
Chapter 3

Martingales and potentials

In this chapter we turn to martingales, which play a central role in probability the-
ory. We illustrate their use in a number of applications to the analysis of discrete
stochastic processes. After some background on stopping times and a brief review
of basic martingale properties and results in Section 3.1, we develop two major
directions. In Section 3.2, we show how martingales can be used to derive a sub-
stantial generalization of our previous concentration inequalities—from the sums
of independent random variables we focused on in Chapter 2 to nonlinear func-
tions with Lipschitz properties. In particular, we give several applications of the
method of bounded differences to random graphs. We also discuss bandit problems
in machine learning. In the second thread in Section 3.3, we give an introduction
to potential theory and electrical network theory for Markov chains. This toolkit
in particular provides bounds on hitting times for random walks on networks, with
important implications in the study of recurrence among other applications. We
also introduce Wilson’s remarkable method for generating uniform spanning trees.

3.1 Background

We begin with a quick review of stopping times and martingales. Along the way,
we prove a few useful results. In particular, we derive some bounds on hitting times
and cover times of Markov chains.

Throughout, (Ω,F , (Ft)t∈Z+ ,P) is a filtered space. See Appendix B for a
formal definition. Recall that, intuitively, the σ-algebra Ft in the filtration (Ft)t
represents “‘the information known at time t.” All time indices are discrete (in Z+
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CHAPTER 3. MARTINGALES AND POTENTIALS 123

unless stated otherwise). We will also use the notation Z+ := {0, 1, . . . ,+∞} to
allow time +∞.

3.1.1 Stopping times

Definitions Roughly speaking, a stopping time is a random time whose value is
determined by a rule not depending on the future. Formally:

Definition 3.1.1 (Stopping time). A random variable τ : Ω → Z+ is called a
stopping time if

stopping time
{τ ≤ t} ∈ Ft, ∀t ∈ Z+,

or, equivalently,
{τ = t} ∈ Ft, ∀t ∈ Z+.

To see the equivalence above, note that {τ = t} = {τ ≤ t} \ {τ ≤ t − 1}, and
{τ ≤ t} = ∪i≤t{τ = i}.

Example 3.1.2 (Hitting time). Let (At)t∈Z+ , with values in (E, E), be adapted and
let B ∈ E . Then

τ = inf{t ≥ 0 : At ∈ B},

is a stopping time known as a hitting time. In contrast, the last visit to a set is
hitting time

typically not a stopping time. J

Let τ be a stopping time. Denote by Fτ the set of all events F such that, ∀t ∈ Z+,
F ∩ {τ = t} ∈ Ft. Intuitively, the σ-algebra Fτ captures the information up to
time τ . The following lemmas help clarify the definition of Fτ .

Lemma 3.1.3. Fτ = Fs if τ := s, Fτ = F∞ = σ(∪tFt) if τ := +∞ and
Fτ ⊆ F∞ for any stopping time τ .

Proof. In the first case, note that F ∩ {τ = t} is empty if t 6= s and is F if t = s.
So if F ∈ Fτ then F = F ∩ {τ = s} ∈ Fs by definition of Fτ , and if F ∈ Fs
then F = F ∩ {τ = t} ∈ Ft for all t by definition of τ . So we have proved both
inclusions. This works also for t = +∞. For the third claim note that, for any
F ∈ Fτ ,

F = ∪t∈Z+
F ∩ {τ = t} ∈ F∞,

again by definition of Fτ .

Lemma 3.1.4. If (Xt) is adapted and τ is a stopping time then Xτ ∈ Fτ (where
we assume that X∞ ∈ F∞, e.g., by setting X∞ := lim inf Xn).
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Proof. For B ∈ E ,

{Xτ ∈ B} ∩ {τ = t} = {Xt ∈ B} ∩ {τ = t} ∈ Ft,

by definition of τ . That showsXτ is measurable with respect to Fτ as claimed.

Lemma 3.1.5. If σ, τ are stopping times then Fσ∧τ ⊆ Fτ .

Proof. Let F ∈ Fσ∧τ . Note that

F ∩ {τ = t} = ∪s≤t[(F ∩ {σ ∧ τ = s}) ∩ {τ = t}] ∈ Ft.

Indeed, the expression in parentheses is in Fs ⊆ Ft by definition of Fσ∧τ and
{τ = t} ∈ Ft.

Let (Xt) be a Markov chain on a countable space V . The following two exam-
ples of stopping times will play an important role.

Definition 3.1.6 (First visit and return). The first visit time and first return time to
first return

x ∈ V are

τx := inf{t ≥ 0 : Xt = x} and τ+
x := inf{t ≥ 1 : Xt = x}.

Similarly, τB and τ+
B are the first visit time and first return time to B ⊆ V .

Definition 3.1.7 (Cover time). Assume V is finite. The cover time of (Xt) is the
cover time

first time that all states have been visited, that is,

τcov := inf{t ≥ 0 : {X0, . . . , Xt} = V }.

Strong Markov property Let (Xt) be a Markov chain with transition matrix
P and initial distribution µ. Let Ft = σ(X0, . . . , Xt). Recall that the Markov
property (Theorem 1.1.18) says that, given the present, the future is independent
of the past. The Markov property naturally extends to stopping times. Let τ be a
stopping time with P[τ < +∞] > 0. In its simplest form we have:

P[Xτ+1 = y | Fτ ] = PXτ [Xτ+1 = y] = P (Xτ , y).

In words, the chain “starts fresh” at a stopping time with the state at that time as
starting point. More generally:

Theorem 3.1.8 (Strong Markov property). Let ft : V∞ → R be a sequence of
measurable functions, uniformly bounded in t and let Ft(x) := Ex[ft((Xs)s≥0)].
On {τ < +∞},

E[fτ ((Xτ+t)t≥0) | Fτ ] = Fτ (Xτ ).
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Throughout, when we say that two random variables Y,Z are equal on an event B,
we mean formally that Y 1B = Z1B almost surely.

Proof of Theorem 3.1.8. We use that

E[fτ ((Xτ+t)t≥0) | Fτ ]1τ<+∞ = E[fτ ((Xτ+t)t≥0)1τ<+∞ | Fτ ].

Let A ∈ Fτ . Summing over the possible values of τ , using the tower property
(Lemma B.6.16) and then the Markov property

E[fτ ((Xτ+t)t≥0)1τ<+∞;A]

= E[fτ ((Xτ+t)t≥0);A ∩ {τ < +∞}]

=
∑
s≥0

E[fs((Xs+t)t≥0);A ∩ {τ = s}]

=
∑
s≥0

E[E[fs((Xs+t)t≥0);A ∩ {τ = s} |Fs]]

=
∑
s≥0

E[1A∩{τ=s}E[fs((Xs+t)t≥0) | Fs]]

=
∑
s≥0

E[1A∩{τ=s}Fs(Xs)]

=
∑
s≥0

E[Fs(Xs);A ∩ {τ = s}]

= E[Fτ (Xτ );A ∩ {τ < +∞}]
= E[Fτ (Xτ )1τ<+∞;A],

where, on the fifth line, we used that A ∩ {τ = s} ∈ Fs by definition of Fτ
and taking out what is known (Lemma B.6.13). The definition of the conditional
expectation (Theorem B.6.1) concludes the proof.

The following typical application of the strong Markov property (Theorem 3.1.8)
is useful.

Theorem 3.1.9 (Reflection principle). Let X1, X2, . . . be i.i.d. with a distribution
symmetric about 0 and let St =

∑
i≤tXi. Then, for b > 0,

P
[
sup
i≤t

Si ≥ b
]
≤ 2P[St ≥ b].

Proof. Let τ := inf{i ≤ t : Si ≥ b}. By the strong Markov property, on {τ <
t}, St − Sτ is independent of Fτ and is symmetric about 0. In particular, it has
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probability at least 1/2 of being greater or equal to 0 by the first moment principle
(Theorem 2.2.1), an event which implies that St is greater than or equal to b. Hence

P[St ≥ b] ≥ P[τ = t] +
1

2
P[τ < t] ≥ 1

2
P[τ ≤ t].

(Exercise 3.1 asks for a more formal proof.)

In the case of simple random walk on Z, we get a stronger statement.

Theorem 3.1.10 (Reflection principle: simple random walk). Let (St) be simple
random walk on Z started at 0. Then, ∀a, b, t > 0,

P[St = b+ a] = P
[
St = b− a, sup

i≤t
Si ≥ b

]
.

and

P
[
sup
i≤t

Si ≥ b
]

= P[St = b] + 2P[St > b].

Proof. For the first claim, reflect the sub-path after the first visit to b across the line
y = b. Summing over a > 0 and rearranging gives the second claim.

We record another related result that will be useful later.

Theorem 3.1.11 (Ballot theorem). In an election with n voters, candidateA gets α
votes and candidate B gets β < α votes. The probability that A leads B through-
out the counting is α−β

n .

Recurrence Let (Xt) be a Markov chain on a countable state space V . The time
of the k-th return to y is (letting τ0

y := 0)
k-th return

τky := inf{t > τk−1
y : Xt = y}.

In particular, τ1
y = τ+

y . Define ρxy := Px[τ+
y < +∞]. Then by the strong Markov

property (and induction)

Px[τky < +∞] = ρxyρ
k−1
yy . (3.1.1)

(Exercise 3.2 asks for a more formal proof.) Letting

Ny :=
∑
t>0

1{Xt=y} =
∑
k≥1

1{τky<+∞},
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be the number of visits to y after time 0, by linearity

Ex[Ny] =
ρxy

1− ρyy
. (3.1.2)

When ρyy < 1, we have Ey[Ny] < +∞ by (3.1.2), and in particular τky = +∞ for
some k. Or ρyy = 1 and, starting at x = y, we have τky < +∞ almost surely for
all k by (3.1.1). That leads us to the following dichotomy.

Definition 3.1.12 (Recurrence). A state x is recurrent if ρxx = 1. Otherwise it recurrent
is transient. We refer to the recurrence or transience of a state as its type. Let x
be recurrent. If in addition Ex[τ+

x ] < +∞, we say that x is positive recurrent;
otherwise we say that it is null recurrent. A chain is recurrent (or transient, or
positive recurrent, or null recurrent) if all its states are.

Recurrence is “contagious” in the following sense.

Lemma 3.1.13. If x is recurrent and ρxy > 0 then y is recurrent and ρyx = ρxy =
1.

A subset C ⊆ V is closed if x ∈ C and ρxy > 0 implies y ∈ C. A subset
D ⊆ V is irreducible if x, y ∈ D implies ρxy > 0. This definition is consistent
with (and generalizes to sets) the one we gave in Section 1.1.2. Recall that we have
the following decomposition theorem.

Theorem 3.1.14 (Decomposition theorem). Let R := {x : ρxx = 1} be the
recurrent states of the chain. Then R can be written as a disjoint union ∪jRj
where each Rj is closed and irreducible.

Example 3.1.15 (Simple random walk on Z). Consider simple random walk (St)
on Z started at 0. The chain is clearly irreducible so it suffices to check the type
of state 0 by Lemma 3.1.13. First note the periodicity of this chain. So we look at
S2t. Then by Stirling’s formula (see Appendix A)

P[S2t = 0] =

(
2t

t

)
2−2t ∼ 2−2t (2t)

2t

(tt)2

√
2t√

2πt
∼ 1√

πt
.

Thus
E[N0] =

∑
t>0

P[St = 0] = +∞,

and the chain is recurrent. J

Return times are closely related to stationary measures. We recall the following
standard results without proof. We gave an alternative proof of the existence of a
unique stationary distribution in the finite, irreducible case in Theorem 1.1.24.
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Theorem 3.1.16. Let x be a recurrent state. Then the following defines a stationary
measure

µx(y) := Ex

 ∑
0≤t<τ+

x

1{Xt=y}

 .
Theorem 3.1.17. If (Xt) is irreducible and recurrent, then the stationary measure
is unique up to a constant multiple.

Theorem 3.1.18. If there is a stationary distribution π then all states y that have
π(y) > 0 are recurrent.

Theorem 3.1.19. If (Xt) is irreducible and has a stationary distribution π, then

π(x) =
1

Exτ+
x
.

Theorem 3.1.20. If (Xt) is irreducible, then the following are equivalent.

(i) There is a stationary distribution.

(ii) All states are positive recurrent.

(iii) There is a positive recurrent state.

We have seen previously that, in the irreducible, positive recurrent, aperiodic
case, there is convergence to stationarity (see Theorem 1.1.33). In the transient
and null recurrent cases, there is no stationary distribution to converge to by Theo-
rem 3.1.20. Instead, we have the following.

Theorem 3.1.21 (Convergence of P t: transient and null recurrent cases). If P is
an irreducible chain which is either transient or null recurrent, we have for all x, y
that

lim
t
P t(x, y) = 0.

Proof. We only prove the transient case. In that case, we showed in (3.1.2) that

∑
t

P t(x, y) = Ex

[∑
t

1{Xt=y}

]
= Ex[Ny] < +∞.

Hence P t(x, y)→ 0.
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A useful identity A slight generalization of the “cycle trick” used in the proof of
Theorem 3.1.16 gives a useful identity.

Definition 3.1.22 (Green function). Let σ be a stopping time for a Markov chain
(Xt). The Green function of the chain stopped at σ is given by

Green function

Gσ(x, y) = Ex

 ∑
0≤t<σ

1{Xt=y}

 , x, y ∈ V, (3.1.3)

that is, it is the expected number of visits to y before σ when started at x.

Lemma 3.1.23 (Occupation measure identity). Consider an irreducible, positive
recurrent Markov chain (Xt)t≥0 with transition matrix P and stationary distribu-
tion π. Let x be a state and σ be a stopping time such that Ex[σ] < +∞ and
Px[Xσ = x] = 1. For any y,

Gσ(x, y) = πy Ex[σ].

Proof. By the uniqueness of the stationary measure up to constant multiple (The-
orem 3.1.17), it suffices to show that Gσ(x, y) satisfies the system for a stationary
measure as a function of y∑

y

Gσ(x, y)P (y, z) = Gσ(x, z), ∀z, (3.1.4)

and use the fact that

∑
y

Gσ(x, y) =
∑
y

Ex

 ∑
0≤t<σ

1{Xt=y}

 = Ex[σ].

To check (3.1.4), because Xσ = X0 almost surely, observe that

Gσ(x, z) = Ex

 ∑
0≤t<σ

1Xt=z


= Ex

 ∑
0≤t<σ

1Xt+1=z


=
∑
t≥0

Px[Xt+1 = z, σ > t].
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Since {σ > t} ∈ Ft, applying the Markov property we get

Gσ(x, z) =
∑
t≥0

∑
y

Px[Xt = y,Xt+1 = z, σ > t]

=
∑
t≥0

∑
y

Px[Xt+1 = z |Xt = y, σ > t]Px[Xt = y, σ > t]

=
∑
t≥0

∑
y

P (y, z)Px[Xt = y, σ > t]

=
∑
y

Gσ(x, y)P (y, z),

which establishes (3.1.4) and proves the claim.

Here is a typical application of this lemma.

Corollary 3.1.24. In the setting of Lemma 3.1.23, for all x 6= y,

Px[τy < τ+
x ] =

1

πx(Ex[τy] + Ey[τx])
.

Proof. Let σ be the time of the first visit to x after the first visit to y. Then Ex[σ] =
Ex[τy] + Ey[τx] < +∞, where we used that the chain is irreducible and positive
recurrent. By the strong Markov property, the number of visits to x before the first
visit to y is geometric with success probability Px[τy < τ+

x ] (where, here, a visit
to x is a “failed trial”). Moreover the number of visits to x after the first visit to
y but before σ is 0 by definition. Hence Gσ(x, x) is the mean of the geometric
distribution, namely 1/Px[τy < τ+

x ]. Applying the occupation measure identity
gives the result.

3.1.2 . Markov chains: exponential tail of hitting times and some cover
time bounds

Tail of a hitting time On a finite state space, the tail of any hitting time converges
to 0 exponentially fast.

Lemma 3.1.25. Let (Xt) be a finite, irreducible Markov chain with state space V .
For any subset of states A ⊆ V and initial distribution µ:

(i) It holds that Eµ[τA] < +∞ (and, in particular, τA < +∞ a.s.).

(ii) Letting t̄A := maxx Ex[τA], we have the tail bound

Pµ[τA > t] ≤ exp

(
−
⌊

t

de t̄Ae

⌋)
.
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Proof. For any positive integer m, for some distribution θ over the state space V ,
by the strong Markov property (Theorem 3.1.8)

Pµ[τA > ms | τA > (m− 1)s] = Pθ[τA > s] ≤ max
x
Px[τA > s] =: αs.

Choose a positive integer s large enough that, from any x, there is a path to A
of length at most s of positive probability. Such an s exists by irreducibility. In
particular αs < 1.

By the multiplication rule and the monotonicity of the events {τA > rs} over
r, we have

Pµ[τA > ms] = Pµ[τA > s]

m∏
r=2

Pµ[τA > rs | τA > (r − 1)s].

Therefore, Pµ[τA > ms] ≤ αms , which in turn implies

Pµ[τA > t] ≤ αb
t
s
c

s . (3.1.5)

The result for the expectation follows from

Eµ[τA] =
∑
t≥0

Pµ[τA > t] ≤
∑
t

α
b t
s
c

s < +∞,

since αs < 1.
Now that we have established that t̄A < +∞, by Markov’s inequality (Theo-

rem 2.1.1),

αs = max
x
Px[τA > s] ≤ t̄A

s
.

for all non-negative integers s. Plugging back into (3.1.5) gives Pµ[τA > t] ≤(
t̄A
s

)b t
s
c
. By differentiating with respect to s, it can be checked that a good choice

for s is de t̄Ae. Simplifying gives the second claim.

Application to cover times We give an application of the previous bound to
cover times. Let (Xt) be a finite, irreducible Markov chain on V with n := |V | >
1. Recall that the cover time is τcov := maxy τy. We bound the mean cover time in
terms of

t̄hit := max
x 6=y

Exτy.

Claim 3.1.26.
max
x
Ex[τcov] ≤ (3 + log n)de t̄hite.
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Proof. By a union bound over all states to be visited and Lemma 3.1.25,

max
x
Px[τcov > t] ≤ min

{
1, n exp

(
−
⌊

t

de t̄hite

⌋)}
.

Summing over t ∈ Z+ and appealing to the sum of a geometric series,

max
x
Ex[τcov] ≤ (log n+ 1)de t̄hite+

1

1− e−1
de t̄hite,

where the first term on the right-hand side comes from the fact that until t ≥
(log n + 1)de t̄hite the upper bound above is 1. The factor de t̄hite in the second
term on the right-hand side comes from the fact that we must break up the series
into blocks of size de t̄hite. Simplifying gives the claim.

The previous proof should be reminiscent of that of Theorem 2.4.21.
A clever argument gives a better constant factor as well as a lower bound.

Theorem 3.1.27 (Matthews’ cover time bounds). Let

tAhit := min
x,y∈A, x 6=y

Exτy,

and hn :=
∑n

m=1
1
m . Then

max
x
Ex[τcov] ≤ hn t̄hit, (3.1.6)

and

min
x
Ex[τcov] ≥ max

A⊆V
h|A|−1 tAhit. (3.1.7)

Clearly, maxx 6=y t
{x,y}
hit is a lower bound on the worst expected cover time. Lower

bound (3.1.7) says that a tighter bound is obtained by finding a larger subset of
states A that are “far away” from each other.

We sketch the proof of the lower bound for A = V , which we assume is
[n] without loss of generality. The other cases are similar. Let (J1, . . . , Jn) be a
uniform random ordering of V , let Cm := maxi≤m τJi , and let Lm be the last state
visited among J1, . . . , Jm. Then for m ≥ 2

Ex[Cm − Cm−1 | J1, . . . , Jm, {Xt, t ≤ Cm−1}] ≥ tVhit 1{Lm=Jm}.

By symmetry, P[Lm = Jm] = 1
m . To see this, first pick the set of vertices corre-

sponding to {J1, . . . , Jm}, wait for all of those vertices to be visited, then pick the
ordering. Moreover observe that ExC1 ≥ (1− 1

n)tVhit where the factor of (1− 1
n)

accounts for the probability that J1 6= x. Taking expectations above and summing
over m gives the result.

Exercise 3.3 asks for a proof that the bounds above cannot in general be im-
proved up to smaller order terms.
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3.1.3 Martingales

Definition Martingales are an important class of stochastic processes that corre-
spond intuitively to the “probabilistic version of a monotone sequence.” They hide
behind many processes and have properties that make them powerful tools in the
analysis of processes where they have been identified. Formally:

Definition 3.1.28 (Martingale). An adapted process (Mt)t≥0 with E|Mt| < +∞
for all t is a martingale if

martingale

E[Mt+1 | Ft] = Mt, ∀t ≥ 0.

