Aij | ≥ C ′

√
log n

]
≤ n2 exp

(
−(C ′

√
log n)2

2

)
≤ 1

2n
,

for a C ′ > 0 large enough. Hence with probability 1 − 1/(2n), we have A∗ <
C ′
√

log n and

Kε ≤ 1

6
, (2.4.46)
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by the choice of ε made previously.

Putting everything together: We apply (2.4.32). Combining (2.4.45) and (2.4.46),
with probability 1− 1/n, the claim (2.4.44) holds. That concludes the proof.

`1 minimization Finally we prove Lemma 2.4.39 (which can be skipped).

Proof of Lemma 2.4.39. Let z∗ be a solution to (2.4.43) and note that such a solu-
tion exists because z = x satisfies the constraint. Without loss of generality assume
that only the first k entries of x are nonzero, that is, x[n]\[k] = 0. Moreover order
the remaining entries of x so that the residual r = z∗ − x has its entries r[n]\[k] in
nonincreasing order in absolute value. Our goal is to show that ‖r‖2 = 0.

In order to leverage the RIP condition, we break up the vector r into 9k-long
subvectors. Let

I0 = [k], Ii = {(9(i− 1) + 1)k + 1, . . . , (9i+ 1)k}, ∀i ≥ 1,

and Īi =
⋃
j>i Ij . We will also need I01 = I0 ∪ I1 and Ī01 = Ī1.

We first use the optimality of z∗. Note that xĪ0 = 0 implies that

‖z∗‖1 = ‖z∗I0‖1 + ‖z∗Ī0‖1 = ‖z∗I0‖1 + ‖rĪ0‖1,

and
‖x‖1 = ‖xI0‖1 ≤ ‖z∗I0‖1 + ‖rI0‖1,

by the triangle inequality. Since ‖z∗‖1 ≤ ‖x‖1 by optimality (and the fact that x
satisfies the constraint), we then have

‖rĪ0‖1 ≤ ‖rI0‖1. (2.4.47)

On the other hand, the RIP condition gives a similar inequality in the other
direction. Indeed notice thatLr = 0 by the constraint in (2.4.43) or, put differently,
LrI01 = −

∑
i≥2 LrIi . Then, by the RIP condition and the triangle inequality, we

have that

2

3
‖rI01‖2 ≤ ‖LrI01‖2 ≤

∑
i≥2

‖LrIi‖2 ≤
4

3

∑
i≥2

‖rIi‖2, (2.4.48)

where we used the fact that by construction rI01 is 10k-sparse and each rIi is 9k-
sparse.

We note that by the ordering of the entries of x

‖rIi+1‖22 ≤ 9k

(
‖rIi‖1

9k

)2

=
‖rIi‖21

9k
, (2.4.49)
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where we bounded rIi+1 entrywise by the expression in parenthesis. Combin-
ing (2.4.47) and (2.4.49), and using that ‖rI0‖1 ≤

√
k‖rI0‖2 by Cauchy-Schwarz,

we have∑
i≥2

‖rIi‖2 ≤
∑
j≥1

‖rIj‖1√
9k

=
‖rĪ0‖1
3
√
k
≤ ‖rI0‖1

3
√
k
≤ ‖rI0‖2

3
≤ ‖rI01‖2

3
.

Plugging this back into (2.4.48) gives

‖rI01‖2 ≤ 2
∑
i≥2

‖rIi‖2 ≤
2

3
‖rI01‖2,

which implies rI01 = 0. In particular rI0 = 0 and, by (2.4.47), rĪ0 = 0 as well.
We have shown that r = 0. Or, in other words, z∗ = x.

Remark 2.4.41. Lemma 2.4.39 can be extended to noisy measurements using a modifica-
tion of (2.4.43). This provides some robustness to noise which is important in applications.
See [CRT06b].

2.4.6 . Data science: classification, empirical risk minimization and VC
dimension

In the binary classification problem, one is given samples Sn = {(Xi, C(Xi))}ni=1 binary

classification
where Xi ∈ Rd is a feature vector and C(Xi) ∈ {0, 1} is a label. The feature vec-
tors are assumed to be independent samples from an unknown probability measure
µ and C : Rd → {0, 1} is a measurable Boolean function. For instance, the feature
vector might be an image (encoded as a vector) and the label might indicate “cat”
(label 0) or “dog” (label 1). Our goal is learn the function (or concept) C from the
samples.

More precisely, we seek to construct a hypothesis h : Rd → {0, 1} that is
hypothesis

a good approximation to C in the sense that it predicts the label well on a new
sample (from the same distribution). Formally, we want h to have small true risk
(or generalization error),

true risk

R(h) = P[h(X) 6= C(X)]

where X ∼ µ. Because we only have access to the distribution µ through the
samples, it is natural to estimate the true risk of the hypothesis h using the samples
as

Rn(h) =
1

n

n∑
i=1

1{h(Xi) 6= C(Xi)},
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which is called the empirical risk. Indeed observe that ERn(h) = R(h) and, by
empirical risk

the law of large numbers, Rn(h) → R(h) almost surely as n → +∞. Ignor-
ing computational considerations, one can then formally define an empirical risk
minimizer

empirical risk

minimizerh∗ ∈ ERMH(Sn) = {h ∈ H : Rn(h) ≤ Rn(h′), ∀h′ ∈ H},

where H, the hypothesis class, is a given collection of Boolean functions over Rd.
hypothesis

class
(We assume that h∗ can be defined as a measurable function of the samples.)