If equality is replaced with ≤ or ≥, we get a supermartingale or a submartingale
respectively. We say that a martingale in bounded in Lp if supt E[|Xt|p] < +∞.

Recall that adapted (Definition B.7.5) simply means that Mt ∈ Ft, that is, roughly
speakingMt is “known at time t.” Note that for a martingale, by the tower property
(Lemma B.6.16), we have E[Mt | Fs] = Ms for all t > s, and similarly (with
inequalities) for supermartingales and submartingales.

We start with a straightforward example.

Example 3.1.29 (Sums of i.i.d. random variables with mean 0). Let X0, X1, . . .
be i.i.d. integrable, centered random variables, Ft = σ(X0, . . . , Xt), S0 = 0, and
St =

∑t
i=1Xi. Note that E|St| < ∞ by the triangle inequality. By taking out

what is known and the role of independence lemma (Lemma B.6.14) we obtain

E[St | Ft−1] = E[St−1 +Xt | Ft−1] = St−1 + E[Xt] = St−1,

which proves that (St) is a martingale. J

Martingales however are richer than random walks with centered steps. For in-
stance mixtures of such random walks are also martingales.

Example 3.1.30 (Mixtures of random walks). Consider again the setting of Exam-
ple 3.1.29. This time assume that X0 is uniformly distributed in {1, 2} and define

Rt = X0St, t ≥ 0.

Then, because (St) is a martingale,

E[Rt | Ft−1] = X0E[St | Ft−1] = X0St−1 = Rt−1,

so (Rt) is also a martingale.
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Further examples Martingales can also be a little more hidden. Here are two
examples.

Example 3.1.31 (Variance of a sum of i.i.d. random variables). Consider again the
setting of Example 3.1.29 with σ2 := Var[X1] <∞. Define

Mt = S2
t − tσ2.

Note that by the triangle inequality and the fact that St has mean zero and is a sum
of independent random variables

E|Mt| ≤
t∑
i=1

Var[Xi] + tσ2 ≤ 2tσ2 < +∞.

Moreover, arguing similarly to the previous example, and using the fact that both
Xt and St−1 are square integrable

E[Mt | Ft−1] = E[(Xt + St−1)2 − tσ2 | Ft−1]

= E[X2
t + 2XtSt−1 + S2

t−1 − tσ2 | Ft−1]

= σ2 + 0 + S2
t−1 − tσ2

= Mt−1,

which proves that (Mt) is a martingale. J

Example 3.1.32 (Eigenvectors of a transition matrix). Let (Xt)t≥0 be a finite
Markov chain with state space V and transition matrix P , and let (Ft)t≥0 be the
corresponding filtration. Suppose f : V → R is such that∑

j

P (i, j)f(j) = λf(i), ∀i ∈ S.

In other words, f is a (right) eigenvector of P with eigenvalue λ. Define

Mt = λ−tf(Xt).

Note that by the finiteness of the state space

E|Mt| < +∞,

and that further by the Markov property

E[Mt | Ft−1] = λ−tE[f(Xt) | Ft−1]

= λ−t
∑
j

P (Xt−1, j)f(j)

= λ−t · λf(Xt−1)

= Mt−1.

That is, (Mt) is a martingale. J
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Or we can create martingales out of thin air. We give two important examples
that will appear later.

Example 3.1.33 (Doob martingale: accumulating data). Let X with E|X| < +∞.
Define Mt = E[X | Ft]. Note that E|Mt| ≤ E|X| < +∞ by Jensens’ inequality,
and

E[Mt | Ft−1] = E[X | Ft−1] = Mt−1,

by the tower property. This is known as a Doob martingale. Intuitively this process
Doob

martingale
tracks our expectation of the unobserved X as “more information becomes avail-
able.” See the co-called “exposure martingales” in Section 3.2.3 for a concrete
illustration of this idea. J

Example 3.1.34 (Martingale transform). Let (Xt)t≥1 be an integrable, adapted
process and let (Ct)t≥1 be a bounded, predictable process. Recall that predictable
(Definition B.7.6) means Ct ∈ Ft−1 for all t, that is, roughly speaking Ct is
“known at time t− 1.” Define

Nt =
∑
i≤t

(Xi − E[Xi | Fi−1])Ci.

Then
E|Nt| ≤

∑
i≤t

2E|Xt|K < +∞,

where we used that |Ct| < K for all t ≥ 1, and

E[Nt −Nt−1 | Ft−1] = E[(Xt − E[Xt | Ft−1])Ct | Ft−1]

= Ct(E[Xt | Ft−1]− E[Xt | Ft−1])

= 0,

by taking out what is known. So (Nt) is a martingale.
When (Xt) is itself a martingale (in which case E[Xi | Fi−1] = Xi−1 in the

definition of Nt), this is a sort of “stochastic (Stieltjes) integral.” When, instead,
(Xt) is a supermartingale (respectively submartingale) and (Ct) is nonnegative and
bounded, then the same computation shows that

Nt =
∑
i≤t

(Xi −Xi−1)Ci,

defines a supermartingale (respectively submartingale). J
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As implied by the next lemma, an immediate consequence of Jensen’s inequal-
ity (in its conditional version of Lemma B.6.12), submartingales naturally arise as
convex functions of martingales.

Lemma 3.1.35. If (Mt)t≥0 is a martingale and φ is a convex function such that
E|φ(Mt)| < +∞ for all t, then (φ(Mt))t≥0 is a submartingale. Moreover, if
(Mt)t≥0 is a submartingale and φ is an increasing convex function withE|φ(Mt)| <
+∞ for all t, then (φ(Mt))t≥0 is a submartingale.

Martingales and stopping times A fundamental reason explaining the utility of
martingales in analyzing a variety of stochastic processes is that they play nicely
with stopping times, in particular, through what is known as the optional stopping
theorem (in its various forms). We will encounter many applications of this impor-
tant result. First a definition:

Definition 3.1.36. Let (Mt) be an adapted process and σ be a stopping time. Then

Mσ
t (ω) := Mσ(ω)∧t(ω),

is Mt stopped at σ.
stopped process

Lemma 3.1.37. Let (Mt) be a supermartingale and σ be a stopping time. Then
the stopped process (Mσ

t ) is a supermartingale and in particular

E[Mt] ≤ E[Mσ∧t] ≤ E[M0].

The same result holds with equalities if (Mt) is a martingale, and with inequalities
in the opposite direction if (Mt) is a submartingale.

Proof. Note that
Mσ
t −M0 =

∑
i≤t

Ci(Xi −Xi−1),

with Ci = 1{i ≤ σ} ∈ Fi−1 (which is nonnegative and bounded) and Xi = Mi

for all i, and use Example 3.1.34 to conclude that E[Mσ∧t] ≤ E[M0].
On the other hand,

Mt −Mσ
t =

∑
i≤t

(1− Ci)(Xi −Xi−1).

So the other inequality follows from the same argument.
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Theorem 3.1.38 (Doob’s optional stopping theorem). Let (Mt) be a supermartin-
gale and σ be a stopping time. Then Mσ is integrable and

E[Mσ] ≤ E[M0],

if any of the following conditions hold:

(i) σ is bounded;

(ii) (Mt) is uniformly bounded and σ is almost surely finite;

(iii) E[σ] < +∞ and (Mt) has bounded increments (i.e., there is c > 0 such that
|Mt −Mt−1| ≤ c a.s. for all t);

(iv) (Mt) is nonnegative and σ is almost surely finite.

The first three imply equality above if (Mt) is a martingale.

Proof. Case (iv) is Fatou’s lemma (Proposition B.4.14). We prove (iii). We leave
the proof of the other claims as an exercise (see Exercise 3.5).

From Lemma 3.1.37, we have

E[Mσ∧t −M0] ≤ 0. (3.1.8)

Furthermore the assumption that E[σ] < +∞ implies that σ < +∞ almost surely.
Hence we seek to take a limit as t → +∞ inside the expectation. To justify
swapping limit and expectation, note that by a telescoping sum

|Mσ∧t −M0| ≤

∣∣∣∣∣∣
∑
s≤σ∧t

(Ms −Ms−1)

∣∣∣∣∣∣
≤
∑
s≤σ
|Ms −Ms−1|

≤ cσ.

The claim now follows from dominated convergence (Proposition B.4.14). Equal-
ity holds if (Mt) is a martingale.

Although the optional stopping theorem (Theorem 3.1.38) is useful, one of-
ten works directly with Lemma 3.1.37 and applies suitable limit theorems (see
Proposition B.4.14). The following martingale-based proof of Wald’s first identity
provides an illustration.
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Theorem 3.1.39 (Wald’s first identity). LetX1, X2, . . . ∈ L1 be i.i.d. withE[X1] =
µ and let τ ∈ L1 be a stopping time. Let St =

∑t
s=1Xs. Then

E[Sτ ] = µE[τ ].

Proof. We first prove the result for nonnegative Xis. By Example 3.1.29, St − tµ
is a martingale and Lemma 3.1.37 implies that E[Sτ∧t − µ(τ ∧ t)] = 0, or

E[Sτ∧t] = µE[τ ∧ t].

Note that, in the nonnegative case, we have Sτ∧t ↑ Sτ and τ ∧ t ↑ τ . Thus, by
monotone convergence (Proposition B.4.14), the claim E[Sτ ] = µE[τ ] follows in
that case.

Consider now the general case. Again, E[Sτ∧t] = µE[τ∧t] and E[τ∧t] ↑ E[τ ].
Applying the previous argument to the sum of nonnegative random variables Rt =∑t

s=1 |Xs| shows that E[Rτ ] = E|X1|E[τ ] < +∞ by assumption. Since |Sτ∧t| ≤
Rτ for all t by the triangle inequality, dominated convergence (Proposition B.4.14)
implies E[Sτ∧t]→ E[Sτ ] and we are done.

We also recall Wald’s second identity. The proof, which we omit, uses the martin-
gale in Example 3.1.31.

Theorem 3.1.40 (Wald’s second identity). Let X1, X2, . . . ∈ L2 be i.i.d. with
E[X1] = 0 and Var[X1] = σ2 and let τ ∈ L1 be a stopping time. Let St =∑t

s=1Xs. Then
E[S2

τ ] = σ2E[τ ].

We illustrate Wald’s identities on the gambler’s ruin problem that is character-
gambler’s ruin

istic of applications of stopping times in Markov chains. We consider the “unbi-
ased” and “biased” cases separately.

Example 3.1.41 (Gambler’s ruin: unbiased case). Let (St) be simple random walk
on Z started at 0 and let τ = τa ∧ τb where −∞ < a < 0 < b < +∞, where the
first visit time τx was defined in Definition 3.1.6.

Claim 3.1.42. We have:

(i) τ < +∞ almost surely;

(ii) P[τa < τb] = b
b−a ;

(iii) E[τ ] = −ab;

(iv) τa < +∞ almost surely but E[τa] = +∞.
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Proof. We prove the claims in order.

(i) We argue that in fact E[τ ] < ∞. That follows immediately from the ex-
ponential tail of hitting times in Lemma 3.1.25 for the chain (Sτ∧t) whose
(effective) state space, {a, a+ 1, . . . , b}, is finite.

(ii) By Wald’s first identity (Theorem 3.1.39) and (i), we have E[Sτ ] = 0 or

aP[Sτ = a] + bP[Sτ = b] = 0,

that is, using P[Sτ = a] = 1− P[Sτ = b] = P[τa < τb],

P[τa < τb] =
b

b− a
and P[τa < +∞] ≥ P[τa < τb]→ 1,

where we took b→ +∞ in the first expression to obtain the second one.

(iii) Because σ2 = 1, Wald’s second identity (Theorem 3.1.40) says that E[S2
τ ] =

E[τ ]. Furthermore, we have by (ii)

E[S2
τ ] =

b

b− a
a2 +

−a
b− a

b2 = −ab.

Thus E[τ ] = −ab.

(iv) The first claim was proved in (ii). When b → +∞, τ = τa ∧ τb ↑ τa and
monotone convergence applied to (iii) gives that E[τa] = +∞.

That concludes the proof.

Note that (iv) above shows that the L1 condition on the stopping time in Wald’s
second identity (Theorem 3.1.40) is necessary. Indeed we have shown a2 = E[S2

τa ] 6=
σ2E[τa] = +∞. J

Example 3.1.43 (Gambler’s ruin: biased case). The biased random walk on Zwith
parameter 1/2 < p < 1 is the process (St) with S0 = 0 and St =

∑t
i=1Xi where

the Xis are i.i.d. in {−1,+1} with P[X1 = 1] = p. Let again τ := τa ∧ τb where
a < 0 < b. Define q := 1− p, δ := p− q > 0, and φ(x) := (q/p)x.

Claim 3.1.44. We have:

(i) τ < +∞ almost surely;

(ii) P[τa < τb] = φ(b)−φ(0)
φ(b)−φ(a) ;

(iii) E[τb] = b
2p−1 ;
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(iv) τa = +∞ with positive probability.

Proof. Let ψt(x) := x − δt. We use two martingales: (φ(St)) and (ψt(St)).
Observe that indeed both processes are clearly integrable and

E[φ(St) | Ft−1] = p(q/p)St−1+1 + q(q/p)St−1−1 = φ(St−1),

and

E[ψt(St) | Ft−1] = p[St−1 + 1− δt] + q[St−1 − 1− δt] = ψt−1(St−1).

(i) This claim follows by the same argument as in the unbiased case.

(ii) Note that (φ(St)) is a nonnegative, bounded martingale since q < p by as-
sumption. By Lemma 3.1.37 and dominated convergence (Proposition B.4.14),

φ(0) = E[φ(Sτ )] = P[τa < τb]φ(a) + P[τa > τb]φ(b),

or, rearranging, P[τa < τb] = φ(b)−φ(0)
φ(b)−φ(a) . Taking b→ +∞, by monotonicity

P[τa < +∞] =
1

φ(a)
< 1, (3.1.9)

so that τa = +∞ with positive probability. On the other hand, P[τb < τa] =

1− P[τa < τb] = φ(0)−φ(a)
φ(b)−φ(a) , and taking a→ −∞

P [τb < +∞] = 1.

(iii) By Lemma 3.1.37 applied to (ψt(St)),

0 = E[Sτb∧t − δ(τb ∧ t)]. (3.1.10)

By monotone convergence (Proposition B.4.14), E[τb ∧ t] ↑ E[τb]. Further-
more, observe that − inft St ≥ 0 almost surely since S0 = 0. Moreover, for
x ≥ 0, by (3.1.9)

P[− inf
t
St ≥ x] = P[τ−x < +∞] =

(
q

p

)x
,

so that E[− inft St] =
∑

x≥1 P[− inft St ≥ x] < +∞. Hence, in (3.1.10),
we can use dominated convergence (Proposition B.4.14) with

|Sτb∧t| ≤ max{b,− inf
t
St},

and the fact that τb < +∞ almost surely from (ii) to deduce that E[τb] =
E[Sτb ]

p−q = b
2p−1 .
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(iv) That claim was proved in (ii).

That concludes the proof.

Note that, in (iii) above, in order to apply Wald’s first identity directly we would
have had to prove that τb ∈ L1 first. J

We also obtain the following maximal version of Markov’s inequality (Theo-
rem 2.1.1).

Theorem 3.1.45 (Doob’s submartingale inequality). Let (Mt) be a nonnegative
submartingale. Then, for b > 0,

P
[

sup
0≤s≤t

Ms ≥ b
]
≤ E[Mt]

b
.

Observe that a naive application of Markov’s inequality implies only that

sup
0≤s≤t

P[Ms ≥ b] ≤
E[Mt]

b
,

where we used that E[Ms] ≤ E[Mt] for all 0 ≤ s ≤ t for a submartingale. Intro-
ducing an appropriate stopping time immediately gives something stronger. (Exer-
cise 3.6 asks for the supermartingale version of this.)

Proof. Let σ be the first time that Mt ≥ b. Then the event of interest can be
characterized as {

sup
0≤s≤t

Ms ≥ b
}

= {Mσ∧t ≥ b} .

By Markov’s inequality,

P[Mσ∧t ≥ b] ≤
E[Mσ∧t]

b
.

Lemma 3.1.37 implies that E[Mσ∧t] ≤ E[Mt], which concludes the proof.

One consequence of the previous bound is a strengthening of Chebyshev’s inequal-
ity (Theorem 2.1.2) for sums of independent random variables.

Corollary 3.1.46 (Kolmogorov’s maximal inequality). Let X1, X2, . . . be inde-
pendent random variables with E[Xi] = 0 and Var[Xi] < +∞. Define St =∑

i≤tXi. Then, for β > 0,

P
[
max
i≤t
|Si| ≥ β

]
≤ Var[St]

β2
.

Proof. By Example 3.1.29, (St) is a martingale. By Lemma 3.1.35, (S2
t ) is hence

a (nonnegative) submartingale. The result follows from Doob’s submartingale in-
equality (Theorem 3.1.45).
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Convergence Finally another fundamental result about martingales is the follow-
ing convergence theorem, which we state without proof. We give a quick applica-
tion below.

Theorem 3.1.47 (Convergence theorem). Let (Mt) be a supermartingale bounded
in L1. Then (Mt) converges almost surely to a finite limit M∞. Moreover, letting
M∞ := lim suptMt, then M∞ ∈ F∞ and E|M∞| < +∞.

Corollary 3.1.48 (Convergence of non-negative supermartingales). If (Mt) is a
non-negative supermartingale then Mt converges almost surely to a finite limit
M∞ with E[M∞] ≤ E[M0].

Proof. By the supermartingale property, (Mt) is bounded in L1 since

E|Mt| = E[Mt] ≤ E[M0], ∀t.

Then we use the martingale convergence theorem (Theorem 3.1.47) and Fatou’s
lemma (Proposition B.4.14).

Example 3.1.49 (Pólya’s urn). An urn contains 1 red ball and 1 green ball. At each
time, we pick one ball and put it back with an extra ball of the same color. This
process is known as Pólya’s urn. Let Rt (respectively Gt) be the number of red

Pólya’s urn
balls (respectively green balls) after the tth draw. Let

Ft := σ(R0, G0, R1, G1, . . . , Rt, Gt).

Define Mt to be the fraction of green balls after the tth draw. Then

E[Mt | Ft−1] =
Rt−1

Gt−1 +Rt−1

Gt−1

Gt−1 +Rt−1 + 1

+
Gt−1

Gt−1 +Rt−1

Gt−1 + 1

Gt−1 +Rt−1 + 1

=
Gt−1

Gt−1 +Rt−1

= Mt−1.

Since Mt ≥ 0 and is a martingale, we have Mt → M∞ almost surely. In fact,
Exercise 3.4 asks for a proof that

P[Gt = m+ 1] =

(
t

m

)
m!(t−m)!

(t+ 1)!
=

1

t+ 1
.

So taking a limit as t→ +∞

P[Mt ≤ x] =
bx(t+ 2)− 1c

t+ 1
→ x.

That is, (Mt) converges in distribution to a uniform random variable on [0, 1]. J
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Convergence of the expectation in general requires stronger conditions. A sim-
ple case is boundedness in L2. Before stating the result, we derive a key property
of martingales in L2 which will be useful later.

Lemma 3.1.50 (Orthogonality of increments). Let (Mt) be a martingale with
Mt ∈ L2 for all t. Let s ≤ t ≤ u ≤ v. Then,

〈Mt −Ms,Mv −Mu〉 = 0,

where 〈X,Y 〉 = E[XY ].

Proof. Use Mu = E[Mv | Fu] and Mt −Ms ∈ Fu, and apply the L2 characteriza-
tion of the conditional expectation (Theorem B.6.2).

In words, martingale increments over disjoint time intervals are uncorrelated (pro-
vided the second moment exists). Note that this is weaker than the independence
of increments of random walks. (See Section 3.2.1 for more discussion on this.)

Theorem 3.1.51 (Convergence of martingales bounded in L2). Let (Mt) be a mar-
tingale with Mt ∈ L2 for all t. Then (Mt) is bounded in L2 if and only if∑

k≥1

E[(Mt −Mt−1)2] < +∞.

When this is the case, Mt converges almost surely and in L2 to a finite limit M∞,
and furthermore

E[Mt]→ E[M∞] < +∞,

as t→ +∞.

Proof. Writing Mt as a telescoping sum of increments, the orthogonality of incre-
ments (Lemma 3.1.50) implies

E[M2
t ] = E

(M0 +

t∑
s=1

(Ms −Ms−1)

)2


= E[M2
0 ] +

t∑
s=1

E[(Ms −Ms−1)2],

proving the first claim.
By the monotonicity of norms (Lemma B.4.16), (Mt) being bounded in L2 im-

plies that (Mt) is bounded in L1 which, in turn, implies that Mt converges almost
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surely to a finite limit M∞ with E|M∞| < +∞ by Theorem 3.1.47. Then using
Fatou’s lemma (Proposition B.4.14) in

E[(Mt+s −Mt)
2] =

∑
t+1≤i≤t+s

E[(Mi −Mi−1)2],

gives
E[(M∞ −Mt)

2] ≤
∑
t+1≤i

E[(Mi −Mi−1)2].

The right-hand side goes to 0 as t → +∞ since the full series is finite, which
proves the second claim.

The last claim follows from Lemmas B.4.16 and B.4.17.

3.1.4 . Percolation: critical regime on infinite d-regular tree

Consider bond percolation (see Definition 1.2.1) on the infinite d-regular tree Td
rooted at a vertex 0. In Section 2.3.3, we showed that

pc(Td) = sup{p ∈ [0, 1] : Pp[|C0| = +∞] = 0} =
1

d− 1
,

where recall that C0 is the open cluster of the root. Here we consider the critical
case, that is, we set density p = 1

d−1 . (The same results apply to the infinite b-ary
tree T̂b with d = b+ 1.) Assume d ≥ 3 (since d = 2 is simply a path).

First:

Claim 3.1.52. |C0| < +∞ almost surely.

Let Xn := |∂n ∩ C0|, where ∂n are the n-th level vertices. In Section 2.3.3, we
proved the same claim in the subcritical case using the first moment method. It
does not work here because

EXn = d(d− 1)n−1pn =
d

d− 1
9 0.

Instead we use a martingale argument which will be generalized when we discuss
branching processes in Section 6.1.

Proof of Claim 3.1.52. Let b := d− 1 be the branching ratio. Because the root has
a different number of children, we consider the descendants of its children. Let Zn
be the number of vertices in the open cluster of the first child of the root n levels
below it and let Fn = σ(Z0, . . . , Zn). Then Z0 = 1 and

E[Zn | Fn−1] = bpZn−1 = Zn−1.
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So (Zn) is a nonnegative, integer-valued martingale and it converges almost surely
to a finite limit by Corollary 3.1.48. (In particular, E[Zn] = 1, which will be useful
below.) But, clearly, for any integer k > 0 and N ≥ 0

P[Zn = k, ∀n ≥ N ] = 0,

so it must be that the limit is 0 almost surely. In other words, Zn is eventually 0 for
all n large enough. This is true for every child of the root. Hence the open cluster
of the root is finite almost surely.

On the other hand:

Claim 3.1.53.
E|C0| = +∞.

Proof. Consider the descendant subtree, T1, of the first child of the root, which we
denote by 1. Let C̃1 be the open cluster of 1 in T1. As we showed in the previous
claim, the expected number of vertices on any level of T1 is 1. So E|C̃1| = +∞ by
summing over the levels.

3.2 Concentration for martingales and applications

The Chernoff-Cramér method extends naturally to martingales. This observation
leads to powerful new tail bounds that hold far beyond the case of sums of inde-
pendent variables. In particular it will allow us to prove one version of the concen-
tration phenomenon, which can be stated informally as: a function f(X1, . . . , Xn)
of many independent random variables that is not too sensitive to any of its coor-
dinates tends to be close to its mean.

3.2.1 Azuma-Hoeffding inequality

The main result of this section is the following generalization of Hoeffding’s in-
equality (Theorem 2.4.10).

Theorem 3.2.1 (Maximal Azuma-Hoeffding inequality). Let (Zt)t∈Z+ be a mar-
tingale with respect to the filtration (Ft)t∈Z+ . Assume that there are predictable
processes (At) and (Bt) (i.e., At, Bt ∈ Ft−1) and constants 0 < ct < +∞ such
that: for all t ≥ 1, almost surely,

At ≤ Zt − Zt−1 ≤ Bt and Bt −At ≤ ct.
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Then, for all β > 0,

P
[

sup
0≤i≤t

(Zi − Z0) ≥ β
]
≤ exp

(
− 2β2∑

i≤t c
2
i

)
.

Applying this inequality to (−Zt) gives a tail bound in the other direction.

Proof of Theorem 3.2.1. As in the Chernoff-Cramér method, we start by applying
Markov’s inequality (Theorem 2.1.1). Here we use the maximal version for sub-
martingales, Doob’s submartingale inequality (Theorem 3.1.45). First notice that
esx is increasing and convex for s > 0, so that by Lemma 3.1.35 the process
(es(Zt−Z0))t is a submartingale. Hence, for s > 0, by Theorem 3.1.45

P
[

sup
0≤i≤t

(Zi − Z0) ≥ β
]

= P
[

sup
0≤i≤t

es(Zi−Z0) ≥ esβ
]

≤
E
[
es(Zt−Z0)

]
esβ

=
E
[
es
∑t
r=1(Zr−Zr−1)

]
esβ

. (3.2.1)

Unlike the Chernoff-Cramér case, however, the terms in the exponent are not
independent. Instead, to exploit the martingale property, we condition on the filtra-
tion. By taking out what is known (Lemma B.6.13)

E
[
E
[
es
∑t
r=1(Zr−Zr−1)

∣∣∣Ft−1

]]
= E

[
es
∑t−1
r=1(Zr−Zr−1) E

[
es(Zt−Zt−1)

∣∣∣Ft−1

]]
.

The martingale property and the assumption in the statement imply that, condi-
tioned on Ft−1, the random variable Zt − Zt−1 is centered and lies in an interval
of length ct. Hence by Hoeffding’s lemma (Lemma 2.4.12), it holds almost surely
that

E
[
es(Zt−Zt−1)

∣∣∣Ft−1

]
≤ exp

(
s2c2

t /4

2

)
= exp

(
c2
t s

2

8

)
. (3.2.2)

Using the tower property (Lemma B.6.16) and arguing by induction, we obtain

E
[
es(Zt−Z0)

]
≤ exp

(
s2
∑

r≤t c
2
r

8

)
.

Put differently, we have proved that Zt − Z0 is sub-Gaussian with variance factor
1
4

∑
r≤t c

2
r . By (2.4.16) (or, equivalently, by choosing s = β/1

4

∑
r≤t c

2
r in (3.2.1))

we get the result.
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In Theorem 3.2.1 the martingale difference sequence (Xt), where Xt := Zt − martingale

difference
Zt−1, is not only “pairwise uncorrelated” by Lemma 3.1.50, that is,

E[XsXr] = 0, ∀r 6= s,

but it is in fact “mutually uncorrelated,” that is,

E [Xj1 · · ·Xjk ] = 0, ∀ k ≥ 1, ∀ 1 ≤ j1 < · · · < jk.

This stronger property helps explain why
∑

r≤tXr is highly concentrated. This
point is the subject of Exercise 3.7, which guides the reader through a slightly
different proof of the Azuma-Hoeffding inequality. Compare with Exercises 2.5
and 2.6.

3.2.2 Method of bounded differences

The power of the maximal Azuma-Hoeffding inequality (Theorem 3.2.1) is that it
produces tail inequalities for quantities other than sums of independent variables.
The setting is the following. Let X1, . . . , Xn be independent random variables
where Xi is Xi-valued for all i and let X = (X1, . . . , Xn). Assume that f :
X1 × · · · × Xn → R is a measurable function. Our goal is to characterize the
concentration properties of f(X) around its expectation in terms of its “discrete
derivatives”

Dif(x) := sup
y∈Xi

f(x1, . . . , xi−1, y, xi+1, . . . , xn)

− inf
y′∈Xi

f(x1, . . . , xi−1, y
′, xi+1, . . . , xn),

where x = (x1, . . . , xn) ∈ X1 × · · · × Xn. We think of Dif(x) as a measure of
the “sensitivity” of f to its i-th coordinate.

High-level idea

We begin with two easier bounds that we will improve below. The trick to ana-
lyzing the concentration of f(X) is to consider the Doob martingale (see Exam-
ple 3.1.33)

Zi = E[f(X) | Fi], (3.2.3)

where Fi = σ(X1, . . . , Xi), which is well-defined provided E|f(X)| < +∞.
Note that

Zn = E[f(X) | Fn] = f(X),
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and
Z0 = E[f(X)],

so that we can write

f(X)− E[f(X)] =
n∑
i=1

(Zi − Zi−1).

Intuitively, the martingale differenceZi−Zi−1 tracks the change in our expectation
of f(X) as Xi is revealed.

In fact a clever probabilistic argument relates martingale differences directly to
discrete derivatives. Let X ′ = (X ′1, . . . , X

′
n) be an independent copy of X and let

X(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Then

Zi − Zi−1 = E[f(X) | Fi]− E[f(X) | Fi−1]

= E[f(X) | Fi]− E[f(X(i)) | Fi−1]

= E[f(X) | Fi]− E[f(X(i)) | Fi]
= E[f(X)− f(X(i)) | Fi].

Note that we crucially used the independence of the Xks in the second and third
lines. But then, by Jensen’s inequality (Lemma B.6.12),

|Zi − Zi−1| ≤ ‖Dif‖∞. (3.2.4)

Assume further that E[f(X)2] < +∞. By the orthogonality of increments of
martingales in L2 (Lemma 3.1.50), we immediately obtain a bound on the variance
of f

Var[f(X)] = E[(Zn − Z0)2] =
n∑
i=1

E
[
(Zi − Zi−1)2

]
≤

n∑
i=1

‖Dif‖2∞. (3.2.5)

By the maximal Azuma-Hoeffding inequality and the fact that

Zi − Zi−1 ∈ [−‖Dif‖∞, ‖Dif‖∞],

we also get a bound on the tail

P[f(X)− E[f(X)] ≥ β] ≤ exp

(
− β2

2
∑

i≤n ‖Dif‖2∞

)
. (3.2.6)

A more careful analysis, which we detail below, leads to a better bound.
We emphasize that, although it may not be immediately obvious, independence

plays a crucial role in the bound (3.2.4), as the next example shows.
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Example 3.2.2 (A counterexample). Let f(x1, . . . , xn) = x1 + · · · + xn where
xi ∈ {−1, 1} for all i. Then,

‖D1f‖∞ = sup
x2,...,xn

[(1 + x2 + · · ·+ xn)− (−1 + x2 + · · ·+ xn)] = 2,

and similarly ‖Dif‖∞ = 2 for i = 2, . . . , n. Let X1 be a uniform random variable
on {−1, 1}. First consider the case where we setX2, . . . , Xn all equal toX1. Then

E[f(X1, . . . , Xn)] = 0,

and
E[f(X1, . . . , Xn) |X1] = nX1,

so that
|E[f(X1, . . . , Xn) |X1]− E[f(X1, . . . , Xn)]| = n > 2.

In particular, the corresponding Doob martingale does not have increments bounded
by ‖Dif‖∞ = 2.

Fo a less extreme example which has support over all of {−1, 1}n, let

Ui =

{
1, w.p. 1− ε,
−1, w.p. ε,

for some ε > 0 independently for all i = 1, . . . , n− 1. Let again X1 be a uniform
random variable on {−1, 1} and, for i = 2, . . . , n, define the random variableXi =
Ui−1Xi−1, that is, Xi is the same as Xi−1 with probability 1− ε and otherwise is
flipped. Then,

E[f(X1, . . . , Xn)] = E [X1 + · · ·+Xn]

= E

X1

1 +
n−1∑
i=1

∏
j≤i

Uj


= E[X1]E

1 +
n−1∑
i=1

∏
j≤i

Uj


= 0,

by the independence of X1 and the Uis. Similarly

E[f(X1, . . . , Xn) |X1] = X1 E

1 +

n−1∑
i=1

∏
j≤i

Uj

 = X1

(
n−1∑
i=0

(1− 2ε)i

)
,
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so that

|E[f(X1, . . . , Xn) |X1]− E[f(X1, . . . , Xn)]| =

(
n−1∑
i=0

(1− 2ε)i

)
> 2,

for ε small enough and n ≥ 3. In particular, the corresponding Doob martingale
does not have increments bounded by ‖Dif‖∞ = 2. J

Variance bounds

We give improved bounds on the variance (compared to (3.2.5)). Our first bound
explicitly decomposes the variance of f(X) over the contributions of its individual
entries.

Theorem 3.2.3 (Tensorization of the variance). Let X1, . . . , Xn be independent
random variables where Xi is Xi-valued for all i and let X = (X1, . . . , Xn).
Assume that f : X1 × · · · × Xn → R is a measurable function with E[f(X)2] <
+∞. Define Fi = σ(X1, . . . , Xi), Gi = σ(X1, . . . , Xi−1, Xi+1, . . . , Xn) and
Zi = E[f(X) | Fi]. Then we have

Var[f(X)] ≤
n∑
i=1

E [Var [f(X) | Gi]] .

Proof of Theorem 3.2.3. The key lemma is the following.

Lemma 3.2.4.

E [E [f(X) | Gi] | Fi] = E [f(X) | Fi−1]

Proof. By the tower property (Lemma B.6.16),

E [f(X) | Fi−1] = E [E [f(X) | Gi] | Fi−1] .

Moreover, σ(Xi) is independent of σ(Gi,Fi−1) so by the role of independence
(Lemma B.6.14), we have

E [E [f(X) | Gi] | Fi−1] = E [E [f(X) | Gi] | Fi−1, Xi] = E [E [f(X) | Gi] | Fi] .

Combining the last two displays gives the result.

Again, we take advantage of the orthogonality of increments to write

Var[f(X)] =

n∑
i=1

E
[
(Zi − Zi−1)2

]
.
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By the lemma above,

(Zi − Zi−1)2 = (E [f(X) | Fi]− E [f(X) | Fi−1])2

= (E [f(X) | Fi]− E [E [f(X) | Gi] | Fi])2

= (E [f(X)− E [f(X) | Gi] | Fi])2

≤ E
[
(f(X)− E [f(X) | Gi])2

∣∣∣Fi] ,
where we used Jensen’s inequality on the last line. Taking expectations and using
the tower property

Var[f(X)] =

n∑
i=1

E
[
(Zi − Zi−1)2

]
≤

n∑
i=1

E
[
E
[
(f(X)− E [f(X) | Gi])2

∣∣∣Fi]]
=

n∑
i=1

E
[
(f(X)− E [f(X) | Gi])2

]
=

n∑
i=1

E
[
E
[
(f(X)− E [f(X) | Gi])2

∣∣∣Gi]]
=

n∑
i=1

E [Var [f(X) | Gi]] .

That concludes the proof.

We derive two useful consequences of the tensorization property of the vari-
ance. The first one is the Efron-Stein inequality.

Theorem 3.2.5 (Efron-Stein inequality). Let X1, . . . , Xn be independent random
variables where Xi is Xi-valued for all i and let X = (X1, . . . , Xn). Assume that
f : X1 × · · · × Xn → R is a measurable function with E[f(X)2] < +∞. Let
X ′ = (X ′1, . . . , X

′
n) be an independent copy of X and

X(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Then,

Var[f(X)] ≤ 1

2

n∑
i=1

E[(f(X)− f(X(i)))2].
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Proof. Observe that if Y ′ is an independent copy of Y ∈ L2, then Var[Y ] =
1
2E[(Y − Y ′)2], which can be seen by adding and subtracting the mean, expanding
and using independence. Hence,

Var [f(X) | Gi] =
1

2
E[(f(X)− f(X(i)))2 | Gi],

where we used the independence of the Xis and X ′is. Plugging back into Theo-
rem 3.2.3 gives the claim.

Our second consequence of Theorem 3.2.3 is a Poincaré-type inequality which
relates the variance of a function to its expected “square gradient.” Compare to
the much weaker (3.2.5), which involves in each term a supremum rather than an
expectation.

Theorem 3.2.6 (Bounded differences inequality). Let X1, . . . , Xn be independent
random variables where Xi is Xi-valued for all i and let X = (X1, . . . , Xn).
Assume that f : X1 × · · · × Xn → R is a measurable function with E[f(X)2] <
+∞. Then

Var[f(X)] ≤ 1

4

n∑
i=1

E[Dif(X)2].

Proof. By Lemma 2.4.11,

Var [f(X) | Gi] ≤
1

4
Dif(X)2.

Plugging back into Theorem 3.2.3 gives the claim.

Remark 3.2.7. For comparison, a version of the Poincaré inequality in one dimension
Poincaré

inequality
asserts the following: let f : [0, T ] → R be continuously differentiable with f(0) =

f(T ) = 0,
∫ T

0
f(x)2 + f ′(x)2dx < +∞ and

∫ T
0
f(x)dx = 0, then∫ T

0

f(x)2dx ≤ C
∫ T

0

f ′(x)2dx, (3.2.7)

where the best possible C is T 2/4π2 (see, e.g., [SS03, Chapter 3, Exercise 11]; this case is
also known as Wirtinger’s inequality). We give a quick proof for T = 1 with the suboptimal
C = 1. Note that f(x) =

∫ x
0
f ′(y)dy so, by Cauchy-Schwarz (Theorem B.4.8),

f(x)2 ≤ x
∫ x

0

f ′(y)2dy ≤
∫ 1

0

f ′(y)2dy.

The result follows by integration. Intuitively, for a function with mean 0 to have a large
norm, it must have a large absolute derivative somewhere.
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Example 3.2.8 (Longest common subsequence). Let X1, . . . , X2n be independent
uniform random variables in {−1,+1}. Let Z be the length of the longest common
subsequence in (X1, . . . , Xn) and (Xn+1, . . . , X2n), that is,

Z = max
{
k :∃1 ≤ i1 < i2 < · · · < ik ≤ n

and n+ 1 ≤ j1 < j2 < · · · < jk ≤ 2n

such that Xi1 = Xj1 , Xi2 = Xi2 , . . . , Xik = Xjk

}
.

Then, writing Z = f(X1, . . . , X2n), it follows that ‖Dif‖∞ ≤ 1. Indeed, fix
x = (x1, . . . , x2n) and let xi,+ (respectively xi,−) be x where the i-th component
is replaced with +1 (respectively −1). Assume without loss of generality that
f(xi,−) ≤ f(xi,+). Then |f(xi,+) − f(xi,−)| ≤ 1 because removing the i-th
component (and its match) from a longest common subsequence when xi = +1 (if
present) decreases the length by 1. Since this is true for any x, we have ‖Dif‖∞ ≤
1. Finally, by the bounded differences inequality (Theorem 3.2.6),

Var[Z] ≤ 1

4

2n∑
i=1

‖Dif‖2∞ ≤
n

2
,

which is much better than the obvious Var[Z] ≤ E[Z2] ≤ n2. Note that we did not
require any information about the expectation of Z. J

McDiarmid’s inequality

The following powerful consequence of the Azuma-Hoeffding inequality is com-
monly referred to as the method of bounded differences. Compare to (3.2.6).

Theorem 3.2.9 (McDiarmid’s inequality). LetX1, . . . , Xn be independent random
variables where Xi is Xi-valued for all i, and let X = (X1, . . . , Xn). Assume
f : X1 × · · · × Xn → R is a measurable function such that ‖Dif‖∞ < +∞ for
all i. Then for all β > 0

P[f(X)− Ef(X) ≥ β] ≤ exp

(
− 2β2∑

i≤n ‖Dif‖2∞

)
.

Once again, applying the inequality to −f gives a tail bound in the other direction.

Proof of Theorem 3.2.9. As before, we let

Zi = E[f(X) | Fi],
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where Fi = σ(X1, . . . , Xi), we let Gi = σ(X1, . . . , Xi−1, Xi+1, . . . , Xn). Then,
it holds that Ai ≤ Zi − Zi−1 ≤ Bi where

Bi = E

[
sup
y∈Xi

f(X1, . . . , Xi−1, y,Xi+1, . . . , Xn)− f(X)

∣∣∣∣∣Fi−1

]
,

and

Ai = E
[

inf
y∈Xi

f(X1, . . . , Xi−1, y,Xi+1, . . . , Xn)− f(X)

∣∣∣∣Fi−1

]
.

Indeed, since σ(Xi) is independent of Fi−1 and Gi, by the role of independence
(Lemma B.6.14)

Zi = E [f(X) | Fi]

≤ E

[
sup
y∈Xi

f(X1, . . . , Xi−1, y,Xi+1, . . . , Xn)

∣∣∣∣∣Fi
]

= E

[
sup
y∈Xi

f(X1, . . . , Xi−1, y,Xi+1, . . . , Xn)

∣∣∣∣∣Fi−1, Xi

]

= E

[
sup
y∈Xi

f(X1, . . . , Xi−1, y,Xi+1, . . . , Xn)

∣∣∣∣∣Fi−1

]
,

and similarly for the other direction. Moreover, by definition,Bi−Ai ≤ ‖Dif‖∞ :=
ci. The Azuma-Hoeffding inequality then gives the result.