Overfitting Why restrict the hypothesis class? It turns out that minimizing the
empirical risk over all Boolean functions makes it impossible to achieve an ar-
bitrarily small risk. Intuitively considering too rich a class of functions, that is,
functions that too intricately follow the data, leads to overfitting: the learned hy-
pothesis will fit the sampled data, but it may not generalize well to unseen exam-
ples. A learner A is a map from samples to measurable Boolean functions over

learner
Rd, that is, for any n and any Sn ∈ (Rd × {0, 1})n, the learner outputs a func-
tion A( · ,Sn) : Rd → {0, 1}. The following theorem shows that any learner has
fundamental limitations if all concepts are possible.

Theorem 2.4.42 (No Free Lunch). For any learner A and any finite X ⊆ Rd of
even size |X | =: 2m > 4, there exist a concept C : X → {0, 1} and a distribution
µ over X such that

P[R(A( · ,Sm)) ≥ 1/8] ≥ 1/8, (2.4.50)

where Sm = {(Xi, C(Xi))}mi=1 with independent Xi ∼ µ.

The gist of the proof is intuitive. In essence, if the target concept is arbitrary and we
only get to see half of the possible instances, then we have learned nothing about
the other half and cannot expect low generalization error.

Proof of Theorem 2.4.42. We let µ be uniform over X . To prove the existence
of a concept satisfying (2.4.50), we use the probabilistic method (Section 2.2.1)
and pick C at random. For each x ∈ X , we set C(x) := Yx where the Yxs are
i.i.d. uniform in {0, 1}.

We first bound E[R(A( · ,Sm))], where the expectation runs over both random
labels {Yx}x∈X and the samples Sm = {(Xi, C(Xi))}mi=1. For an additional inde-
pendent sample X ∼ µ, we will need the event that the learner, given samples Sm,
makes an incorrect prediction on X

B = {A(X,Sm)) 6= YX},
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and the event that X is observed in the samples Sm

O = {X ∈ {X1, . . . , Xm}}.

By the tower property (Lemma B.6.16),

E[R(A( · ,Sm))] = P[B]

= E[P[B | Sm]]

= E [P[B |O,Sm]P[O | Sm] + P[B |Oc,Sm]P[Oc | Sm]]

≥ E [P[B |Oc,Sm]P[Oc | Sm]]

≥ 1

2
× 1

2
,

where we used that:

• P[Oc | Sm] ≥ 1/2 because |X | = 2m and µ is uniform, and;

• P[B |Oc,Sm] = 1/2 because for any x /∈ {X1, . . . , Xm} the prediction
A(x,Sm) ∈ {0, 1} is independent of Yx and the latter is uniform.

Conditioning over the concept, we have proved that

E [E[R(A( · ,Sm)) | {Yx}x∈X ]] ≥ 1

4
.

Hence, by the first moment principle (Theorem 2.2.1),

P[E[R(A( · ,Sm)) | {Yx}x∈X ] ≥ 1/4] > 0,

where the probability is taken over {Yx}x∈X . That is, there exists a choice {yx}x∈X ∈
{0, 1}X such that

E[R(A( · ,Sm)) | {Yx = yx}x∈X ] ≥ 1/4. (2.4.51)

Finally, to prove (2.4.50), we use a variation on Markov’s inequality (Theo-
rem 2.1.1) for [0, 1]-valued random variables. If Z ∈ [0, 1] is a random variable
with E[Z] = µ and α ∈ [0, 1], then

E[Z] ≤ α× P[Z < α] + 1× P[Z ≥ α] ≤ P[Z ≥ α] + α.

Taking α = µ/2 gives
P[Z ≥ µ/2] ≥ µ/2.

Going back to (2.4.51), we obtain

P
[
R(A( · ,Sm)) ≥ 1

8

∣∣∣∣ {Yx = yx}x∈X
]
≥ 1

8
,

establishing the claim.
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The way out is to “limit the complexity” of the hypotheses. For instance, we
could restrict ourselves to half-spaces

HH =
{
h(x) = 1{xTu ≥ α} : u ∈ Rd, α ∈ R

}
,

or axis-aligned boxes

HB = {h(x) = 1{xi ∈ [αi, βi], ∀i} : −∞ ≤ αi ≤ βi ≤ ∞, ∀i} .

In order for the empirical risk minimizer h∗ to have a generalization error close
to the best achievable error, we need the empirical risk of the learned hypothesis
Rn(h∗) to be close to its expectation R(h∗), which is guaranteed by the law of
large numbers for sufficiently large n. But that is not enough, we also need that
same property to hold for all hypotheses inH simultaneously. Otherwise we could
be fooled by a poorly performing hypothesis with unusually good empirical risk on
the samples. The hypothesis class is typically infinite and, therefore, controlling
empirical risk deviations from their expectations uniformly over H is not straight-
forward.