Examples

The moral of McDiarmid’s inequality is that functions of independent variables
that are smooth, in the sense that they do not depend too much on any one of
their variables, are concentrated around their mean. Here are some straightforward
applications.

Example 3.2.10 (Balls and bins: empty bins). Suppose we throw m balls into n
bins independently, uniformly at random. The number of empty bins, Zn,m, is
centered at

EZn,m = n

(
1− 1

n

)m
.

Writing Zn,m as the sum of indicators
∑n

i=1 1Bi , where Bi is the event that bin
i is empty, is a natural first attempt at proving concentration around the mean.
However there is a problem—the Bis are not independent. Indeed, because there
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is a fixed number of bins, the event Bi intuitively makes the other such events less
likely. Instead let Xj be the index of the bin in which ball j lands. The Xjs are
independent by construction and, moreover, letting Zn,m = f(X1, . . . , Xm) we
have ‖Dif‖∞ ≤ 1. Indeed, moving a single ball changes the number of empty
bins by at most 1 (if at all). Hence by the method of bounded differences

P
[∣∣∣∣Zn,m − n(1− 1

n

)m∣∣∣∣ ≥ b√m] ≤ 2e−2b2 .

J

Example 3.2.11 (Pattern matching). Let X = (X1, X2, . . . , Xn) be i.i.d. random
variables taking values uniformly at random in a finite set S of size s = |S|. Let
a = (a1, . . . , ak) be a fixed string of elements of S. We are interested in the
number of occurrences of a as a (consecutive) substring in X , which we denote by
Nn. Denote by Ei the event that the substring of X starting at i is a. Summing
over the starting positions and using the linearity of expectation, the mean of Nn is

ENn = E

[
n−k+1∑
i=1

1Ei

]
= (n− k + 1)

(
1

s

)k
.

However the 1Eis are not independent. So we cannot use a Chernoff bound for
Poisson trials (Theorem 2.4.7). Instead we use the fact that Nn = f(X) where
‖Dif‖∞ ≤ k, as each Xi appears in at most k substrings of length k. By the
method of bounded differences, for all b > 0,

P

[∣∣∣∣∣Nn − (n− k + 1)

(
1

s

)k∣∣∣∣∣ ≥ bk√n
]
≤ 2e−2b2 .

J

The last two examples are perhaps not surprising in that they involve “sums of
weakly independent” indicator variables. One might reasonably expect a sub-
Gaussian-type inequality in that case. The next application is more striking and
hints at connections to isoperimetric considerations (which we will not explore
here).

Example 3.2.12 (Concentration of measure on the hypercube). For A ⊆ {0, 1}n a
subset of the hypercube and r > 0, we let

Ar =

{
x ∈ {0, 1}n : inf

a∈A
‖x− a‖1 ≤ r

}
,
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be the points at `1 distance at most r from A. Fix ε ∈ (0, 1/2) and assume that
|A| ≥ ε2n. Let λε be such that e−2λ2

ε = ε. The following application of the
method of bounded differences indicates that much of the uniform measure on the
high-dimensional hypercube lies in a close neighborhood of any such set A. This
is an example of the concentration of measure phenomenon.

Claim 3.2.13.
r > 2λε

√
n =⇒ |Ar| ≥ (1− ε)2n.

Proof. Let X = (X1, . . . , Xn) be uniformly distributed in {0, 1}n. Note that the
coordinates are in fact independent. The function

f(x) = inf
a∈A
‖x− a‖1,

has ‖Dif‖∞ ≤ 1. Indeed changing one coordinate of x can increase the `1 distance
to the closest point to x by at most 1; in the other direction, if a one-coordinate
change were to decrease f by more than 1, reversing it would produce an increase
of that same amount—a contradiction. Hence McDiarmid’s inequality gives

P [Ef(X)− f(X) ≥ β] ≤ exp

(
−2β2

n

)
.

Choosing β = Ef(X) and noting that f(x) ≤ 0 if and only if x ∈ A gives

P[A] ≤ exp

(
−2(Ef(X))2

n

)
,

or, rearranging and using our assumption on A,

Ef(X) ≤

√
1

2
n log

1

P[A]
≤
√

1

2
n log

1

ε
= λε

√
n.

By a second application of the method of bounded differences with β = λε
√
n,

P
[
f(X) ≥ 2λε

√
n
]
≤ P [f(X)− Ef(X) ≥ b] ≤ exp

(
−2β2

n

)
= ε.

The result follows by observing that, with r > 2λε
√
n,

|Ar|
2n
≥ P

[
f(X) < 2λε

√
n
]
≥ 1− ε.
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Claim 3.2.13 is striking for two reasons: 1) the radius 2λε
√
n is much smaller

than n, the diameter of {0, 1}n; and 2) it applies to any A (such that |A| ≥ ε2n).
The smallest r such that |Ar| ≥ (1− ε)2n in general depends on A. Here are two
extremes.

For γ > 0, let

B(γ) :=

{
x ∈ {0, 1}n : ‖x‖1 ≤

n

2
− γ
√
n

4

}
.

Note that, letting for Yn ∼ B(n, 1
2),

1

2n
|B(γ)| =

n
2
−γ
√

n
4∑

`=0

(
n

`

)
2−n = P

[
Yn ≤

n

2
− γ
√
n

4

]
. (3.2.8)

By the Berry-Esséen theorem (e.g., [Dur10, Theorem 3.4.9]), there is aC > 0 such
that, after rearranging the final quantity in (3.2.8),∣∣∣∣∣P

[
Yn − n/2√

n/4
≤ −γ

]
− P[Z ≤ −γ]

∣∣∣∣∣ ≤ C√
n
,

where Z ∼ N(0, 1). Let ε < ε′ < 1/2 and let γε′ be such that P[Z ≤ −γε′ ] = ε′.
Then setting A := B(γε′), for n large enough, we have |A| ≥ ε2n by (3.2.8). On
the other hand, setting r := γε′

√
n/4, we have Ar ⊆ B(0), so that |Ar| ≤ 1

22n <
(1− ε)2n. We have shown that r = Ω(

√
n) is in general required for Claim 3.2.13

to hold.
For an example at the other extreme, assume for simplicity that N := ε2n is

an integer. Let A ⊆ {0, 1}n be constructed as follows: starting from the empty set,
add points in {0, 1}n to A independently, uniformly at random until |A| = N . Set
r := 2. Each point selected in A has

(
n
2

)
points within `1 distance 2. By a union

bound, the probability that Ar does not cover all of {0, 1}n is at most

P[|{0, 1}n\Ar| > 0] ≤
∑

x∈{0,1}n
P[x /∈ Ar] ≤ 2n

(
1−

(
n
2

)
2n

)ε2n
≤ 2ne−ε(

n
2),

where, in the second inequality, we considered only the first N picks in the con-
struction of A (possibly with repeats), and in the third inequality we used 1− z ≤
e−z for all z ∈ R (see Exercise 1.16). In particular, as n→ +∞,

P[|{0, 1}n\Ar| > 0] < 1.

So for n large enough there is a set A such that Ar = {0, 1}n where r = 2. J
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Remark 3.2.14. In fact, it can be shown that sets of the form {x : ‖x‖1 ≤ s} have
the smallest “expansion” among subsets of {0, 1}n of the same size, a result known as
Harper’s vertex isoperimetric theorem. See, for example, [BLM13, Theorem 7.6 and Exer-
cises 7.11-7.13].

3.2.3 . Random graphs: exposure martingale and application to the
chromatic number in Erdős-Rényi model

Exposure martingales In the context of the Erdős-Rényi graph model (Defi-
nition 1.2.2), a common way to apply the Azuma-Hoeffding inequality (Theo-
rem 3.2.1) is to introduce an “exposure martingale.” Let G ∼ Gn,p and let F
be any function on graphs such that En,p|F (G)| < +∞ for all n, p. Choose an
arbitrary ordering of the vertices and, for i = 1, . . . , n, denote by Hi the sub-
graph of G induced by the first i vertices. Then the filtrationHi = σ(H1, . . . ,Hi),
i = 1, . . . , n, corresponds to adding the vertices of G one at a time (together with
their edges to the previous vertices). The Doob martingale

Zi = En,p[F (G) |Hi], i = 1, . . . , n,

is known as a vertex exposure martingale. An alternative way to define the filtration vertex

exposure

martingale

is to consider instead the random variables Xi = (1{{i,j}∈G} : 1 ≤ j ≤ i) for
i = 2, . . . , n. In words, Xi is a vector whose entries indicate the status (present or
absent) of all potential edges incident with i and a vertex preceding it. Hence,Hi =
σ(X2, . . . , Xi) for i = 1, . . . , n (andH1 is trivial as it corresponds to a graph with
a single vertex and no edge). This representation has an important property: the
Xis are independent as they pertain to disjoint subsets of edges. We are then in the
setting of the method of bounded differences. Re-writing F (G) = f(X1, . . . , Xn),
the vertex exposure martingale coincides with the martingale (3.2.3) used in that
context.

As an example, consider the chromatic number χ(G), that is, the smallest num-
ber of colors needed in a proper coloring of G. Define fχ(X1, . . . , Xn) := χ(G).
We use the following combinatorial observation to bound ‖Difχ‖∞.

Lemma 3.2.15. Altering the status (absent or present) of edges incident to a fixed
vertex v changes the chromatic number by at most 1.

Proof. Altering the status of edges incident to v increases the chromatic number
by at most 1, since in the worst case one can simply use an extra color for v. On
the other hand, if the chromatic number were to decrease by more than 1 after al-
tering the status of edges incident to v, reversing the change and using the previous
observation would produce a contradiction.
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A fortiori, sinceXi depends on a subset of the edges incident with vertex i, Lemma 3.2.15
implies that ‖Difχ‖∞ ≤ 1. Hence, for all 0 < p < 1 and n, by an immediate ap-
plication of the McDiarmid’s inequality (Theorem 3.2.9):

Claim 3.2.16.

Pn,p
[
|χ(G)− En,p[χ(G)]| ≥ b

√
n− 1

]
≤ 2e−2b2 .

Edge exposure martingales can be defined in a manner similar to the vertex
edge

exposure

martingale

case: reveal the edges one at a time in an arbitrary order. By Lemma 3.2.15, the
corresponding function also satisfies the same `∞ bound. Observe however that,
for the chromatic number, edge exposure results in a much weaker bound as the
Θ(n2) random variables produce only a linear in n deviation for the same tail
probability. (The reader may want to ponder the apparent paradox: using a larger
number of independent variables seemingly leads to weaker concentration in this
case.)

Remark 3.2.17. Note that Claim 3.2.16 tells us nothing about the expectation of χ(G). It
turns out that, up to logarithmic factors, En,pn [χ(G)] is of order npn when pn ∼ n−α for
some 0 < α < 1. We will not prove this result here. See the “Bibliographic remarks” at
the end of this chapter for more on the chromatic number of Erdős-Rényi graphs.

χ(G) is concentrated on few values Much stronger concentration results can
be obtained: when pn = n−α with α > 1

2 , the chromatic number χ(G) is in
fact concentrated on two values! We give a partial result along those lines which
illustrates a less straightforward choice of martingale in the Azuma-Hoeffding in-
equality (Theorem 3.2.1).

Claim 3.2.18. Let pn = n−α with α > 5
6 and let Gn ∼ Gn,pn . Then for any ε > 0

there is ϕn := ϕn(α, ε) such that

Pn,pn [ϕn ≤ χ(Gn) ≤ ϕn + 3 ] ≥ 1− ε,

for all n large enough.

Proof. We consider the following martingale. Let ϕn be the smallest integer such
that

Pn,pn [χ(Gn) ≤ ϕn] >
ε

3
. (3.2.9)

Let Fn(Gn) be the minimal size of a set of vertices, U , in Gn such that Gn\U is
ϕn-colorable. Let (Zi) be the vertex exposure martingale associated to the quantity
Fn(Gn). The proof proceeds in two steps: we show that 1) all but O(

√
n) vertices

can be ϕn-colored and 2) the remaining vertices can be colored using 3 additional
colors. See Figure 3.2.3 for an illustration of the proof strategy.

We claim that (Zi) has increments bounded by 1.
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Figure 3.1: All but O(
√
n) vertices are colored using ϕn colors. The remaining

vertices are colored using 3 additional colors.
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Lemma 3.2.19. Changing the edges incident to a single vertex can change Fn by
at most 1.

Proof. Changing the edges incident to v can increase Fn by at most 1. Indeed, if
Fn increases after such a change, it must be that v /∈ U since in the other case the
edges incident with v would not affect the colorability of Gn \ U—present or not.
So we can add v to U and restore colorability. On the other hand, if Fn were to
decrease by more than 1, reversing the change and using the previous observation
would give a contradiction.

Choose bε such that e−b
2
ε/2 = ε

3 . Then, applying the Azuma-Hoeffding in-
equality to (−Zi),

Pn,pn
[
Fn(Gn)− En,pn [Fn(Gn)] ≤ −bε

√
n− 1

]
≤ ε

3
,

which, since Pn,pn [Fn(Gn) = 0] = Pn,pn [χ(Gn) ≤ ϕn] > ε
3 , implies that

En,pn [Fn(Gn)] ≤ bε
√
n− 1.

Applying the Azuma-Hoeffding inequality to (Zi) gives

Pn,pn
[
Fn(Gn) ≥ 2bε

√
n− 1

]
≤ Pn,pn

[
Fn(Gn)− En,pn [Fn(Gn)] ≥ bε

√
n− 1

]
≤ ε

3
. (3.2.10)

So with probability at least 1 − ε
3 , we can color all vertices but 2bε

√
n− 1 using

ϕn colors. Let U be the remaining uncolored vertices.
We claim that, with high probability, we can color the vertices in U using at

most 3 extra colors.

Lemma 3.2.20. Fix c > 0, α > 5
6 and ε > 0. Let Gn ∼ Gn,pn with pn = n−α.

For all n large enough,

Pn,pn
[

every subset of c
√
n vertices of Gn can be 3-colored

]
> 1− ε

3
. (3.2.11)

Proof. We use the first moment method (Theorem 2.2.6). We refer to a subset of
vertices that is not 3-colorable but such that all of its subsets are as minimal, non
3-colorable. Let Yn be the number of such subsets of size at most c

√
n in Gn.

Any minimal, non 3-colorable subset W must have degree at least 3. Indeed
suppose that w ∈ W has degree less than 3. Then W\{w} is 3-colorable by
definition. But, since w has fewer than 3 neighbors, it can also be properly colored
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without adding a new color—a contradiction. In particular, the subgraph of Gn
induced by W must have at least 3

2 |W | edges. Hence, the probability that a subset
of vertices of Gn of size ` is minimal, non 3-colorable is at most((`

2

)
3`
2

)
p

3`
2
n ,

by a union bound over all subsets of edges of size 3`
2 .

By the first moment method, by the binomial bounds
(
n
`

)
≤
(
en
`

)` (see Ap-
pendix A) and

(
`
2

)
≤ `2/2, for some c′ ∈ (0,+∞)

Pn,pn [Yn > 0] ≤ En,pnYn

≤
c
√
n∑

`=4

(
n

`

)((`
2

)
3`
2

)
p

3`
2
n

≤
c
√
n∑

`=4

(en
`

)`(e`
3

) 3`
2

n−
3`α
2

≤
c
√
n∑

`=4

(
e

5
2n1− 3α

2 `
1
2

3
3
2

)`

≤
c
√
n∑

`=4

(
c′n

5
4
− 3α

2

)`
≤ O

(
n

5
4
− 3α

2

)4

→ 0,

as n → +∞, where we used that 5
4 −

3α
2 < 5

4 −
5
4 = 0 when α > 5

6 so that
the geometric series is dominated by its first term. Therefore for n large enough
Pn,pn [Yn > 0] ≤ ε/3, concluding the proof.

By the choice of ϕn in (3.2.9),

Pn,pn [χ(Gn) < ϕn] ≤ ε

3
.

By (3.2.10) and (3.2.11) with c = 2bε,

Pn,pn [χ(Gn) > ϕn + 3] ≤ 2ε

3
.

So, overall,
Pn,pn [ϕn ≤ χ(Gn) ≤ ϕn + 3] ≥ 1− ε.

That concludes the proof.
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3.2.4 . Random graphs: degree sequence of preferential attachment
graphs

Let (Gt)t≥1 ∼ PA1 be a preferential attachment graph (Definition 1.2.3). A key
feature of such graphs is a power-law degree sequence: the fraction of vertices with
degree d behaves like∝ d−α for some α > 0, that is, it has a fat tail. Recall that we
restrict ourselves to the tree case. In contrast, we will show in Section 4.1.4 that
a (sparse) Erdős-Rényi random graph has an asymptotically Poisson-distributed
degree sequence, and therefore a much thinner tail.

Power law degree sequence Let Di(t) be the degree of the i-th vertex in Gt,
denoted vi, and let

Nd(t) :=
t∑
i=0

1{Di(t)=d},

be the number of vertices of degree d in Gt. By construction N0(t) = 0 for all t.
Define the sequence

fd :=
4

d(d+ 1)(d+ 2)
, d ≥ 1. (3.2.12)

Our main claim is:

Claim 3.2.21.
1

t
Nd(t)→p fd, ∀d ≥ 1.

Proof. The claim is immediately implied by the following lemmas.

Lemma 3.2.22 (Convergence of the mean).

1

t
ENd(t)→ fd, ∀d ≥ 1.

Lemma 3.2.23 (Concentration around the mean). For any δ > 0,

P

[∣∣∣∣1t Nd(t)−
1

t
ENd(t)

∣∣∣∣ ≥
√

2 log δ−1

t

]
≤ 2δ, ∀d ≥ 1, ∀t.

An alternative representation of the process We start with the proof of Lem-
ma 3.2.23, which is an application of the method of bounded differences.
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Proof of Lemma 3.2.23. In our description of the preferential attachment process,
the random choices made at each time depend in a seemingly complicated way
on previous choices. In order to establish concentration of the process around its
mean, we introduce a clever, alternative construction which has the advantage that
it involves independent choices.

We start with a single vertex v0. At time 1, we add a single vertex v1 and an
edge e1 connecting v0 and v1. For bookkeeping, we orient edges away from the
vertex of higher time index (but we ignore the orientations in the output). For a
directed edge (i, j), we refer to i as its tail and j as its head. For all s ≥ 2, let
Xs be an independent, uniformly chosen edge extremity among the edges inGs−1,
that is, pick a uniform element in

Xs := {(1, tail), (1,head), . . . , (s− 1, tail), (s− 1, head)}.

To form Gs, attach a new edge es to the vertex of Gs−1 corresponding to Xs. A
vertex of degree d′ in Gs−1 is selected with probability d′

2(s−1) , as it should. Note
that Xs can be picked in advance independently of the sequence (Gs′)s′<s. For
instance, if x2 = (1, head), x3 = (2, tail) and x4 = (3,head), the graph obtained
at time 4 is depicted in Figure 3.2.

We claim that Nd(t) =: h(X2, . . . , Xt) as a function of X2, . . . , Xt satisfies
‖Dih‖∞ ≤ 2. Indeed let (x2, . . . , xt) be a realization of (X2, . . . , Xt) and let
y ∈ Xs with y 6= xs. Replacing xs = (i, end) with y = (j, end′) where i, j ∈
{1, . . . , s−1} and end, end′ ∈ {tail, head} has the effect of redirecting the head of
edge es from the end of ei to the end′ of ej . This redirection also brings along with
it the heads of all other edges associated with the choice (s, head). But, crucially,
those changes only affect the degrees of the vertices (i, end) and (j, end′) in the
original graph. Hence the number of vertices with degree d changes by at most
2, as claimed. For instance, returning to the example of Figure 3.2. If we replace
x3 = (2, tail) with y = (1, tail), one obtains the graph in Figure 3.3. Note that
only the degrees of vertices v1 and v2 are affected by this change.

By McDiarmid’s inequality (Theorem 3.2.9), for all β > 0,

P[|Nd(t)− ENd(t)| ≥ β] ≤ 2 exp

(
− 2β2

(2)2(t− 1)

)
,

which, choosing β =
√

2t log δ−1, we can rewrite as

P

[∣∣∣∣1t Nd(t)−
1

t
ENd(t)

∣∣∣∣ ≥
√

2 log δ−1

t

]
≤ 2δ.

That concludes the proof of the lemma.
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Figure 3.2: Graph obtained when x2 = (1,head), x3 = (2, tail) and x4 =
(3, head).
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Figure 3.3: Substituting x3 = (2, tail) with y = (1, tail) in the example of
Figure 3.2 has the effect of replacing the dashed edges with the dotted edges. Note
that only the degrees of vertices v1 and v2 are affected by this change.
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Dynamics of the mean Once again the method of bounded differences tells us
nothing about the mean, which must be analyzed by other means. The proof of
Lemma 3.2.22 does not rely on the Azuma-Hoeffding inequality but is given for
completeness (and may be skipped).