Uniform deviations Our goal in this section is to show how to bound

E
[

sup
h∈H
{Rn(h)−R(h)}

]
= E

[
sup
h∈H

{
1

n

n∑
i=1

`(h,Xi)− E[`(h,X)]

}]
(2.4.52)

in terms of a measure of complexity of the class H, where we defined the loss
`(h, x) = 1{h(x) 6= C(x)} to simplify the notation. We assume that H is count-
able. (Observe for instance that, for HH and HB, nothing is lost by assuming that
the parameters defining the hypotheses are rational-valued.)

Controlling deviations uniformly over H as in (2.4.52) allows one to provide
guarantees on the empirical risk minimizer. Indeed, for any h′ ∈ H,

R(h∗) = Rn(h∗) + {R(h∗)−Rn(h∗)}
≤ Rn(h∗) + sup

h∈H
{R(h)−Rn(h)}

≤ Rn(h′) + sup
h∈H
{R(h)−Rn(h)}

= R(h′) +
{
Rn(h′)−R(h′)

}
+ sup
h∈H
{R(h)−Rn(h)}

≤ R(h′) + sup
h∈H
{Rn(h)−R(h)}+ sup

h∈H
{R(h)−Rn(h)} ,
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where, on the third line, we used the definition of the empirical risk minimizer.
Taking an infimum over h′, then an expectation over the samples, and rearranging
gives

E[R(h∗)]− inf
h′∈H

R(h′)

≤ E
[

sup
h∈H
{Rn(h)−R(h)}

]
+ E

[
sup
h∈H
{R(h)−Rn(h)}

]
. (2.4.53)

This inequality allows us to relate two quantities of interest: the expected true risk
of the empirical risk minimizer (i.e., E[R(h∗)], where recall that h∗ is defined over
the samples) and the best possible true risk (i.e., infh′∈HR(h′)). The first term
on the right-hand side is (2.4.52) and the second one can be bounded in a similar
fashion as we argue below. Observe that the suprema are inside the expectations
and that the random variables Rn(h) − R(h) are highly correlated. Indeed, two
similar hypotheses will produce similar predictions. The correlation is ultimately
what allows us to tackle infinite classesH – as we saw in Section 2.4.4.

Indeed, to bound (2.4.52), we use the methods of Section 2.4.4. As a first
step, we apply the symmetrization trick, which we introduced in Section 2.4.2 to
give a proof of Hoeffding’s lemma (Lemma 2.4.12). Let (εi)

n
i=1 be i.i.d. uniform

random variables in {−1,+1} (i.e., Rademacher variables) and let (X ′i)
n
i=1 be an

independent copy of (Xi)
n
i=1. Then

E
[

sup
h∈H
{Rn(h)−R(h)}

]
= E

[
sup
h∈H

{
1

n

n∑
i=1

`(h,Xi)− E[`(h,X)]

}]

= E

[
sup
h∈H

{
1

n

n∑
i=1

[`(h,Xi)− E[`(h,X ′i) | (Xj)
n
j=1]]

}]

= E

[
sup
h∈H

E

[
1

n

n∑
i=1

[`(h,Xi)− `(h,X ′i)]

∣∣∣∣∣ (Xj)
n
j=1

]]

≤ E

[
sup
h∈H

{
1

n

n∑
i=1

[`(h,Xi)− `(h,X ′i)]

}]
,

where on the fourth line we used “taking it out what is known” (Lemma B.6.13)
and on the fifth line we used suph EYh ≤ E[suph Yh] and the tower property. Next
we note that `(h,Xi)− `(h,X ′i) is symmetric and independent of εi (which is also
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symmetric) to deduce that the last line above is

= E

[
sup
h∈H

{
1

n

n∑
i=1

εi[`(h,Xi)− `(h,X ′i)]

}]

≤ E

[
sup
h∈H

1

n

n∑
i=1

εi`(h,Xi) + sup
h∈H

1

n

n∑
i=1

(−εi)`(h,X ′i)

]

= 2E

[
sup
h∈H

1

n

n∑
i=1

εi`(h,Xi)

]
.

The exact same argument also applies to the second term on the right-hand side
of (2.4.53), so

E[R(h∗)]− inf
h′∈H

R(h′) ≤ 4E

[
sup
h∈H

1

n

n∑
i=1

εi`(h,Xi)

]
. (2.4.54)

Changing the normalization, we define the process

Zn(h) =
1√
n

n∑
i=1

εi`(h,Xi), h ∈ H. (2.4.55)

Our task reduces to upper bounding

E
[

sup
h∈H

Zn(h)

]
. (2.4.56)

Note that we will not compute the best possible true risk (which in general could
be “bad,” i.e., large)—only how close the empirical risk minimizer gets to it.

VC dimension We make two observations about Zn(h).

1. It is centered. Also, as a weighted sum of independent random variables in
[−1, 1], it is sub-Gaussian with variance factor 1 by the general Hoeffding
inequality (Theorem 2.4.9) and Hoeffding’s lemma (Lemma 2.4.12).

2. It depends only on the values of the hypothesis h at a finite number of points,
X1, . . . , Xn. Hence, while the supremum in (2.4.56) is over a potentially
infinite class of functions H, it is in effect a supremum over at most 2n

functions, that is, all the possible restrictions of the hs to (Xi)
n
i=1.
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A naive application of the maximal inequality in Lemma 2.4.21, together with the
two observations above, gives

E
[

sup
h∈H

Zn(h)

]
≤
√

2 log 2n =
√

2n log 2.

Unfortunately, plugging this back into (2.4.54) gives an upper bound which fails to
converge to 0 as n→ +∞.

To obtain a better bound, we show that in general the number of distinct re-
strictions ofH to n points can grow much slower than 2n.

Definition 2.4.43 (Shattering). Let Λ = {`1, . . . , `n} ⊆ Rd be a finite set and let
H be a class of Boolean functions on Rd. The restriction ofH to Λ is

HΛ = {(h(`1), . . . , h(`n)) : h ∈ H}.

We say that Λ is shattered byH if |HΛ| = 2|Λ|, that is, if all Boolean functions over
shattering

Λ can be obtained by restricting a function inH to the points in Λ.

Definition 2.4.44 (VC dimension). Let H be a class of Boolean functions on Rd.
The VC dimension ofH, denoted vc(H), is the maximum cardinality of a set shat-

VC

dimension
tered byH.

We prove the following combinatorial lemma at the end of this section.

Lemma 2.4.45 (Sauer’s lemma). LetH be a class of Boolean functions on Rd. For
any finite set Λ = {`1, . . . , `n} ⊆ Rd,

|HΛ| ≤
(

en

vc(H)

)vc(H)

.

That is, the number of distinct restrictions of H to any n points grows at most as
∝ nvc(H).

Returning to E[suph∈H Zn(h)], we get the following inequality.

Lemma 2.4.46. There exists a constant 0 < C < +∞ such that, for any countable
class of measurable Boolean functionsH over Rd,

E
[

sup
h∈H

Zn(h)

]
≤ C

√
vc(H) log n. (2.4.57)

Proof. Recall that Zn(h) ∈ sG(1). Since the supremum over H, when seen as

restricted to {X1, . . . , Xn}, is in fact a supremum over at most
(

en
vc(H)

)vc(H)
func-

tions by Sauer’s lemma (Lemma 2.4.45), we have by Lemma 2.4.21

E
[

sup
h∈H

Zn(h)

]
≤

√√√√2 log

[(
en

vc(H)

)vc(H)
]
.
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That proves the claim.

Returning to (2.4.54), the previous lemma finally implies

E[R(h∗)]− inf
h′∈H

R(h′) ≤ 4C

√
vc(H) log n

n
.

For hypothesis classes with finite VC dimension, the bound goes to 0 as n→ +∞.
We give some examples.

Example 2.4.47 (VC dimension of half-spaces). Consider the class of half-spaces.

Claim 2.4.48.
vc(HH) = d+ 1.

We only prove the case d = 1, whereHH reduces to half-lines (−∞, γ] or [γ,+∞).
Clearly any set Λ = {`1, `2} ⊆ R with elements is shattered by HH. On the other
hand, for any Λ = {`1, `2, `3} with `1 < `2 < `3, any half-line containing `1 and
`3 necessarily includes `2 as well. Hence no set of size 3 is shattered byHH. J

Example 2.4.49 (VC dimension of boxes). Consider the class of axis-aligned
boxes.

Claim 2.4.50.
vc(HB) = 2d.

We only prove the case d = 2, where HB reduces to rectangles. The four-point
set Λ = {(−1, 0), (1, 0), (0,−1), (0, 1)} is shattered by HB. Indeed, the rectangle
[−1, 1] × [−1, 1] contains Λ, with each side of the rectangle containing one of
the points. Moving any side inward by ε < 1 removes the corresponding point
from the rectangle without affecting the other ones. Hence, any subset of Λ can be
obtained by this procedure.

On the other hand, let Λ = {`1, . . . , `5} ⊆ R2 be any set of five distinct points.
If the points all lie on the same axis-aligned line, then an argument similar to the
half-line case in Claim 2.4.48 shows that Λ is not shattered. Otherwise consider
the axis-aligned rectangle with smallest area containing Λ. For each side of the
rectangle, choose one point of Λ that lies on it. These necessarily exist (otherwise
the rectangle could be made even smaller) and denote them by xN for the highest,
xE for the rightmost, xS for the lowest, and xW for the leftmost. Note that they
may not be distinct, but in any case at least one point in Λ, say `5 without loss of
generality, is not in the list. Now observe that any axis-aligned rectangle containing
xN, xE, xS, xW must also contain `5 since its coordinates are sandwiched between
the bounds defined by those points. Hence no set of size 5 is shattered. That proves
the claim. J
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These two examples also provide insights into Sauer’s lemma. Consider the
case of rectangles for instance. Over a collection of n sample points, a rectangle
defines the same {0, 1}-labeling as the minimal-area rectangle containing the same
points. Because each side of a minimal-area rectangle must touch at least one point
in the sample, there are at most n4 such rectangles, and hence there are at most
n4 � 2n restrictions ofHB to these sample points.

Application of chaining It turns out that the
√

log n factor in (2.4.57) is not
optimal. We use chaining (Section 2.4.4) to improve the bound.