Proof of Lemma 3.2.22. The idea of the proof is to derive a recursion for fd by
considering the evolution of ENd(t) and taking a limit as t → +∞. Let d ≥ 1.
Observe that ENd(t) = 0 for t ≤ d − 1 since we need at least d edges to have
a degree-d vertex. Moreover, by the description of the preferential attachment
process, the following recursion holds for t ≥ d− 1

ENd(t+ 1)− ENd(t) =
d− 1

2t
ENd−1(t)︸ ︷︷ ︸

(a)

− d

2t
ENd(t)︸ ︷︷ ︸

(b)

+1{d=1}︸ ︷︷ ︸
(c)

. (3.2.13)

Indeed: (a) Nd(t) increases by 1 if a vertex of degree d − 1 is picked, an event of
probability d−1

2t Nd−1(t) because the sum of degrees at time t is twice the number
of edges (i.e., t); (b) Nd(t) decreases by 1 if a vertex of degree d is picked, an
event of probability d

2tNd(t); and (c) the last term comes from the fact that the new
vertex always has degree 1. We rewrite (3.2.13) as

ENd(t+ 1) = ENd(t) +
d− 1

2t
ENd−1(t)− d

2t
ENd(t) + 1{d=1}

=

(
1− d/2

t

)
ENd(t) +

{
d− 1

2

[
1

t
ENd−1(t)

]
+ 1{d=1}

}
=:

(
1− d/2

t

)
ENd(t) + gd(t), (3.2.14)

where gd(t) is defined as the expression in curly brackets on the second line. We
will not solve this recursion explicitly. Instead we seek to analyze its asymptotics,
specifically we show that 1

tENd(t)→ fd.
The key is to notice that the expression forENd(t+1) depends on 1

tENd−1(t)—
so we work by induction on d. Because of the form of the recursion, the following
technical lemma is what we need to proceed.

Lemma 3.2.24. Let f, g be nonnegative functions of t ∈ N satisfying the following
recursion

f(t+ 1) =
(

1− α

t

)
f(t) + g(t), ∀t ≥ t0,

with g(t) → g ∈ [0,+∞) as t → +∞, and where α > 0, t0 ≥ 2α, f(t0) ≥ 0 are
constants. Then

1

t
f(t)→ g

1 + α
,

as t→ +∞.
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The proof of this lemma is given after the proof of Claim 3.2.21. We first
conclude the proof of Lemma 3.2.22. First let d = 1. In that case, g1(t) = g1 := 1,
α := 1/2, and t0 := 1. By Lemma 3.2.24,

1

t
EN1(t)→ 1

1 + 1/2
=

2

3
= f1.

Assuming by induction that 1
tENd−1(t)→ fd−1 we get

gd(t)→ gd :=
d− 1

2
fd−1,

as t→ +∞. Using Lemma 3.2.24 with α := d/2 and t0 := d− 1, we obtain

1

t
ENd(t)→

1

1 + d/2

[
d− 1

2
fd−1

]
=
d− 1

d+ 2
· 4

(d− 1)d(d+ 1)
= fd.

That concludes the proof of Lemma 3.2.22.

To prove Claim 3.2.21, we combine Lemmas 3.2.22 and 3.2.23. Fix any d, δ, ε >
0. Choose t′ large enough that for all t ≥ t′

max

{∣∣∣∣1tENd(t)− fd
∣∣∣∣ ,
√

2 log δ−1

t

}
≤ ε.

Then

P
[∣∣∣∣1t Nd(t)− fd

∣∣∣∣ ≥ 2ε

]
≤ 2δ,

for all t ≥ t′. That proves convergence in probability.

Proof of the technical lemma It remains to prove Lemma 3.2.24.

Proof of Lemma 3.2.24. By induction on t, we have

f(t+ 1) =
(

1− α

t

)
f(t) + g(t)

=
(

1− α

t

)[(
1− α

t− 1

)
f(t− 1) + g(t− 1)

]
+ g(t)

=
(

1− α

t

)
g(t− 1) + g(t) +

(
1− α

t

)(
1− α

t− 1

)
f(t− 1)

= · · ·

=

t−t0∑
i=0

g(t− i)
i−1∏
j=0

(
1− α

t− j

)
+ f(t0)

t−t0∏
j=0

(
1− α

t− j

)
,
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or

f(t+ 1) =
t∑

s=t0

g(s)
t∏

r=s+1

(
1− α

r

)
+ f(t0)

t∏
r=t0

(
1− α

r

)
, (3.2.15)

where empty products are equal to 1. To guess the limit note that, for large s, g(s)
is roughly constant and that the product in the first term behaves like

exp

(
−

t∑
r=s+1

α

r

)
≈ exp (−α(log t− log s)) ≈ sα

tα
.

So approximating the sum by an integral we get that f(t + 1) ≈ gt
α+1 , which is

indeed consistent with the claim.
Formally, we use that there is a constant γ = 0.577 . . . such that (see e.g. [LL10,

Lemma 12.1.3])
m∑
`=1

1

`
= logm+ γ + Θ(m−1),

and that by a Taylor expansion, for |z| ≤ 1/2,

log (1− z) = −z + Θ(z2).

Fix η > 0 small and take t large enough that ηt > 2α and |g(s) − g| < η for all
s ≥ ηt. Then, for s+ 1 ≥ t0,

t∑
r=s+1

log
(

1− α

r

)
= −

t∑
r=s+1

{α
r

+ Θ(r−2)
}

= −α (log t− log s) + Θ(s−1),

so, taking exponentials,

t∏
r=s+1

(
1− α

r

)
=
sα

tα
(1 + Θ(s−1)).

Hence

1

t
f(t0)

t∏
r=t0

(
1− α

r

)
=

tα0
tα+1

(1 + Θ(t−1
0 ))→ 0,
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as t→ +∞. Moreover

1

t

t∑
s=ηt

g(s)

t∏
r=s+1

(
1− α

r

)
≤ 1

t

t∑
s=ηt

(g + η)
sα

tα
(1 + Θ(s−1))

≤ O(η) + (1 + Θ(t−1))
g

tα+1

t∑
s=ηt

sα

≤ O(η) + (1 + Θ(t−1))
g

tα+1

(t+ 1)α+1

α+ 1

→ O(η) +
g

α+ 1
,

where we bounded the sum on the second line by an integral. Similarly,

1

t

ηt−1∑
s=t0

g(s)
t∏

r=s+1

(
1− α

r

)
≤ 1

t

ηt−1∑
s=t0

(g + η)
sα

tα
(1 + Θ(s−1))

≤ ηt

t
(g + η)

(ηt)α

tα
(1 + Θ(t−1

0 ))

→ O(ηα+1).

Plugging these inequalities back into (3.2.15), we get

lim sup
t

1

t
f(t+ 1) ≤ g

1 + α
+O(η).

A similar inequality holds in the other direction. Letting η → 0 concludes the
proof.

Remark 3.2.25. A more quantitative result (uniform in t and d) can be derived. See, for
example, [vdH17, Sections 8.5, 8.6]. See the same reference for a generalization beyond
trees.

3.2.5 . Data science: stochastic bandits and the slicing method

In this section, we consider an application of the maximal Azuma-Hoeffding in-
equality (Theorem 3.2.1) to (multi-armed) bandit problems. These are meant as a
simple model of sequential decision making with limited information where a fun-
damental issue is trading off between exploitation of actions that have done well in
the past and exploration of actions that might perform better in the future. A typ-
ical application is online advertising, where one must decide which advertisement
to display to the next visitor to a website.
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In the simplest version of the (two-arm) stochastic bandit problem, there are
stochastic bandit

two unknown reward distributions ν1, ν2 over [0, 1] with respective means µ1 6= µ2.
At each time t = 1, . . . , n, we request an independent sample from νIt , where
we are free to choose It ∈ {1, 2} based on past choices and observed rewards
{(Is, Zs)}s<t. This will be referred to as pulling arm It. We then observe the arm
reward Zt ∼ νIt . Letting µ∗ := µ1 ∨ µ2, our goal is to minimize

Rn = nµ∗ − E

[
n∑
t=1

µIt

]
, (3.2.16)

which is known as the pseudo-regret. That is, we seek to make choices (It)
n
t=1 pseudo-regret

that minimize the difference between the best achievable cumulative mean reward
and the expected cumulative mean reward from our decisions. Note that the expec-
tation in (3.2.16) is taken over the choices (It)

n
t=1, which themselves depend on

the random rewards (Zs)
n
t=1. As indicated above, because ν1 and ν2 are unknown,

there is a fundamental friction between exploiting the arm that has done best in the
past and exploring further the other arm, which might perform better in the future.

One general approach that has proved effective in this type of problem is known
as optimism in the face of uncertainty. Roughly speaking, we construct a set of
plausible environments (in our case, the means of the reward distributions) that are
consistent with observed data; then we make an optimal decision assuming that the
true environment is the most favorable among them. A concrete implementation
of this principle is the Upper Confidence Bound (UCB) algorithm, which we now

UCB
describe. In words, we use a concentration inequality to build a confidence interval
for each reward mean, and then we pick the arm with highest upper bound.

UCB algorithm

To state the algorithm formally, we will need some notation. For i = 1, 2, let Ti(t)
be the number of times arm i is pulled up to time t

Ti(t) =
∑
s≤t

1{Is = i},

and let Xi,s, s = 1, . . . , n, be i.i.d. samples from νi. Assume that the reward at
time t is

Zt =

{
X1,T1(t−1)+1 if It = 1,
X2,T2(t−1)+1 otherwise.
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In other words, Xi,s is the s-th observed reward from arm i. Let µ̂i,s be the sample
mean of the observed rewards after pulling s times on arm i

µ̂i,s =
1

s

∑
r≤s

Xi,r.

Since the Xi,ss are independent and [0, 1]-valued by assumption, by Hoeffd-
ing’s inequality (Theorem 2.4.10), for any β > 0

P[µ̂i,s − µi ≥ β] ∨ P[µi − µ̂i,s ≥ β] ≤ exp
(
−2sβ2

)
.

The right-hand side can be made ≤ δ provided

β ≥
√

log δ−1

2s
:= H(s, δ).

We are now ready to state theα-UCB algorithm, whereα > 1 is the exploration
parameter. At each time t, we pick

It ∈ arg max
i=1,2

{
µ̂i,Ti(t−1) + αH(Ti(t− 1), 1/t)

}
.

The argument above implies that the true mean µi has probability less than 1/tα
2

of being higher than µ̂i,Ti(t−1) + αH(Ti(t − 1), 1/t). The algorithm makes an
“optimistic” decision: it chooses the higher of the two values.

The following theorem shows that UCB achieves a pseudo-regret of the order
of O(log n). Define ∆i = µ∗ − µi and ∆∗ = ∆1 ∨∆2.

Theorem 3.2.26 (Pseudo-regret of UCB). In the two-arm stochastic bandit prob-
lem where the rewards are in [0, 1] with distinct means, α-UCB with α > 1
achieves

Rn ≤
2α2

∆∗
log n+ ∆∗Cα,

for some constant Cα ∈ (0,+∞) depending only on α.

This bound should not come entirely as a surprise. Indeed a simple, alternative
approach to UCB is to (1) first pull each arm mn = o(n) times and then (2) use
the arm with largest estimated mean for the remainder. Assuming there is a known
lower bound on ∆∗, then Hoeffding’s inequality (Theorem 2.4.10) guarantees that
mn can be chosen of the order of 1

∆2
∗

log n to identify the largest mean with proba-
bility 1−1/n. Because the rewards are bounded by 1, accounting for the contribu-
tion of the first phase and the probability of failure in the second phase, one gets a
pseudo-regret of the order of ∆∗ 1

∆2
∗

log n+ 1
n∆∗n ≈ 1

∆∗
log n. The UCB strategy,

on the other hand, elegantly adapts to the gap ∆∗ and the horizon n.
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Analysis of the UCB algorithm

We break down the proof into a sequence of lemmas. We first rewrite the pseudo-
regret as

Rn = nµ∗ − E

[
n∑
t=1

µIt

]

= E

[
n∑
t=1

(µ∗ − µIt)

]

= E

 n∑
t=1

∑
i=1,2

1{It = i}∆i


=
∑
i=1,2

∆iE[Ti(n)]. (3.2.17)

Hence the problem boils down to bounding E[Ti(n)], the expected number of times
that arm i is pulled. Note that Ti(n) is a complicated function of the observations.
To analyze it, we will use the following sufficient condition. Let i∗ be the optimal
arm, that is, the one that achieves µ∗. Intuitively, if arm i 6= i∗ is pulled, it is
because: either our upper estimate of µi∗ happens to be low or our lower estimate
of µi happens to be high (i.e., our concentration inequality failed); or there is too
much uncertainty in our estimate of µi (i.e., we haven’t pulled arm i enough).

Lemma 3.2.27. Under the α-UCB strategy, if arm i 6= i∗ is pulled at time t then
at least one of the following events hold:

Et,1 = {µ̂i∗,Ti∗ (t−1) + αH(Ti∗(t− 1), 1/t) ≤ µ∗}, (3.2.18)

Et,2 = {µ̂i,Ti(t−1) − αH(Ti(t− 1), 1/t) > µi}, (3.2.19)

Et,3 =

{
αH(Ti(t− 1), 1/t) >

∆i

2

}
. (3.2.20)

Proof. We argue by contradiction. Assume all the conditions above are false. Then

µ̂i∗,Ti∗ (t−1) + αH(Ti∗(t− 1), 1/t) > µ∗

= µi + ∆i

≥ µ̂i,Ti(t−1) + αH(Ti(t− 1), 1/t).

That implies that arm i would not be chosen.
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We first deal with Et,3. Let

un =
2α2 log n

∆2
∗

.

Using the condition in Lemma 3.2.27, we get the following bound on E[Ti(n)].

Lemma 3.2.28. Under the α-UCB strategy, for i 6= i∗,

E[Ti(n)] ≤ un +

n∑
t=1

P[Et,1] +

n∑
t=1

P[Et,2].

Proof. For i 6= i∗, by definition of Ti(n),

E[Ti(n)] = E

[
n∑
t=1

1{It=i}

]

≤ E

[
n∑
t=1

[
1{It=i}∩Et,1 + 1{It=i}∩Et,2 + 1{It=i}∩Et,3

]]
,

where we used that by Lemma 3.2.27

{It = i} ⊆ Et,1 ∪ Et,2 ∪ Et,3.

The condition in Et,3 can be written equivalently as

α

√
log t

2Ti(t− 1)
>

∆i

2
⇐⇒ Ti(t− 1) <

2α2 log t

∆2
i

.

In particular, for all t ≤ n, the event Et,3 implies that Ti(t− 1) < un. As a result,
since Ti(t) = Ti(t − 1) + 1 whenever It = i, the event {It = i} ∩ Et,3 can occur
at most un times and

E[Ti(n)] ≤ un + E

[
n∑
t=1

[
1{It=i}∩Et,1 + 1{It=i}∩Et,2

]]

≤ un +
n∑
t=1

P[Et,1] +
n∑
t=1

P[Et,2],

which proves the claim.
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It remains to bound P[Et,1] and P[Et,2] from above. This is not entirely straight-
forward because, while µ̂i,Ti(t−1) involves a sum of independent random variables,
the number of terms Ti(t − 1) is itself a random variable. Moreover Ti(t − 1)
depends on the past rewards Zs, s ≤ t − 1, in a complex way. So in order to
apply a concentration inequality to µ̂i,Ti(t−1), we use a rather blunt approach: we
bound the worst deviation over all possible (deterministic) values in the support of
Ti(t− 1). That is,

P[Et,2] = P[µ̂i,Ti(t−1) − αH(Ti(t− 1), 1/t) > µi]

≤ P

 ⋃
s≤t−1

{µ̂i,s − αH(s, 1/t) > µi}

 . (3.2.21)

We reformulate the previous bound as

P

 ⋃
s≤t−1

{µ̂i,s − αH(s, 1/t) > µi}


= P

[
sup
s≤t−1

(µ̂i,s − µi − αH(s, 1/t)) > 0

]

= P

 sup
s≤t−1

1

s

∑
r≤s

Xi,r − µi − α
√

log t

2s

 > 0


= P

 sup
s≤t−1

1√
s

 1√
s

∑
r≤s

(Xi,r − µi)− α
√

log t

2

 > 0


= P

[
sup
s≤t−1

∑s
r=1(Xi,r − µi)√

s
> α

√
log t

2

]
. (3.2.22)

Observe that the numerator on the left-hand side of the inequality on the last line
is a martingale (see Example 3.1.29) with increments in [−µi, 1 − µi]. But the
denominator depends on s.

We try two approaches:

- We could simply use that
√
s ≥ 1 on the denominator and apply the maximal
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Azuma-Hoeffding inequality (Theorem 3.2.1) to get

n∑
t=1

P[Et,2] ≤
n∑
t=1

P

[
sup
s≤t−1

s∑
r=1

(Xi,r − µi) > α

√
log t

2

]

≤
n∑
t=1

exp

(
−

2(α
√

(log t)/2)2

t− 1

)

≤
n∑
t=1

exp

(
−α2 log t

t− 1

)
. (3.2.23)

That is of order Θ(n) for any α.

- On the other hand, we could use a union bound over s and apply the maximal
Azuma-Hoeffding inequality to each term to get

n∑
t=1

P[Et,2] ≤
n∑
t=1

∑
s≤t−1

P

[
s∑
r=1

(Xi,r − µi) > α

√
s log t

2

]

≤
n∑
t=1

∑
s≤t−1

exp

(
−

2(α
√

(s log t)/2)2

s

)

=

n∑
t=1

(t− 1) exp
(
−α2 log t

)
≤

n∑
t=1

1

tα2−1
. (3.2.24)

The series converges for α >
√

2. Therefore, in that case, this bound is
Θ(1), which is much better than our previous attempt. For 1 < α ≤

√
2

however, we get a bound of order Θ(nα
2
), which is worse than before.

It turns out that doing something “in between” the two approaches above gives
a bound that significantly improves over both of them in the 1 < α ≤

√
2 regime.

This is known as the slicing (or peeling) method.

Slicing method

The slicing method is useful when bounding a weighted supremum. Its application
slicing method

is somewhat problem-specific so we will content ourselves with illustrating it in
our case. Specifically, our goal is to control probabilities of the form

P
[

sup
s≤t−1

Ms

w(s)
≥ β

]
,
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where Ms :=
∑s

r=1(Xi,r − µi), w(s) :=
√
s, and β := α

√
log t

2 . The idea is to

divide up the supremum into slices γk−1 ≤ s < γk, k ≥ 1, where the constant
γ > 1 will be optimized below. That is, fixing Kt = d log t

log γ e (which roughly solves
γKt = t), by a union bound over the slices

P
[

sup
1≤s<t

Ms

w(s)
≥ β

]
≤

Kt∑
k=1

P

[
sup

γk−1≤s<γk

Ms

w(s)
≥ β

]
.

Because w(s) is increasing, on each slice separately we can bound

P

[
sup

γk−1≤s<γk

Ms

w(s)
≥ β

]
≤ P

[
sup

γk−1≤s<γk

Ms

w(γk−1)
≥ β

]

= P

[
sup

γk−1≤s<γk
Ms ≥ βw(γk−1)

]

≤ P

[
sup
s≤γk

Ms ≥ βw(γk−1)

]
.

Now we apply the maximal Azuma-Hoeffding inequality (Theorem 3.2.1) to obtain

P

[
sup
s≤γk

Ms ≥ βw(γk−1)

]
≤ exp

(
−2(βw(γk−1))2

γk

)
≤ exp

(
−2β2

γ

)
= t−α

2/γ ,

where we used that Ms−Ms−1 = Xi,s− µi ∈ [−µi, 1− µi], an interval of length
1. Plugging this back above we get

P
[

sup
1≤s<t

Ms

w(s)
≥ β

]
≤
⌈

log t

log γ

⌉
t−α

2/γ . (3.2.25)

Now we see the tradeoff: increasing γ makes the slices larger and hence the tail
inequality weaker, but it also makes the number of slices smaller which helps with
the union bound.

Combining (3.2.21), (3.2.22), and (3.2.25), we have proved:

Lemma 3.2.29. For any γ > 1, it holds that
n∑
t=1

P[Et,2] ≤
n∑
t=1

⌈
log t

log γ

⌉
t−α

2/γ ,

and similarly for P[Et,1].
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For α > 1, we can choose γ > 1 such that α2/γ > 1. In that case, the series on
the right-hand side is summable. This improves over both (3.2.23) and (3.2.24).

We are ready to prove the main result.