We claim that the process {Zn(h)}h∈H has sub-Gaussian increments under an
appropriately defined pseudometric. Indeed, conditioning on (Xi)

n
i=1, by the gen-

eral Hoeffding inequality (Theorem 2.4.9) and Hoeffding’s lemma (Lemma 2.4.12),
we have that the increment (as a function of the εis which have variance factor 1)

Zn(g)− Zn(h) =

n∑
i=1

εi
`(g,Xi)− `(h,Xi)√

n
,

is sub-Gaussian with variance factor
n∑
i=1

(
`(g,Xi)− `(h,Xi)√

n

)2

× 1 =
1

n

n∑
i=1

[`(g,Xi)− `(h,Xi)]
2.

Define the pseudometric

ρn(g, h) =

[
1

n

n∑
i=1

[`(g,Xi)− `(h,Xi)]
2

]1/2

=

[
1

n

n∑
i=1

[g(Xi)− h(Xi)]
2

]1/2

,

where we used that `(h, x) = 1{h(x) 6= C(x)} by definition. It satisfies the
triangle inequality since it can be expressed as a Euclidean norm. In fact, it will be
useful to recast it in a more general setting. For a probability measure η over Rd,
define

‖g − h‖2L2(η) =

∫
Rd

(f(x)− g(x))2dη(x).

Let µn be the empirical measure
empirical

measure
µn = µ(Xi)ni=1

:=
1

n

n∑
i=1

δXi , (2.4.58)

where δx is the probability measure that puts mass 1 on x. Then, we can re-write

ρn(g, h) = ‖g − h‖L2(µn).
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Hence we have shown that, conditioned on the samples, the process {Zn(h)}h∈H
has sub-Gaussian increments with respect to ‖ · ‖L2(µn). Note that the pseudo-
metric here is random as it depends on the samples. Though, by the law of large
numbers, ‖g − h‖L2(µn) approaches its expectation, ‖g − h‖L2(µ), as n→ +∞.

Applying the discrete Dudley inequality (Theorem 2.4.31), we obtain the fol-
lowing bound.

Lemma 2.4.51. There exists a constant 0 < C < +∞ such that, for any countable
class of measurable Boolean functionsH over Rd,

E
[

sup
h∈H

Zn(h)

]
≤ C E

[
+∞∑
k=0

2−k
√

logN (H, ‖ · ‖L2(µn), 2
−k)

]
,

where µn is the empirical measure over the samples (Xi)
n
i=1.

Proof. Because H comprises only Boolean functions, it follows that under the
pseudometric ‖ · ‖L2(µn) the diameter is bounded by 1. We apply the discrete
Dudley inequality conditioned on (Xi)

n
i=1. Then we take an expectation over the

samples.

Our use of the symmetrization trick is more intuitive than it may have appeared at
first. The central limit theorem indicates that the fluctuations of centered averages
such as

(Rn(g)−R(g))− (Rn(h)−R(h))

tend cancel out and that, in the limit, the variance alone characterizes the over-
all behavior. The εis in some sense explicitly capture the canceling part of this
phenomenon while ρn captures the scale of the resulting global fluctuations in the
increments.

Our final task is to bound the covering numbers N (H, ‖ · ‖L2(µn), 2
−k).

Theorem 2.4.52 (Covering numbers via VC dimension). There exists a constant
0 < C < +∞ such that, for any class of measurable Boolean functions H over
Rd, any probability measure η over Rd and any ε ∈ (0, 1),

N (H, ‖ · ‖L2(η), ε) ≤
(

2

ε

)C vc(H)

.

Before proving Theorem 2.4.52, we derive its implications for uniform deviations.
Compare the following bound to Lemma 2.4.46.
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Lemma 2.4.53. There exists a constant 0 < C < +∞ such that, for any countable
class of measurable Boolean functionsH over Rd,

E
[

sup
h∈H

Zn(h)

]
≤ C

√
vc(H).

Proof. By Lemma 2.4.51 and Theorem 2.4.52,

E
[

sup
h∈H

Zn(h)

]
≤ C E

[
+∞∑
k=0

2−k
√

logN (H, ‖ · ‖L2(µn), 2
−k)

]

≤ C E

+∞∑
k=0

2−k

√
log

(
2

2−k

)C′ vc(H)


= C
√

vc(H)E

[
+∞∑
k=0

2−k
√
k + 1

√
C ′ log 2

]
≤ C ′′

√
vc(H),

for some 0 < C ′′ < +∞.

It remains to prove Theorem 2.4.52.

Proof of Theorem 2.4.52. Let G = {g1, . . . , gN} ⊆ H be a maximal ε-packing of
H withN ≥ N (H, ‖ · ‖L2(η), ε), which exists by Lemma 2.4.24. We use the prob-
abilistic method (Section 2.2) and Hoeffding’s inequality for bounded variables
(Theorem 2.4.10) to show that there exists a small number of points {x1, . . . , xm}
such that G is still a good packing when H is restricted to the xis. Then we use
Sauer’s lemma (Lemma 2.4.45) to conclude.