Proof of Theorem 3.2.26. By (3.2.17) and Lemmas 3.2.27, 3.2.28 and 3.2.29, we
have

Rn =
∑
i=1,2

∆iE[Ti(n)] ≤ ∆∗

(
un + 2

n∑
t=1

⌈
log t

log γ

⌉
t−α

2/γ

)
.

Recalling that α > 1, choose γ > 1 such that α2/γ > 1. In that case, as noted
above, the series on the right hand side is summable and there is Cα ∈ (0,+∞)
such that

Rn ≤ ∆∗(un + Cα).

That proves the claim.

Remark 3.2.30. A slightly better—and provably optimal—multiplicative constant
in the pseudo-regret bound has been obtained by [GC11] using a variant of UCB
called KL-UCB. The matching lower bound is due to [LR85]. See also [BCB12,
Sections 2.3-2.4]. Further improvements can be obtained by using Bernstein’s
rather than Hoeffding’s inequality [AMS09].

3.2.6 Coda: Talagrand’s inequality

We end this section with a celebrated concentration inequality that applies un-
der weaker conditions than McDiarmid’s inequality (Theorem 3.2.9)—but is not
proved using the martingale method. It is known as Talagrand’s inequality.

Bounds on ‖Dif‖∞ are often expressed in terms of a Lipschitz condition under
an appropriate metric. Let 0 < ci < +∞, i = 1, . . . , n and c = (c1, . . . , cn). The
c-weighted Hamming distance is defined as

weighted

Hamming

distanceρc(x,y) :=
n∑
i=1

ci1{xi 6=yi},

for x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ X1 × · · · × Xn. The proof of the
following equivalence is left as an exercise (see Exercise 3.8).

Lemma 3.2.31 (Lipschitz condition). A function f : X1 × · · · × Xn → R satisfies
the Lipschitz condition

|f(x)− f(y)| ≤ ρc(x,y), ∀x,y ∈ X1 × · · · × Xn, (3.2.26)

if and only if
‖Dif‖∞ ≤ ci, ∀i.
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Consider the following relaxed version of (3.2.26):

f(x)− f(y) ≤
n∑
i=1

ci(x)1{xi 6=yi}, ∀x,y ∈ X1 × · · · × Xn, (3.2.27)

where now ci(x) is a finite, positive function over X1× · · ·×Xn. Notice the “one-
sided” nature of this condition, in the sense that ci depends on x but not on y. A
typical example where (3.2.27) is satisfied, but (3.2.26) is not, is given below.

We state Talagrand’s inequality without proof.

Talagrand’s

inequality
Theorem 3.2.32 (Talagrand’s inequality). LetX1, . . . , Xn be independent random
variables where Xi is Xi-valued for all i, and let X = (X1, . . . , Xn). Assume
f : X1 × · · · × Xn → R is a measurable function such that (3.2.27) holds. Then
f(X) is sub-Gaussian with variance factor ‖

∑
i≤n c

2
i ‖∞. In fact, for all β > 0

the following upper and lower tail bounds hold

P[f(X)− Ef(X) ≥ β] ≤ exp

(
− β2

2‖
∑

i≤n c
2
i ‖∞

)
,

and

P[f(X)− Ef(X) ≤ −β] ≤ exp

− β2

2E
[∑

i≤n ci(X)2
]
 .

Compared to McDiarmid’s inequality (Theorem 3.2.9), the upper tail in Theo-
rem 3.2.32 has the sum over the coordinates inside the supremum, potentially a
major improvement; the lower tail is even better, replacing the supremum with an
expectation.

Example 3.2.33 (Spectral norm of a random matrix with bounded entries). Let A
be an n × n random matrix. We assume that the entries Ai,j , i, j = 1, . . . , n, are
independent, centered random variables in [−1, 1]. In Theorem 2.4.28, we proved
an upper tail bound on the spectral norm

‖A‖2 = sup
x∈Rn\{0}

‖Ax‖2
‖x‖2

= sup
x∈Sn−1

y∈Sn−1

〈Ax,y〉,

of such a matrix (in the more general sub-Gaussian case) using an ε-net argument.
Theorem 2.4.28 also implies that E‖A‖2 = O(

√
n) by (B.5.1). (See Exercise 3.9

for a lower bound on the expectation.)
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Here we use Talagrand’s inequality (Theorem 3.2.32) directly to show concen-
tration around the mean. For this, we need to check (3.2.27) where we think of the
spectral norm as a function of n2 independent random variables

‖A‖2 = f({Ai,j}i,j).

Let x∗(A) and y∗(A) be unit vectors in Rn such that

‖A‖2 = 〈Ax∗(A),y∗(A)〉,

which exist by compactness.
Given two n× n matrices A, Ã with entries in [−1, 1], we have

‖A‖2 − ‖Ã‖2 = 〈Ax∗(A),y∗(A)〉 − sup
x∈Sn−1

y∈Sn−1

〈Ãx,y〉

≤ 〈Ax∗(A),y∗(A)〉 − 〈Ãx∗(A),y∗(A)〉

= 〈(A− Ã)x∗(A),y∗(A)〉

≤
∑
i,j

|Aij − Ãij ||x∗(A)i||y∗(A)j |

≤
∑
i,j

1
Aij 6=Ãijcij(A),

where on the last line we set

cij(A) := 2|x∗(A)i||y∗(A)j |,

and used the fact that |Aij − Ãij | ≤ 2. Note that∑
i,j

cij(A)2 = 4
∑
i

x∗(A)2
i

∑
j

y∗(A)2
j = 4.

Hence Talagrand’s inequality implies that ‖A‖2 is sub-Gaussian with variance fac-
tor 4. J

3.3 Potential theory and electrical networks

In this section we develop a classical link between random walks and electrical net-
works. The electrical interpretation is a useful physical analogy. The mathematical
substance of the connection starts with the following observation.
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Let (Xt) be a Markov chain with transition matrix P on a finite or countable
state space V . Recall from Definition 3.1.6 that τB is the first visit time to B ⊆ V .
For two disjoint subsets A,Z of V , the probability of hitting A before Z

h(x) = Px[τA < τZ ], (3.3.1)

seen as a function of the starting point x ∈ V , is harmonic (with respect to P ) on
harmonic

function
W := (A ∪ Z)c := V \ (A ∪ Z) in the sense that

h(x) =
∑
y

P (x, y)h(y), ∀x ∈W. (3.3.2)

Indeed note that h = 1 (respectively = 0) onA (respectively Z) and by the Markov
property (Theorem 1.1.18), after the first step of the chain, for x ∈W

Px[τA < τZ ] =
∑

y/∈A∪Z

P (x, y)Py[τA < τZ ]

+
∑
y∈A

P (x, y) · 1 +
∑
y∈Z

P (x, y) · 0

=
∑
y

P (x, y)Py[τA < τZ ]. (3.3.3)

Quantities such as (3.3.1) arise naturally, for instance in the study of recurrence,
and the connection to potential theory, the study of harmonic functions, proves
fruitful in that context as we outline in this section. It turns out that harmonic
functions and martingales are closely related. In Section 3.3.1 we elaborate on that
connection.

But first we rewrite (3.3.2) to reveal the electrical interpretation. For this we
switch to reversible chains. Recall that a reversible Markov chain is equivalent
to a random walk on a network N = (G, c) where the edges of G correspond
to transitions of positive probability. If the chain is reversible with respect to a
stationary measure π, then the edge weights are c(x, y) = π(x)P (x, y). In this
notation (3.3.2) becomes

h(x) =
1

c(x)

∑
y∼x

c(x, y)h(y), ∀x ∈ (A ∪ Z)c, (3.3.4)

where c(x) :=
∑

y∼x c(x, y) = π(x). In words, h(x) is the weighted average of its
neighboring values. Now comes the electrical analogy: if one interprets c(x, y) as
a conductance, a function satisfying (3.3.4) is known as a voltage. The voltages at
A and Z are 1 and 0 respectively. We show in the next subsection by a martingale
argument that, under appropriate conditions, such a voltage exists and is unique.
We develop the electrical analogy and many of its applications in Section 3.3.2.
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3.3.1 Martingales, the Dirichlet problem and Lyapounov functions

To see why martingales come in, let Ft = σ(X0, . . . , Xt) and let τ∗ := τW c . By a
first-step calculation again, for a function h satisfying (3.3.2),

h(Xt∧τ∗) = E
[
h(X(t+1)∧τ∗) | Ft

]
, ∀t ≥ 0, (3.3.5)

that is, (h(Xt∧τ∗))t is a martingale with respect to (Ft). Indeed, on {τ∗ ≤ t},

E[h(X(t+1)∧τ∗) | Ft] = h(Xτ∗) = h(Xt∧τ∗),

and on {τ∗ > t}

E[h(X(t+1)∧τ∗) | Ft] =
∑
y

P (Xt, y)h(y) = h(Xt) = h(Xt∧τ∗).

Although the rest of Section 3.3 is concerned with reversible Markov chains,
the current subsection applies to the non-reversible case as well. We give an
overview of potential theory for general, countable-space, discrete-time Markov
chains and its connections to martingales. As a major application, we introduce
the concept of a Lyapounov function which is useful in bounding certain hitting
times.

Existence and uniqueness of a harmonic extension

We begin with a special case, which will be generalized below.

Theorem 3.3.1 (Harmonic extension: existence and uniqueness). Let P be an ir-
reducible transition matrix on a finite or countably infinite state space V . Let W
be a finite, proper subset of V and let h : W c → R be a bounded function on
W c. Then there exists a unique extension of h to W that is harmonic on W , that
is, which satisfies (3.3.2). The solution is given by

h(x) = Ex [h (XτWc )] .

Proof. We first argue about uniqueness. Suppose h is defined over all of V and
satisfies (3.3.2). Let τ∗ := τW c . Then the process (h (Xt∧τ∗))t is a martingale
by (3.3.5). Because W is finite and the chain is irreducible, we have τ∗ < +∞
almost surely, as implied by Lemma 3.1.25. Moreover the process is bounded
because h is bounded on W c and W is finite. Hence by Doob’s optional stopping
theorem (Theorem 3.1.38 (ii))

h(x) = Ex[h(Xτ∗)], ∀x ∈W,
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which implies that h is unique, since the right-hand side depends only on the chain
and the fixed values of h on W c.

For the existence, simply define h(x) := Ex[h (Xτ∗)], ∀x ∈ W, and use a
first-step argument similarly to (3.3.3).

For some insights on what happens when the assumptions of Theorem 3.3.1 are
not satisfied, see Exercise 3.11. For an alternative (arguably more intuitive) proof
of uniqueness based on the maximum principle, see Exercise 3.12.

In the proof above it suffices to specify h on the outer boundary of W

∂VW = {z ∈ V \W : ∃y ∈W,P (y, z) > 0}.

Introduce the Laplacian associated to P
Laplacian

∆f(x) =

[∑
y

P (x, y)f(y)

]
− f(x)

=
∑
y

P (x, y)[f(y)− f(x)]

= Ex[f(X1)− f(X0)], (3.3.6)

provided the expectation exists. We have proved that, under the assumptions of
Theorem 3.3.1, there exists a unique solution to{

∆f(x) = 0 ∀x ∈W,
f(x) = h(x) ∀x ∈ ∂VW,

(3.3.7)

and that solution is given by f(x) = Ex[h (XτWc )], for x ∈ W ∪ ∂VW . The
system (3.3.7), in reference to its counterpart in the theory of partial differential
equations, is referred to as a Dirichlet problem.

Dirichlet

problemExample 3.3.2 (Simple random walk on Zd). The Laplacian above can be inter-
preted as a discretized version of the standard Laplacian. For instance, for simple
random walk on Z,

∆f(x) =

[∑
y

P (x, y)f(y)

]
− f(x)

=
∑
y

P (x, y)[f(y)− f(x)]

=
1

2
{[f(x+ 1)− f(x)]− [f(x)− f(x− 1)]},
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which is a discretized second derivative. More generally, for simple random walk
on Zd, we get

∆f(x) =

[∑
y

P (x, y)f(y)

]
− f(x)

=
∑
y

P (x, y)[f(y)− f(x)]

=
1

2d

d∑
i=1

{[f(x+ ei)− f(x)]− [f(x)− f(x− ei)]},

where e1, . . . , ed is the standard basis in Rd. J

Theorem 3.3.1 has many applications. One of its consequences is that harmonic
functions on a finite state space are constant.

Corollary 3.3.3. Let P be an irreducible transition matrix on a finite state space
V . If h is harmonic on all of V , then it is constant.

Proof. Fix the value of h at an arbitrary vertex z and set W = V \{z}. Applying
Theorem 3.3.1, for all x ∈W , h(x) = Ex[h (XτWc )] = h(z).

As an example of application of this corollary, we prove the following surpris-
ing result: in a finite, irreducible Markov chain, the expected time to hit a target
chosen at random according to the stationary distribution does not depend on the
starting point.

Theorem 3.3.4 (Random target lemma). Let (Xt) be an irreducible Markov chain
on a finite state space V with transition matrix P and stationary distribution π.
Then

h(x) :=
∑
y∈V

π(y)Ex[τy]

does not in fact depend on x.

Proof. Because the chain is irreducible and has a finite state space, Ex[τy] < +∞
for all x, y. By Corollary 3.3.3, it suffices to show that h(x) :=

∑
y π(y)Ex[τy]

is harmonic on all of V . As before, it is natural to expand Ex[τy] according to the
first step of the chain,

Ex[τy] = 1{x 6=y}

(
1 +

∑
z

P (x, z)Ez[τy]

)
.
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Substituting into the definition of h(x) gives

h(x) = (1− π(x)) +
∑
z

∑
y 6=x

π(y)P (x, z)Ez[τy]

= (1− π(x)) +
∑
z

P (x, z) (h(z)− π(x)Ez[τx]) .

Rearranging, we get

∆h(x) =

[∑
z

P (x, z)h(z)

]
− h(x)

= π(x)

(
1 +

∑
z

P (x, z)Ez[τx]

)
− 1

= 0,

where we used 1/π(x) = Ex[τ+
x ] = 1 +

∑
z P (x, z)Ez[τx] by Theorem 3.1.19

and a first-step argument (recall that the first return time τ+
x was defined in Defini-

tion 3.1.6).

Potential theory for Markov chains

More generally, many quantities of interest can be expressed in the following form.
Consider again a subset W ⊂ V and the stopping time

τW c = inf{t ≥ 0 : Xt ∈W c}.

Let also h : W c → R+ and k : W → R+. Define the quantity

u(x) := Ex

h(XτWc )1{τW c < +∞}+
∑

0≤t<τWc

k(Xt)

 . (3.3.8)

The first term on the right-hand side is a final cost incurred when we exit W (and
depends on where we do), while the second term is a unit time cost incurred along
the sample path. Note that, in fact, it suffices to define h on ∂VW , the outer
boundary of W if we restrict ourselves to x ∈ W . Observe also that the function
u(x) may take the value +∞; the expectation is well-defined (in R+ ∪ {+∞}) by
the nonnegativity of the terms (see Appendix B).

Example 3.3.5 (Some special cases). Here are some important special cases:
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• Revisiting (3.3.1), for two disjoint subsets A,Z of V , the probability

u(x) := Px[τA < τZ ],

of hitting A before Z as a function of the starting point x ∈ V is obtained
by taking W := (A ∪ Z)c, h = 1 (respectively = 0) on A (respectively Z),
and k = 0 on V . The further special case Z = ∅ leads to the exit probability

exit

probability
from A

u(x) := Px[τA < +∞].

On the other hand, if A and Z form a disjoint partition of W c (or ∂VW will
suffice if x ∈W ), we get the exit law from W

exit law

u(x) := Px[XτWc ∈ A; τW c < +∞].

• The average occupation time of A ⊆W before exiting W average

occupation

timeu(x) := Ex

 ∑
0≤t<τWc

1{Xt∈A}

 ,
is obtained by taking h = 0 on V , and k = 1 (respectively = 0) on A
(respectively on Ac). Revisiting (3.1.3), the Green function of the chain
stopped at τW c , that is,

u(x) := GτWc (x, y) = Ex

 ∑
0≤t<τWc

1{Xt=y}

 ,
is obtained by taking A = {y}. Another special case is A = W where we
get the mean exit time from A

mean exit

timeu(x) := Ex [τAc ] .

J

The function u in (3.3.8) turns out to satisfy a generalized version of (3.3.7).
The proof is usually called first-step analysis (of which we have already seen many

first-step

analysis
instances).

Theorem 3.3.6 (First-step analysis). Let P be a transition matrix on a finite or
countable state space V . Let W be a proper subset of V , and let h : W c → R+

and k : W → R+ be bounded functions. Then the function u ≥ 0, as defined
in (3.3.8), satisfies the system of equations{

u(x) = k(x) +
∑

y P (x, y)u(y) for x ∈W ,
u(x) = h(x) for x ∈W c.

(3.3.9)
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Proof. For x ∈ W c, by definition u(x) = h(x) since τW c = 0. Fix x ∈ W . By
taking out what is known (Lemma B.6.13), the tower property (Lemma B.6.16)
and the Markov property (Theorem 1.1.18),

u(x) = k(x) + Ex

h(XτWc )1{τW c < +∞}+
∑

1≤t<τWc

k(Xt)


= k(x) + Ex

E
h(XτWc )1{τW c < +∞}+

∑
1≤t<τWc

k(Xt)

∣∣∣∣∣∣F1


= k(x) + Ex [u(X1)] ,

which gives the claim.

If u is finite, the system of equations (3.3.9) can be rewritten as the Poisson equa-
tion (once again as an analogue of its counterpart in the theory of partial differential

Poisson

equation
equations) {

∆u = −k on W ,
u = h on W c.

(3.3.10)

This is well-defined for instance ifW is a finite subset and P is irreducible. Indeed,
as we argued in the proof of Theorem 3.3.1, the stopping time τW c then has a finite
expectation. Because h is bounded, it follows that

u(x) := Ex

h(XτWc )1{τW c < +∞}+
∑

0≤t<τWc

k(Xt)


≤ sup

x∈W c
h(x) + sup

x∈W
k(x) sup

x∈W
Ex [τW c ]

< +∞,

uniformly in x. Using (3.3.6) and rearranging (3.3.9) gives (3.3.10).

Remark 3.3.7. A more general form of the statement which can be used to study
certain moment-generating functions can be found, for example, in [Ebe, Theorem
1.3].

In a generalization of Theorem 3.3.1, our next theorem allows one to establish
uniqueness of the solution of the system (3.3.10) under some conditions (which we
will not detail here, but see Exercise 3.13). Perhaps even more useful, it also gives
an effective approach to bound the function u from above. This is based on the
following supermartingale.
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Lemma 3.3.8 (Locally superharmonic functions). Let P be a transition matrix
on a finite or countable state space V . Let W be a proper subset of V , and let
h : W c → R+ and k : W → R+ be bounded functions. Suppose the nonnegative
function ψ : V → R+ satisfies

∆ψ ≤ −k on W.

Then the process

Nt := ψ(Xt∧τWc ) +
∑

0≤s<t∧τWc

k(Xs),

is a nonnegative supermartingale for any initial point x ∈ V .

Proof. Observe that: on {τW c ≤ t}, we have Nt+1 = Nt; while on {τW c > t},
we have Nt+1−Nt = ψ(Xt+1)−ψ(Xt) +k(Xt) by cancellations in the sum. So,
since {τW c > t} ∈ Ft by definition of a stopping time, it holds by taking out what
is known that

E[Nt+1 −Nt | Ft] = E[1{τW c > t}(ψ(Xt+1)− ψ(Xt) + k(Xt)) | Ft]
= 1{τW c > t}(E[ψ(Xt+1)− ψ(Xt) | Ft] + k(Xt))

= 1{τW c > t}(∆ψ(Xt) + k(Xt))

≤ 1{τW c > t}(−k(Xt) + k(Xt))

= 0,

where we used that, by (3.3.6) and the Markov property,

E[ψ(Xt+1)− ψ(Xt) | Ft] = ∆ψ(Xt), (3.3.11)

and that Xt ∈W on {τW c > t}.

Theorem 3.3.9 (Poisson equation: bounding the solution). Let P be a transition
matrix on a finite or countable state space V . Let W be a proper subset of V ,
and let h : W c → R+ and k : W → R+ be bounded functions. Suppose the
nonnegative function ψ : V → R+ satisfies the system of inequalities{

∆ψ ≤ −k on W ,
ψ ≥ h on W c.

(3.3.12)

Then
ψ ≥ u, on V , (3.3.13)

where u is the function defined in (3.3.8).
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Proof. The system (3.3.13) holds on W c by Theorem 3.3.6 and (3.3.12) since in
that case u(x) = h(x) ≤ ψ(x).