1. Restriction. By construction, the collection G satisfies

‖gi − gj‖L2(η) > ε, ∀i 6= j.

For an integer m that we will choose as small as possible below, let X =
{X1, . . . , Xm} be i.i.d. samples from η and let µX be the corresponding
empirical measure (as defined in (2.4.58)). Observe that, for any i 6= j,

E
[
‖gi − gj‖2L2(µX)

]
= E

[
1

m

m∑
k=1

[gi(Xk)− gj(Xk)]
2

]
= ‖gi − gj‖2L2(η).
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Moreover [gi(Xk) − gj(Xk)]
2 ∈ [0, 1]. Hence, by Hoeffding’s inequality

there exists a constant 0 < C < +∞ and an m ≤ Cε−4 logN such that

P
[
‖gi − gj‖2L2(η) − ‖gi − gj‖

2
L2(µX) ≥

3ε2

4

]
= P

[
m‖gi − gj‖2L2(η) −

m∑
k=1

[gi(Xk)− gj(Xk)]
2 ≥ m3ε2

4

]

≤ exp

(
−2(m · 3ε2/4)2

m

)
= exp

(
−9

8
mε4

)
<

1

N2
.

That implies that, for this choice of m,

P
[
‖gi − gj‖L2(µX) >

ε

2
, ∀i 6= j

]
> 0,

where the probability is over the samples and we used the assumption on the
collection G. Therefore, there must be a set X = {x1, . . . , xm} ⊆ Rd such
that

‖gi − gj‖L2(µX ) >
ε

2
, ∀i 6= j. (2.4.59)

2. VC bound. In particular, by (2.4.59), the functions in G restricted to X are
distinct. By Sauer’s lemma (Lemma 2.4.45),

N = |GX | ≤ |HX | ≤
(

em

vc(H)

)vc(H)

≤
(
eCε−4 logN

vc(H)

)vc(H)

. (2.4.60)

Using that 1
2D logN = logN1/2D ≤ N1/2D where D = vc(H), we get(
eCε−4 logN

vc(H)

)vc(H)

≤
(
C ′ε−4

)vc(H)
N1/2, (2.4.61)

where C ′ = 2eC. Plugging (2.4.61) back into (2.4.60) and rearranging gives

N ≤
(
C ′ε−4

)2 vc(H)
.

That concludes the proof.
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Proof of Sauer’s lemma Recall from Appendix A (see also Exercise 1.4) that
for integers 0 < d ≤ n,

d∑
k=0

(
n

k

)
≤
(en
d

)d
. (2.4.62)

Sauer’s lemma (Lemma 2.4.45) follows from the following claim.
Pajor’s lemmaLemma 2.4.54 (Pajor). Let H be a class of Boolean functions on Rd and let Λ =

{`1, . . . , `n} ⊆ Rd be any finite subset. Then

|HΛ| ≤ |{S ⊆ Λ : S is shattered byH}| ,

where the right-hand side includes the empty set.

Going back to Sauer’s lemma, by Lemma 2.4.54 we have the upper bound

|HΛ| ≤ |{S ⊆ Λ : S is shattered byH}| .

By definition of the VC-dimension (Definition 2.4.44), the subsets S ⊆ Λ that
are shattered by H have size at most vc(H). So the right-hand side is bounded
above by the total number of subsets of size at most d = vc(H) of a set of size n.
By (2.4.62), this gives

|HΛ| ≤
(

en

vc(H)

)vc(H)

,

which establishes Sauer’s lemma.
So it remain to prove Lemma 2.4.54.

Proof of Lemma 2.4.54. We prove the claim by induction on the size n of Λ. The
result is trivial for n = 1. Assume the result is true for any H and any subset of
size n− 1. To apply induction, for ι = 0, 1 we let

Hι = {h ∈ H : h(`n) = ι},

and we set
Λ′ = {`1, . . . , `n−1}.

It will be convenient to introduce the following notation

S(Λ;H) = |{S ⊆ Λ : S is shattered byH}| .

Because |HΛ| = |H0
Λ′ |+ |H1

Λ′ | and the induction hypothesis implies S(Λ′;Hι) ≥
|HιΛ′ | for ι = 0, 1, it suffices to show that

S(Λ;H) ≥ S(Λ′;H0) + S(Λ′;H1). (2.4.63)

There are two types of sets that contribute to the right-hand side.
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- One but not both. Let S ⊆ Λ′ be a set that contributes to one of S(Λ′;H0)
or S(Λ′;H1) but not both. Then S is a subset of the larger set Λ and it is
certainly shattered by the larger collection H. Hence it also contributes to
the left-hand side of (2.4.63).

- Both. Let S ⊆ Λ′ be a set that contributes to both S(Λ′;H0) and S(Λ′;H1).
Hence it contributes two to the right-hand side of (2.4.63). As in the previous
point, it is also included in S(Λ;H), but it only contributes one to the left-
hand side of (2.4.63). It turns out that there is another set that contributes
one to the left-hand side but zero to the right-hand side: the subset S ∪{`n}.
Indeed, by definition of Hι, the subset S ∪ {`n} cannot be shattered by it
since all functions in it take the same value on `n. On the other hand, any
Boolean function h on S ∪ {`n} with h(`n) = ι is realized in Hι since S
itself is shattered byHι.

That concludes the proof.
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Exercises

Exercise 2.1 (Moments of nonnegative random variables). Prove (B.5.1). [Hint:
Use Fubini’s Theorem to compute the integral.]

Exercise 2.2 (Bonferroni inequalities). LetA1, . . . , An be events andBn := ∪iAi.
Define

S(r) :=
∑

1≤i1<···<ir≤n
P[Ai1 ∩ · · · ∩Air ],

and

Xn :=

n∑
i=1

1Ai .

(i) Let x0 ≤ x1 ≤ · · · ≤ xs ≥ xs+1 ≥ · · · ≥ xm be a unimodal sequence of
nonnegative reals such that

∑m
j=0(−1)jxj = 0. Show that

∑`
j=0(−1)jxj is

≥ 0 for even ` and ≤ 0 for odd `.

(ii) Show that, for all r, ∑
1≤i1<···<ir≤n

1Ai11Ai2 · · ·1Air =

(
Xn

r

)
.

(iii) Use (i) and (ii) to show that when ` ∈ [n] is odd

P[Bn] ≤
∑̀
r=1

(−1)r−1S(r),

and when ` ∈ [n] is even

P[Bn] ≥
∑̀
r=1

(−1)r−1S(r).

These inequalities are called Bonferroni inequalities. The case ` = 1 is
Boole’s inequality.

Exercise 2.3 (Percolation on Z2: a better bound). LetE1 be the event that all edges
are open in [−N,N ]2 and E2 be the event that there is no closed self-avoiding dual
cycle surrounding [−N,N ]2. By looking at E1 ∩ E2, show that θ(p) > 0 for
p > 2/3.

Exercise 2.4 (Percolation on Zd: existence of critical threshold). Consider bond
percolation on Ld.
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(i) Show that pc(Ld) > 0. [Hint: Count self-avoiding paths.]

(ii) Show that pc(Ld) < 1. [Hint: Use the result for L2.]

Exercise 2.5 (Sums of uncorrelated variables). Centered random variablesX1, X2, . . .
are uncorrelated if

E[XrXs] = 0, ∀r 6= s.

(i) Assume further that Var[Xr] ≤ C < +∞ for all r. Show that

P

 1

n

∑
r≤n

Xr ≥ β

 ≤ C2

β2n
.

(ii) Use (i) to prove Theorem 2.1.6.

Exercise 2.6 (Pairwise independence: lack of concentration). LetU = (U1, . . . , U`)
be uniformly distributed over {0, 1}`. Let n = 2`−1. For all v ∈ {0, 1}`\0, define

Xv = 〈U ,v〉 mod 2.

(i) Show that the random variables Xv, v ∈ {0, 1}`\0, are uniformly dis-
tributed in {0, 1} and pairwise independent.

(ii) Show that for any eventAmeasurable with respect to σ(Xv,v ∈ {0, 1}`\0),
P[A] is either 0 or ≥ 1/(n+ 1).

Exercise 2.5 shows that pairwise independence implies “polynomial concentra-
tion” of the average of square-integrable Xvs. On the other hand, the current ex-
ercise suggests that in general pairwise independence cannot imply “exponential
concentration.”

Exercise 2.7 (Chernoff bound for Poisson trials). Using the Chernoff-Cramér method,
prove part (i) of Theorem 2.4.7. Show that part (ii) follows from part (i).

Exercise 2.8 (Stochastic knapsack: some details). Consider the stochastic frac-
tional knapsack problem in Section 2.4.3.

(i) Prove that the greedy algorithm described there gives an optimal solution to
problem (2.4.21).

(ii) Prove Claim 2.4.20 for τ ∈ (0, 1/6).

Exercise 2.9 (Stochastic knapsack: 0-1 version). Consider the stochastic fractional
knapsack problem in Section 2.4.3.
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(i) Adapt the greedy algorithm for the 0-1 knapsack problem and show that it is
not optimal in general. [Hint: Construct a counter-example with two items.]

(ii) Prove Claim 2.4.20 for the greedy solution of (i).

Exercise 2.10 (A proof of Pólya’s theorem). Let (St) be simple random walk on
Ld started at the origin 0.

(i) For d = 1, use Stirling’s formula (see Appendix A) to show that P[S2n =
0] = Θ(n−1/2).

(ii) For j = 1, . . . , d, let N (j)
t be the number of steps in the j-th coordinate by

time t. Show that

P
[
N (j)
n ∈

[
n

2d
,
3n

2d

]
, ∀j

]
≥ 1− exp(−κdn),

for some constant κd > 0.

(iii) Use (i) and (ii) to show that, for any d ≥ 3, P[S2n = 0] = O(n−d/2).

Exercise 2.11 (Maximum degree). Let Gn = (Vn, En) ∼ Gn,pn be an Erdős-
Rényi graph with n vertices and density pn. Suppose npn = C log n for some
C > 0. Let Dn be the maximum degree of Gn. Use Bernstein’s inequality to show
that for any ε > 0

P [Dn ≥ (n− 1)pn + max{C, 4(1 + ε)} log n]→ 0,

as n→ +∞.