Fix x ∈ W . Consider the nonnegative supermartingale (Nt) in Lemma 3.3.8.
By the convergence of nonnegative supermartingales (Corollary 3.1.48), (Nt) con-
verges almost surely to a finite limit with expectation ≤ Ex[N0]. In particular,
the limit NτWc is well-defined, nonnegative and finite, including on the event that
{τW c = +∞}. As a result,

NτWc = lim
t

ψ(Xt∧τWc ) +
∑

0≤s<t∧τWc

k(Xs)


≥ h(XτWc )1{τW c < +∞}+

∑
0≤s<τWc

k(Xs),

where we used (3.3.12). Moreover, by Lemma 3.1.37, Ex [Nt∧τWc ] ≤ Ex[N0] for
all t and Fatou’s lemma (see Proposition B.4.14) gives Ex [NτWc ] ≤ Ex[N0].

Hence, by definition of u,

u(x) = Ex

h(XτWc )1{τW c < +∞}+
∑

0≤t<τWc

k(Xt)


≤ Ex [NτWc ]

≤ Ex[N0]

= ψ(x),

where, on the last line, we used that the initial state is x ∈ W . That proves the
claim.

Lyapounov functions

Here is an important application, bounding from above the hitting time τA to a set
A in expectation.

Theorem 3.3.10 (Controlling hitting times via Lyapounov functions). Let P be a
transition matrix on a finite or countably infinite state space V . Let A be a proper
subset of V . Suppose the nonnegative function ψ : V → R+ satisfies the system of
inequalities

∆ψ ≤ −1, on Ac. (3.3.14)

Then

Ex [τA] ≤ ψ(x),



CHAPTER 3. MARTINGALES AND POTENTIALS 190

for all x ∈ V .

Proof. Indeed, by (3.3.14) and nonnegativity (in particular on A), the function ψ
satisfies the assumptions of Theorem 3.3.9 with W = Ac, h = 0 on A, and k = 1
on Ac. Hence, by definition of u and the claim in Theorem 3.3.9,

Ex [τA] = Ex

h(XτA)1{τA < +∞}+
∑

0≤t<τA

k(Xt)


= u(x)

≤ ψ(x).

That establishes the claim.

Recalling (3.3.11), condition (3.3.14) is equivalent to the following conditional
expected decrease in ψ outside A:

E[ψ(Xt+1)− ψ(Xt) | Ft] ≤ −1, on {Xt ∈ Ac}. (3.3.15)

A nonnegative function satisfying an inequality of this type, also known as drift
condition, is often referred to as a Lyapounov function. Intuitively, it tends to

Lyapounov

function
decrease along the sample path outside of A. Because it is non-negative, it cannot
decrease forever and therefore the chain eventually enters A. We consider a simple
example next.

Example 3.3.11 (A Markov chain on the nonnegative integers). Let (Zt)t≥1 be
i.i.d. integrable random variables taking values in Z such that E[Z1] < 0. Let
(Xt)t≥0 be the chain defined by X0 = x for some x ∈ Z+ and

Xt+1 = (Xt + Zt+1)+,

where recall that z+ = max{0, z}. In particular Xt ∈ Z+ for all t. Let (Ft) be the
corresponding filtration. When Xt is large, the “local drift” is close to E[Z1] < 0.
By analogy to the biased case of the gambler’s ruin (Example 3.1.43), we might
expect that, from a large starting point x, it will take time roughly x/|E[Z1]| in
expectation to “return to a neighborhood of 0.” We prove something along those
lines here using a Lyapounov function.

Observe that, for any y ∈ Z+, we have on the event {Xt = y} by the Markov
property

Ex[Xt+1 −Xt | Ft] = E[(y + Zt+1)+ − y]

= E[−y1{Zt+1 ≤ −y}+ Zt+11{Zt+1 > −y}]
≤ E[Zt+11{Zt+1 > −y}]
= E[Z11{Z1 > −y}]. (3.3.16)
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For all y, the random variable |Z11{Z1 > −y}| is bounded by |Z1|, itself an
integrable random variable. Moreover, Z11{Z1 > −y} → Z1 as y → +∞ almost
surely. Hence, the dominated convergence theorem (Proposition B.4.14) implies
that

lim
y→+∞

E[Z11{Z1 > −y}] = E[Z1] < 0.

So for any 0 < ε < −E[Z1], there is yε ∈ Z+ large enough that E[Z11{Z1 >
−y}] < −ε for all y > yε. Fix ε as above and define

A := {0, 1, . . . , yε}.

We use Theorem 3.3.10 to bound τA in expectation. Define the Lyapounov
function

ψ(x) =
x

ε
, ∀x ∈ Z+.

On the event {Xt = y}, we rewrite (3.3.16) as

E[ψ(Xt+1)− ψ(Xt) | Ft] ≤
E[Z11{Z1 > −y}]

ε
≤ −1,

for y ∈ Ac. This is the same as (3.3.15). Hence, we can apply Theorem 3.3.10 to
get

Ex [τA] ≤ ψ(x) =
x

ε
,

for all x ≥ yε. J

A well-known, closely related result gives a criterion for positive recurrence.
We state it without proof.

Theorem 3.3.12 (Foster’s theorem). Let P be an irreducible transition matrix on
a countable state space V . Let A be a finite, proper subset of V . Suppose the
nonnegative function ψ : V → R+ satisfies the system of inequalities

∆ψ ≤ −1, on Ac,

as well as the condition∑
y∈V

P (x, y)ψ(y) < +∞, ∀x ∈ A.

Then P is positive recurrent.
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3.3.2 Basic electrical network theory

We now develop the basic theory of electrical networks for the analysis of random
walks. All results in this subsection (and the next one) concern reversible Markov
chains, or random walks on networks (see Definition 1.2.7). We begin with a few
definitions. Throughout, we will use the notation h|B for the function h restricted
to the subset B. We also write h ≡ c if h is identically equal to the constant c.

Definitions

Let N = (G, c) be a finite or countable network with G = (V,E). Throughout
this section we assume that N is connected and locally finite. In the context of
electrical networks, edge weights are called conductances. The reciprocal of the

conductance
conductances are called resistances and are denoted by r(e) := 1/c(e), for all

resistance
e ∈ E. For an edge e = {x, y} we overload c(x, y) := c(e) and r(x, y) := r(e).
Both c and r are symmetric as functions of x, y. Recall that the transition matrix
of the random walk on N satisfies

P (x, y) =
c(x, y)

c(x)
,

where
c(x) =

∑
z:z∼x

c(x, z).

Let A, Z be disjoint, non-empty subsets of V such that W := (A ∪ Z)c is
finite. For our purposes it will suffice to take A to be a singleton, that is, A = {a}
for some a. Then a is called the source and Z is called the sink-set, or sink for source,

sinkshort. As an immediate corollary of Theorem 3.3.1, we obtain the existence and
uniqueness of a voltage function, defined formally in the next corollary. It will be
useful to consider voltages taking an arbitrary value at a, but we always set the
voltage on Z to 0.

Corollary 3.3.13 (Voltage). Fix v0 > 0. Let N = (G, c) be a finite or countable,
connected network with G = (V,E). Let A := {a}, Z be disjoint non-empty
subsets of V such that W = (A ∪ Z)c is non-empty and finite. Then there exists
a unique voltage defined as follows: a function v on V such that v is harmonic on

voltage
W , that is,

v(x) =
1

c(x)

∑
y:y∼x

c(x, y)v(y), ∀x ∈W, (3.3.17)

where
v(a) = v0 and v|Z ≡ 0. (3.3.18)
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Moreover
v(x)

v0
= Px[τa < τZ ], (3.3.19)

for the corresponding random walk on N .

Proof. Set h(x) = v(x) on A ∪ Z. Theorem 3.3.1 gives the result.

Note in the definition above that if v is a voltage with value v0 at a, then ṽ(x) =
v(x)/v0 is a voltage with value 1 at a.

Let v be a voltage function on N with source a and sink Z. The Laplacian-
based formulation of harmonicity, (3.3.7), can be interpreted in terms of flows (see
Definition 1.1.13). We define the current function current

i(x, y) := c(x, y)[v(x)− v(y)], (3.3.20)

or, equivalently, v(x) − v(y) = r(x, y) i(x, y). The latter definition is usually
referred to as Ohm’s “law.” Notice that the current is defined on ordered pairs of

Ohm’s law
vertices and is anti-symmetric, that is, i(x, y) = −i(y, x). In terms of the current,
the harmonicity of v is then expressed as∑

y:y∼x
i(x, y) = 0, ∀x ∈W, (3.3.21)

that is, i is a flow on W (without capacity constraints). This set of equations
is known as Kirchhoff’s node law. We also refer to these constraints as flow-

Kirchhoff’s

node law
conservation constraints. To be clear, the current is not just any flow. It is a flow
that can be written as a potential difference according to Ohm’s law. Such a cur-
rent also satisfies Kirchhoff’s cycle law: if x1 ∼ x2 ∼ · · · ∼ xk ∼ xk+1 = x1 is a

Kirchhoff’s

cycle law
cycle, then

k∑
j=1

i(xj , xj+1) r(xj , xj+1) = 0,

as can be seen by substituting Ohm’s law.
The strength of the current is defined as

strength

‖i‖ :=
∑
y:y∼a

i(a, y).

Because a /∈ W , it does not satisfy Kirchhoff’s node law and the strength is not
0 in general. The definition of i(x, y) ensures that the flow out of the source is
nonnegative as Py[τa < τZ ] ≤ 1 = Pa[τa < τZ ] for all y ∼ a so that

i(a, y) = c(a, y)[v(a)− v(y)] = c(a, y) [v0Pa[τa < τZ ]− v0Py[τa < τZ ]] ≥ 0.
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Note that by multiplying the voltage by a constant we obtain a current which is
similarly scaled. Up to that scaling, the current is unique from the uniqueness of
the voltage. We will often consider the unit current where we scale v and i so as to

unit current
enforce that ‖i‖ = 1.

Summing up the previous paragraphs, to determine the voltage it suffices to
find functions v and i that simultaneously satisfy Ohm’s law and Kirchhoff’s node
law. Here is an example.

Example 3.3.14 (Network reduction: birth-death chain). Let N be the line on
{0, 1, . . . , n} with j ∼ k ⇐⇒ |j − k| = 1 and arbitrary (positive) conductances
on the edges. Let (Xt) be the corresponding walk. We use the principle above
to compute Px[τ0 < τn] for 1 ≤ x ≤ n − 1. Consider the voltage function
v when v(0) = 1 and v(n) = 0 with current i, which exists and is unique by
Corollary 3.3.13. The desired quantity is v(x).

Note that because i is a flow onN , the flow into every vertex equals the flow out
of that vertex, and we must have i(y, y + 1) = i(0, 1) = ‖i‖ for all y. To compute
v(x), we note that it remains the same if we replace the path 0 ∼ 1 ∼ · · · ∼ x
with a single edge of resistance R0,x = r(0, 1) + · · · + r(x − 1, x). Indeed leave
the voltage unchanged on the remaining nodes (to the right of x) and define the
current on the new edge as ‖i‖. Kirchhoff’s node law is automatically satisfied by
the argument above. To check Ohm’s law on the new “super-edge,” note that on
the original network N (with the original voltage function)

v(0)− v(x) = (v(0)− v(1)) + · · ·+ (v(x− 1)− v(x))

= r(x− 1, x)i(x− 1, x) + · · ·+ r(0, 1)i(0, 1)

= [r(0, 1) + · · ·+ r(x− 1, x)]‖i‖
= R0,x‖i‖.

Ohm’s law is also satisfied on every other edge (to the right of x) because nothing
has changed there. That proves the claim.

We do the same reduction on the other side of x by replacing x ∼ x + 1 ∼
· · · ∼ n with a single edge of resistance Rx,n = r(x, x + 1) + · · · + r(n − 1, n).
See Figure 3.4.

Because the voltage at x was not changed by this transformation, we can com-
pute v(x) = Px[τ0 < τn] directly on the reduced network, where it is now a
straightforward computation. Indeed, starting at x, the reduced walk jumps to 0
with probability proportional to the conductance on the new super-edge 0 ∼ x (or
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Figure 3.4: Reduced network.

the reciprocal of the resistance), that is,

Px[τ0 < τn] =
R−1

0,x

R−1
0,x +R−1

x,n

=
Rx,n

Rx,n +R0,x

=
r(x, x+ 1) + · · ·+ r(n− 1, n)

r(0, 1) + · · ·+ r(n− 1, n)
.

Some special cases:

• Simple random walk. In the case of simple random walk, all resistances are
equal and we get

Px[τ0 < τn] =
n− x
n

.

• Gambler’s ruin. The gambler’s ruin example (see Examples 3.1.41 and 3.1.43)
corresponds to taking c(j, j+ 1) = (p/q)j or r(j, j+ 1) = (q/p)j , for some
0 < p < 1 and q = 1− p. In this case we obtain

Px[τ0 < τn] =

∑n−1
j=x(q/p)j∑n−1
j=0 (q/p)j

=
(q/p)x(1− (q/p)n−x)

1− (q/p)n
=

(p/q)n−x − 1

(p/q)n − 1
,

when p 6= q (otherwise we get back the simple random walk case).z
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J

The above example illustrates the series law: resistances in series add up.
series law,

parallel law
There is a similar parallel law: conductances in parallel add up. To formalize
these laws, one needs to introduce multigraphs. This is straightforward, although
to avoid complicating the notation further we will not do this here. (But see Exam-
ple 3.3.22 for a simple case.)

Another useful network reduction technique is illustrated in the next example.

Example 3.3.15 (Network reduction: binary tree). LetN be the rooted binary tree
with n levels T̂n2 and equal conductances on all edges. Let 0 be the root. Pick an
arbitrary leaf and denote it by n. The remaining vertices on the path between 0
and n, which we refer to as the main path, will be denoted by 1, . . . , n− 1 moving
away from the root. We claim that, for all 0 < x < n, it holds that

Px[τ0 < τn] = (n− x)/n.

Indeed let v be the voltage with values 1 and 0 at a = 0 and Z = {n} respec-
tively. Let i be the corresponding current. Notice that, for each 0 ≤ y < n, the
current—as a flow—has “nowhere to go” on the subtree Ty hanging from y away
from the main path. The leaves of the subtree are dead ends. Hence the current
must be 0 on Ty and by Ohm’s law the voltage must be constant on it, that is, every
vertex in Ty has voltage v(y).

Imagine collapsing all vertices in Ty, including y, into a single vertex (and re-
moving the self-loops so created). Doing this for every vertex on the main path
results in a new reduced network which is formed of a single path as in Exam-
ple 3.3.14. Note that the voltage and the current can be taken to be the same as
they were previously on the main path. Indeed, with this choice, Ohm’s law is
automatically satisfied. Moreover, because there is no current on the hanging sub-
trees in the original network, Kirchhoff’s node law is also satisfied on the reduced
network, as no current is “lost.”

Hence the answer can be obtained from Example 3.3.14. That proves the claim.
(You should convince yourself that this result is obvious from a probabilistic point
of view.) J

We gave a probabilistic interpretation of the voltage. What about the current?
The following result says that, roughly speaking, i(x, y) is the net traffic on the
edge {x, y} from x to y. We start with an important formula for the voltage at a.
For the walk started at a, we use the shorthand

P[a→ Z] := Pa[τZ < τ+
a ],
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for the escape probability. The next lemma can be interpreted as a sort of Ohm’s escape

probabilitylaw between a and Z, where c(a)P[a → Z] is the “effective conductance.” (We
will be more formal in Definition 3.3.19 below.)

Lemma 3.3.16 (Effective Ohm’s Law). Let v be a voltage onN with source a and
sink Z. Let i be the associated current. Then

v(a)

‖i‖
=

1

c(a)P[a→ Z]
. (3.3.22)

Proof. Using the usual first-step analysis,

P[a→ Z] =
∑
x:x∼a

P (a, x)Px[τZ < τa]

=
∑
x:x∼a

c(a, x)

c(a)

(
1− v(x)

v(a)

)
=

1

c(a)v(a)

∑
x:x∼a

c(a, x)[v(a)− v(x)]

=
1

c(a)v(a)

∑
x:x∼a

i(a, x),

where we used Corollary 3.3.13 on the second line and Ohm’s law on the last line.
Rearranging gives the result.

Recall the Green function from (3.1.3).

Theorem 3.3.17 (Probabilistic interpretation of the current). For x ∼ y, let NZ
x→y

be the number of one-step transitions from x to y up to the time of the first visit to
the sink Z for the random walk onN started at a. Let v be the voltage correspond-
ing to the unit current i. Then the following formulas hold:

v(x) =
GτZ (a, x)

c(x)
, ∀x, (3.3.23)

and
i(x, y) = Ea[NZ

x→y −NZ
y→x], ∀x ∼ y.

Proof. We prove the formula for the voltage by showing that v(x) as defined above
is harmonic on W = V \({a} ∪ Z). Note first that, for all z ∈ Z, the expected
number of visits to z before reaching Z (i.e., GτZ (a, z)) is 0. Or, put differently,
0 = v(z) =

GτZ (a,z)

c(z) . Moreover, to compute GτZ (a, a), note that the number of
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visits to a before the first visit to Z is geometric with success probability P[a→ Z]
by the strong Markov property (Theorem 3.1.8) and hence

GτZ (a, a) =
1

P[a→ Z]
,

and, by Lemma 3.3.16 and the fact that we are using the unit current, v(a) =
GτZ (a,a)

c(a) , as required.
To establish the formula for x ∈W , we compute the quantity

1

c(x)

∑
y:y∼x

Ea[NZ
y→x],

in two ways. First, because each visit to x ∈ W must enter through one of x’s
neighbors (including itself in the presence of a self-loop), we get

1

c(x)

∑
y:y∼x

Ea[NZ
y→x] =

GτZ (a, x)

c(x)
. (3.3.24)

On the other hand, by the Markov property (Theorem 1.1.18)

Ea[NZ
y→x]

= Ea

 ∑
0≤t<τZ

1{Xt=y,Xt+1=x}


=
∑
t≥0

Pa [Xt = y,Xt+1 = x, τZ > t]

=
∑
t≥0

Pa[τZ > t]Pa[Xt = y | τZ > t]Pa[Xt+1 = x |Xt = y, τZ > t]

=
∑
t≥0

Pa[τZ > t]Pa[Xt = y | τZ > t]P (y, x)

=
∑
t≥0

Pa[Xt = y, τZ > t]P (y, x)

= P (y, x)Ea

 ∑
0≤t<τZ

1{Xt=y}


= P (y, x) GτZ (a, y), (3.3.25)
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so that, summing over y, we obtain this time

1

c(x)

∑
y:y∼x

Ea[NZ
y→x] =

1

c(x)

∑
y:y∼x

P (y, x) GτZ (a, y)

=
∑
y:y∼x

P (x, y)
GτZ (a, y)

c(y)
, (3.3.26)

where we used that c(x, y) = c(x)P (x, y) = c(y)P (y, x) (see Definition 1.2.7).
Equating (3.3.24) and (3.3.26) shows that GτZ (a,x)

c(x) is harmonic on W and hence
must be equal to the voltage function by Corollary 3.3.13.

Finally, by (3.3.25),

Ea[NZ
x→y −NZ

y→x] = P (x, y) GτZ (a, x)− P (y, x) GτZ (a, y)

= P (x, y)v(x)c(x)− P (y, x)v(y)c(y)

= c(x, y)[v(x)− v(y)]

= i(x, y).

That concludes the proof.

Example 3.3.18 (Network reduction: binary tree (continued)). Recall the setting
of Example 3.3.15. We argued that the current on side edges, that is, edges of
subtrees hanging from the main path, is 0. This is clear from the probabilistic
interpretation of the current: in a walk from a to z, any traversal of a side edge
must be undone at a later time. J

The network reduction techniques illustrated above are useful. But the power
of the electrical network perspective is more apparent in what comes next: the
definition of the effective resistance and, especially, its variational characterization.

Effective resistance

Before proceeding further, let us recall our original motivation. Let N = (G, c)
be a countable, locally finite, connected network and let (Xt) be the corresponding
walk. Recall that a vertex a in G is transient if Pa[τ+

a < +∞] < 1.
To relate this to our setting, consider an exhaustive sequence of induced sub-

exhaustive

sequence
graphs Gn of G which for our purposes is defined as: G0 contains only a, Gn ⊆
Gn+1, G =

⋃
nGn, and every Gn is finite and connected. Such a sequence always

exists by iteratively adding the neighbors of the previous vertices and using that G
is locally finite and connected. Let Zn be the set of vertices of G not in Gn. Then,
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by Lemma 3.1.25, Pa[τZn ∧ τ+
a = +∞] = 0 for all n by our assumptions on (Gn).

Hence, the remaining possibilities are

1 = Pa[∃n, τ+
a < τZn ] + Pa[∀n, τZn < τ+

a ]

= Pa[τ+
a < +∞] + lim

n
P[a→ Zn].