Exercise 2.12 (RIP vs. orthogonality). Show that a (k, 0)-RIP matrix with k ≥ 2
is orthogonal, that is, its columns are orthonormal.

Exercise 2.13 (Compressed sensing: linear programming formulation). Formu-
late (2.4.43) as a linear program, that is, the minimization of a linear objective
subject to linear inequalities.

Exercise 2.14 (Compressed sensing: almost sparse case). By adapting the proof of
Lemma 2.4.39, show the following “almost sparse” version. Let L be (10k, 1/3)-
RIP. Then, for any x ∈ Rn, the solution to (2.4.43) satisfies

‖z∗ − x‖2 = O(η(x)/
√
k),

where η(x) := minx′∈S n
k
‖x− x′‖1.
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Exercise 2.15 (Spectral norm without independence). Give an example of a ran-
dom matrix A ∈ Rn×n whose entries are bounded, but not independent, such that
the spectral norm is Ω(n) with high probability.

Exercise 2.16 (Spectral norm: symmetric matrix). Let A ∈ Rn×n be a symmetric
random matrix. We assume that entries on and above the diagonal Ai,j , i ≤ j, are
centered, independent and sub-Gaussian with variance factor ν. Each entry below
the diagonal is equal to the corresponding entry above it. Prove an analogue of
Theorem 2.4.28 for A. [Hint: Mimic the proof of Theorem 2.4.28.]

Exercise 2.17 (Chaining tail inequality). Prove Theorem 2.4.32.

Exercise 2.18 (Poisson convergence: method of moments). Let A1, . . . , An be
events and A := ∪iAi. Define

S(r) :=
∑

1≤i1<···<ir≤n
P[Ai1 ∩ · · · ∩Air ],

and

Xn :=
n∑
i=1

Ai.

Assume that there is µ > 0 such that, for all r,

S(r) → µr

r!
,

as n→ +∞. Use Exercise 2.2 and a Taylor expansion of e−µ to show that

P[Xn = 0]→ e−µ.

In fact, Xn
d→ Poi(µ) (no need to prove this). This is a special case of the method

of moments.

Exercise 2.19 (Connectivity: critical window). Using Exercise 2.18 show that,
when pn = logn+s

n , the probability that an Erdős-Rényi graph Gn ∼ Gn,pn con-
tains no isolated vertex converges to e−e

−s
.
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variants of the small subgraph containment problem involving copies that are in-
duced, disjoint, isolated, etc., see for example [JLR11, Chapter 3]. For corre-
sponding results for larger subgraphs, such as cycles or matchings, see for exam-
ple [Bol01]. The connectivity threshold in Section 2.3.2 is also due to the same
authors [ER59]. The presentation here follows [vdH17, Section 5.2]. For more on
the method of moments, see for example [Dur10, Section 3.3.5] or [JLR11, Section
6.1]. Claim 2.3.11 is due to R. Lyons [Lyo90].

Section 2.4 The use of the moment-generating function to derive tail bounds for
sums of independent random variables was pioneered by Cramér [Cra38], Bern-
stein [Ber46], and Chernoff [Che52]. For much more on concentration inequali-
ties, see for example [BLM13]. The basics of large deviations theory are covered
in [Dur10, Section 2.6]. See also [RAS15] and [DZ10]. Section 2.4.2 is based
partly on [Ver18] and [Lug, Section 3.2]. Section 2.4.3 is based on [FR98, Section
5.3]. Very insightful, and much deeper, treatment of the material in Section 2.4.4
can be found in [Ver18, vH16]. The presentation in Section 2.4.5 is inspired
by [Har, Lectures 6 and 8] and [Tao]. The Johnson-Lindenstrauss lemma was first
proved by Johnson and Lindenstrauss using non-probabilistic arguments [JL84].
The idea of using random projections to simplify the proof was introduced by
Frankl and Maehara [FM88] and the proof presented here based on Gaussian pro-
jections is due to Indyk and Motwani [IM98]. See [Ach03] for an overview of the
various proofs known. For more on the random projection method, see [Vem04].
For algorithmic applications of the Johnson-Lindenstrauss lemma, see for exam-
ple [Har, Lecture 7]. Compressed sensing emerged in the works of Donoho [Don06]



CHAPTER 2. MOMENTS AND TAILS 121

and Candès, Romberg and Tao [CRT06a, CRT06b]. The restricted isometry prop-
erty was introduced by Candès and Tao [CT05]. Lemma 2.4.39 is due to Candés,
Romberg and Tao [CRT06b]. The proof of Lemma 2.4.38 presented here is due
to Baraniuk et al. [BDDW08]. A survey of compressed sensing can be found
in [CW08]. A thorough mathematical introduction to compressed sensing can be
found in [FR13]. The material in Section 2.4.2 can be found in [BLM13, Chapter
2]. Hoeffding’s lemma and inequality are due to Hoeffding [Hoe63]. Section 2.4.6
borrows from [Ver18, vH16, SSBD14, Haz16]. The proof of Sauer’s lemma fol-
lows [Ver18, Section 8.3.3]. For a proof of Claim 2.4.48 in general dimension d,
see for example [SSBD14, Section 9.1.3].