Therefore a is transient if and only if limn P[a→ Zn] > 0. Note that the limit ex-
ists because the sequence of events {τZn < τ+

a } is decreasing by construction. By
a sandwiching argument the limit also does not depend on the exhaustive sequence.
Hence we define

P[a→∞] := lim
n
P[a→ Zn].

We use Lemma 3.3.16 to characterize this limit using electrical network concepts.
But, first, here comes the key definition. In Lemma 3.3.16, v(a) can be thought

of as the potential difference between the source and the sink, and ‖i‖ can be
thought of as the total current flowing through the network from the source to the
sink. Hence, viewing the network as a single “super-edge,” Equation (3.3.22) is
the analogue of Ohm’s law if we interpret c(a)P[a→ Z] as an “effective conduc-
tance.”

Definition 3.3.19 (Effective resistance and conductance). Let N = (G, c) be a
finite or countable, locally finite, connected network. Let A = {a} and Z be
disjoint non-empty subsets of the vertex set V such that W := V \(A∪Z) is finite.
Let v be a voltage from source a to sink Z and let i be the corresponding current.
The effective resistance between a and Z is defined as

effective

resistance
R(a↔ Z) :=

1

c(a)P[a→ Z]
=
v(a)

‖i‖
,

where the rightmost equality holds by Lemma 3.3.16. The reciprocal is called the
effective conductance and is denoted by C (a↔ Z) := 1/R(a↔ Z).

effective

conductanceGoing back to recurrence, for an exhaustive sequence (Gn) with (Zn) as above,
it is natural to define

R(a↔∞) := lim
n

R(a↔ Zn),

where, once again, the limit does not depend on the choice of exhaustive sequence.

Theorem 3.3.20 (Recurrence and resistance). Let N = (G, c) be a countable,
locally finite, connected network. Vertex a (and hence all vertices) inN is transient
if and only if R(a↔∞) < +∞.
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Proof. This follows immediately from the definition of the effective resistance.
Recall that, on a connected network, all states have the same type (recurrent or
transient).

Note that the network reduction techniques we discussed previously leave both
the voltage and the current strength unchanged on the reduced network. Hence
they also leave the effective resistance unchanged.

Example 3.3.21 (Gambler’s ruin chain revisited). Extend the gambler’s ruin chain
of Example 3.3.14 to all of Z+. We determine when this chain is transient. Be-
cause it is irreducible, all states have the same type and it suffices to look at 0.
Consider the exhaustive sequence obtained by letting Gn be the graph restricted
to {0, 1, . . . , n − 1} and letting Zn = {n, n + 1 . . .}. To compute the effective
resistance R(0 ↔ Zn), we use the same reduction as in Example 3.3.14. The
“super-edge” between 0 and n has resistance

R(0↔ Zn) =
n−1∑
j=0

r(j, j + 1) =
n−1∑
j=0

(q/p)j =
(q/p)n − 1

(q/p)− 1
,

when p 6= q, and similarly it has resistance n in the p = q case. Hence, taking a
limit as n→ +∞,

R(0↔∞) =

{
+∞, p ≤ 1/2,
p

2p−1 , p > 1/2.

So 0 is transient if and only if p > 1/2. J

Example 3.3.22 (Biased walk on the b-ary tree). Fix λ ∈ (0,+∞). Consider the
rooted, infinite b-ary tree with conductance λj on all edges between level j−1 and
j, for j ≥ 1. We determine when this chain is transient. Because it is irreducible,
all states have the same type and it suffices to look at the root. Denote the root
by 0. For an exhaustive sequence, let Gn be the root together with the first n − 1
levels. Let Zn be as before. To compute R(0↔ Zn): (i) glue together all vertices
of Zn; (ii) glue together all vertices on the same level of Gn; (iii) replace parallel
edges with a single edge whose conductance is the sum of the conductances; (iv)
let the current on this edge be the sum of the currents; and (v) leave the voltages
unchanged. It can be checked that Ohm’s law and Kirchhoff’s node law are still
satisfied, and that hence we have not changed the effective resistance. (This is an
application of the parallel law.)

The reduced network is now a line. Denote the new vertices 0, 1, . . . , n. The
conductance on the edge between j and j + 1 is bj+1λj = b(bλ)j . So this is
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the chain from the previous example with (p/q) = bλ where all conductances are
scaled by a factor of b. Hence

R(0↔∞) =

{
+∞, bλ ≤ 1,

1
b(1−(bλ)−1)

, bλ > 1.

So the root is transient if and only if bλ > 1.
A generalization is provided in Example 3.3.27. J

3.3.3 Bounding the effective resistance via variational principles

The examples we analyzed so far were atypical in that it was possible to reduce
the network down to a single edge using simple rules and read off the effective
resistance. In general, we need more robust techniques to bound the effective re-
sistance. The following two variational principles provide a powerful approach for
this purpose. We derive them for finite networks, but will later on apply them to
exhaustive sequences.

Variational principles

Recall from Definition 1.1.13 that a flow θ from source a to sink Z on a countable,
locally finite, connected network N = (G, c) is a function on pairs of adjacent
vertices such that: θ is anti-symmetric, that is, θ(x, y) = −θ(y, x) for all x ∼ y;
and it satisfies the flow-conservation constraint

∑
y:y∼x θ(x, y) = 0 on all vertices

x except those in {a} ∪ Z. The strength of the flow is ‖θ‖ =
∑

y:y∼a θ(a, y). The
current is a special flow—one that can be written as a potential difference according
to Ohm’s law. As we show next, it can also be characterized as a flow minimizing
a certain energy. Specifically, the energy of a flow θ is defined as energy

E (θ) =
1

2

∑
x,y

r(x, y)θ(x, y)2.

The proof of the variational principle we present here employs a neat trick, convex
duality. In particular, it reveals that the voltage and current are dual in the sense of
convex analysis.

Theorem 3.3.23 (Thomson’s principle). Let N = (G, c) be a finite, connected
network. The effective resistance between source a and sink Z is characterized by

R(a↔ Z) = inf {E (θ) : θ is a unit flow from a to Z} . (3.3.27)

The unique minimizer is the unit current.
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Proof. It will be convenient to work in vector form. Let 1, . . . , n be the vertices of
G and order the edges arbitrarily as e1, . . . , em. (We ignore any self-loops, which
have no flow.) Choose an arbitrary orientation of N , that is, replace each edge
ei = {x, y} with either ~ei = (x, y) or (y, x). Let

−→
G be the corresponding directed

graph. Think of the flow θ as a vector with one coordinate for each oriented edge.
Then the flow constraint can be written as a linear systemBθ = b. Here the matrix
B has a column for each directed edge and a row for each vertex except those in
Z. The entries of B are Bx,(x,y) = 1, By,(x,y) = −1, and 0 otherwise. We have
already encountered this matrix: it is an oriented incidence matrix ofG (see Defini-
tion 1.1.16) restricted to the rows in V \Z. The vector b has 0s everywhere except
for ba = 1. Let r be the vector of resistances and let R be the diagonal matrix with
diagonal r. In vector form, E (θ) = θTRθ and the optimization problem (3.3.27)
reads

E ∗ = inf{θTRθ : Bθ = b}.

We first characterize the optimal flow. We introduce the Lagrangian
Lagrangian

L (θ;h) := θTRθ − 2hT (Bθ − b),

where h has an entry for all vertices except those in Z. For all h,

E ∗ ≥ inf
θ

L (θ;h),

because those θs with Bθ = b make the second term vanish in L (θ;h). Since
L (θ;h) is strictly convex as a function of θ, the solution to its minimization is
characterized by the usual optimality conditions which in this case read 2Rθ −
2BTh = 0, or

θ = R−1BTh. (3.3.28)

Substituting into the Lagrangian and simplifying, we have proved that

E (θ) ≥ E ∗ ≥ −hTBR−1BTh+ 2hTb =: L ∗(h), (3.3.29)

for all h and flow θ. This inequality is a statement of weak duality. To show that a
flow θ is optimal it suffices to find h such that E (θ) = L ∗(h).

Let θ = i be the unit current in vector form, which satisfies Bθ = b by our
choice of b and Kirchhoff’s node law (i.e., (3.3.21)). The suitable dual turns out to
be the corresponding voltage h = v in vector form restricted to V \Z. To see this,
observe that BTh is the vector of neighboring node differences

BTh = (h(x)− h(y))
(x,y)∈

−→
G
, (3.3.30)
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where implicitly h|Z ≡ 0. Hence the optimality condition (3.3.28) is nothing but
Ohm’s law (i.e., (3.3.20)) in vector form. Therefore, if i is the unit current and v is
the associated voltage in vector form, it holds that

L ∗(v) = L (i;v) = E (i),

where the first equality follows from the fact that i minimizes L (i;v) by (3.3.28)
and the second equality follows from the fact that Bi = b. So we must have
E (i) = E ∗ by weak duality (i.e., (3.3.29)).

As for uniqueness, it can be checked that two minimizers θ, θ′ satisfy

E ∗ =
E (θ) + E (θ′)

2
= E

(
θ + θ′

2

)
+ E

(
θ − θ′

2

)
,

by definition of the energy. The first term in the rightmost expression is greater or
equal to E ∗ since the average of two unit flows is still a unit flow. The second term
is nonnegative by definition. Hence the latter must be zero and the only way for
this to happen is if θ = θ′.

To conclude the proof, it remains to compute the optimal value. The matrix
BR−1BT is related to the Laplacian associated to random walk on N (see Sec-
tion 3.3.1) up to a row scaling. Multiplying by row x ∈ V \ Z involves taking a
conductance-weighted average of the neighboring values and subtracting the value
at x, that is,(

BR−1BTv
)
x

=
∑

y:(x,y)∈
−→
G

[
c(x, y)(v(x)− v(y))

]
−

∑
y:(y,x)∈

−→
G

[
c(y, x)(v(y)− v(x))

]
=
∑
y:y∼x

[
c(x, y)(v(x)− v(y))

]
,

where we used (3.3.30) and the facts that r(x, y)−1 = c(x, y) and c(x, y) =
c(y, x), and it is assumed implicitly that v|Z ≡ 0. By Corollary 3.3.13, this is
zero except for the row x = a where it is∑

y:y∼a
c(a, y)[v(a)− v(y)] =

∑
y:y∼a

i(a, y) = 1,

where we used Ohm’s law and the fact that the current has unit strength. We have



CHAPTER 3. MARTINGALES AND POTENTIALS 205

finally

E ∗ = L ∗(v)

= −vTBR−1BTv + 2vTb

= −v(a) + 2v(a)

= v(a)

= R(a↔ Z),

by (3.3.16). That concludes the proof.

Observe that the convex combination α minimizing the sum of squares
∑

j α
2
j

is constant. In a similar manner, Thomson’s principle (Theorem 3.3.23) stipulates
roughly speaking that the more the flow can be spread out over the network, the
lower is the effective resistance (penalizing flow on edges with higher resistance).
Pólya’s theorem below provides a vivid illustration. Here is a simple example
suggesting that, in a sense, the current is indeed a well-distributed flow.

Example 3.3.24 (Random walk on the complete graph). Let N be the complete
graph on {1, . . . , n} with unit resistances, and let a = 1 and Z = {n}. Assume
n > 2. The effective resistance is straightforward to compute in this case. Indeed,
the escape probability (with a slight abuse of notation) is

P[1→ n] =
1

n− 1
+

1

2

(
1− 1

n− 1

)
=

n

2(n− 1)
,

as we either jump to n immediately or jump to one of the remaining nodes, in which
case we reach n first with probability 1/2 by symmetry. Hence, since c(1) = n−1,
we get

R(1↔ n) =
2

n
,

from the definition of the effective resistance (Definition 3.3.19).
We now look for the optimal flow in Thomson’s principle. Pushing a flow of 1

through the edge {1, n} gives an upper bound of 1, which is far from the optimal
2
n . Spreading the flow a bit more by pushing 1/2 through the edge {1, n} and 1/2
through the path 1 ∼ 2 ∼ n gives the slightly better bound 3 · (1/2)2 = 3/4.
Taking this further, pushing a flow of 1

n−1 through {1, n} as well as through each
two-edge path to n via the remaining neighbors of 1 gives the yet improved bound(

1

n− 1

)2

+ 2(n− 2)

(
1

n− 1

)2

=
2n− 3

(n− 1)2
=

2

n
· 2n2 − 3n

2n2 − 4n+ 2
>

2

n
,
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when n > 2. Because the direct path from 1 to n has a somewhat lower resistance,
the optimal flow is obtained by increasing the flow on that edge slightly. Namely,
for a flow α on {1, n} (and the rest divided up evenly among the two-edge paths),
we get an energy of α2 + 2(n− 2)[1−α

n−2 ]2 which is minimized at α = 2
n where it is

indeed (
2

n

)2

+
2

n− 2

(
n− 2

n

)2

=
2

n

(
2

n
+
n− 2

n

)
=

2

n
.

J

As we noted above, the matrix BR−1BT in the proof of Thomson’s princi-
ple is related to the Laplacian. Because BTh is the vector of neighboring node
differences, we have

hTBR−1BTh =
1

2

∑
x,y

c(x, y)[h(y)− h(x)]2,

where we implicitly fix h|Z ≡ 0, which is called the Dirichlet energy. Thinking of
Dirichlet energy

BT as a “discrete gradient,” the Dirichlet energy can be interpreted as the weighted
norm of the gradient of h. The following is a “dual” to Thomson’s principle.
Exercise 3.15 asks for a proof.

Theorem 3.3.25 (Dirichlet’s principle). Let N = (G, c) be a finite, connected
network. The effective conductance between source a and sink Z is characterized
by

C (a↔ Z) = inf

{
1

2

∑
x,y

c(x, y)[h(y)− h(x)]2 : h(a) = 1, h|Z ≡ 0}

}
.

The unique minimizer is the voltage v with v(a) = 1.

The following lower bound is a typical application of Thomson’s principle. See
Pólya’s theorem below for an example of its use. Recall from Section 1.1.1 that,
on a finite graph, a cutset separating a from Z is a set of edges Π such that any
path between a and Z must include at least one edge in Π. Similarly, as defined
in Section 2.3.3, on a countable, locally finite network, a cutset separating a from
∞ is a finite set of edges that must be crossed by any infinite (self-avoiding) path
from a.

Corollary 3.3.26 (Nash-Williams inequality). LetN be a finite, connected network
and let {Πj}nj=1 be a collection of disjoint cutsets separating source a from sink
Z. Then

R(a↔ Z) ≥
n∑
j=1

∑
e∈Πj

c(e)

−1

.
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Similarly, if N is a countable, locally finite, connected network, then for any col-
lection {Πj}j of finite, disjoint cutsets separating a from∞,

R(a↔∞) ≥
∑
j

∑
e∈Πj

c(e)

−1

.

Proof. Consider the case whereN is finite first. We will need the following claim,
which follows immediately from Lemma 1.1.14: for any unit flow θ between a and
Z and any cutset Πj separating a from Z, it holds that∑

e∈Πj

|θ(e)| ≥ ‖θ‖ = 1.

By Cauchy-Schwarz (Theorem B.4.8),

∑
e∈Πj

c(e)
∑
e′∈Πj

r(e′)θ(e′)2 ≥

∑
e∈Πj

√
c(e)r(e) |θ(e)|

2

=

∑
e∈Πj

|θ(e)|

2

≥ 1.

Rearranging, summing over j and using the disjointness of the cutsets,

E (θ) =
1

2

∑
x,y

r(x, y)θ(x, y)2 ≥
n∑
j=1

∑
e′∈Πj

r(e′)θ(e′)2 ≥
n∑
j=1

∑
e∈Πj

c(e)

−1

.

Thomson’s principle gives the result.
The infinite case follows from a similar argument using an exhaustive se-

quence.

The following example is an application of Nash-Williams (Corollary 3.3.26)
and Thomson’s principle to recurrence.

Example 3.3.27 (Biased walk on general trees). Let T be a locally finite tree
with root 0. Consider again the biased walk from Example 3.3.22, that is, the
conductance is λj on all edges between level j − 1 and j. Recall the branching
number br(T ) from Definition 2.3.10.
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Assume λ > br(T ). For any ε > 0, there is a cutset Π such that
∑

e∈Π λ
−|e| ≤

ε. By Nash-Williams,

R(0↔∞) ≥

(∑
e∈Π

c(e)

)−1

≥ ε−1.

Since ε is arbitrary, the walk is recurrent by Theorem 3.3.20.
Suppose instead that λ < br(T ) and let λ < λ∗ < br(T ). By the proof of

Claim 2.3.11, for all n ≥ 1, there exist ε > 0 and a unit flow φn from 0 to the
n-level vertices ∂n with capacity constraints |φn(x, y)| ≤ ε−1λ

−|e|
∗ for all edges

e = {x, y}, where |e| is the graph distance from the root to the endvertex of e
furthest from it. Then, letting Fm = {e : |e| = m}, the energy of the flow is

E (φn) =
1

2

∑
x,y

r(x, y)φn(x, y)2

≤
n∑

m=1

λm
∑

e={x,y}∈Fm

|φn(x, y)|ε−1λ
−|e|
∗

= ε−1
n∑

m=1

(
λ

λ∗

)m ∑
e={x,y}∈Fm

|φn(x, y)|

≤ ε−1
+∞∑
m=1

(
λ

λ∗

)m
< +∞,

where, on the fourth line, we used Lemma 1.1.14 together with the fact that φn is a
unit flow and Fm is a cutset separating 0 and ∂n. Thomson’s principle implies that
R(0 ↔ ∂n) is uniformly bounded in n. The walk is transient by Theorem 3.3.20.
J

Another typical application of Thomson’s principle is the following mono-
tonicity property (which is not obvious from a probabilistic point of view).

Corollary 3.3.28. Adding an edge to a finite, connected network cannot increase
the effective resistance between a source a and a sink Z. In particular, if the added
edge is not incident with a, then P[a→ Z] cannot decrease.

Proof. The additional edge enlarges the space of possible flows, so by Thomson’s
principle it can only lower the resistance or leave it as is. The second statement
follows from the definition of the effective resistance.
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More generally:

Corollary 3.3.29 (Rayleigh’s principle). Let N and N ′ be two networks on the
same finite, connected graph G such that, for each edge in G, the resistance in N ′
is greater than it is in N . Then, for any source a and sink Z,

RN (a↔ Z) ≤ RN ′(a↔ Z).

Proof. Compare the energies of an arbitrary flow on N and N ′, and apply Thom-
son’s principle.

Note that this corollary implies the previous one by thinking of an absent edge as
one with infinite resistance.

Flows to infinity

Combining Theorem 3.3.20 and Thomson’s principle, we derive a flow-based cri-
terion for recurrence. To state the result, it is convenient to introduce the notion
of a unit flow θ from source a to ∞ on a countable, locally finite network: θ is

flow to∞
anti-symmetric, it satisfies the flow-conservation constraint on all vertices but a,
and ‖θ‖ :=

∑
y∼a θ(a, y) = 1. Note that the energy E (θ) of such a flow is well

defined in [0,+∞].

Theorem 3.3.30 (Recurrence and finite-energy flows). LetN = (G, c) be a count-
able, locally finite, connected network. Vertex a (and hence all vertices) in N is
transient if and only if there is a unit flow from a to∞ of finite energy.

Proof. Suppose such a flow exists and has energy bounded byB < +∞. Let (Gn)
be an exhaustive sequence with associated sinks (Zn). A unit flow from a to ∞
on N yields, by projection, a unit flow from a to Zn. This projected flow also has
energy bounded by B. Hence Thomson’s principle implies R(a ↔ Zn) ≤ B for
all n and transience follows from Theorem 3.3.20.

Proving the other direction involves producing a flow to ∞. Suppose a is
transient and let (Gn) be an exhaustive sequence as above. Then Theorem 3.3.20
implies that R(a ↔ Zn) ≤ R(a ↔ ∞) < B for some B < +∞ and Thomson’s
principle guarantees in turn the existence of a flow θn from a to Zn with energy
bounded by B. In particular there is a unit current in, and associated voltage vn,
of energy bounded by B. So it remains to use the sequence of current flows (in)
to construct a flow to ∞ on the infinite network. The technical point is to show
that the limit of (in) exists and is indeed a flow. For this, consider the random
walk on N started at a. Let Yn(x) be the number of visits to x before hitting
Zn the first time. By the monotone convergence theorem (Proposition B.4.14),
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EaYn(x) → EaY∞(x) where Y∞(x) is the total number of visits to x. Moreover
EaY∞(x) < +∞ by transience and (3.1.2). By (3.3.23), EaYn(x) = c(x)vn(x).
So we can now define

v∞(x) := lim
n
vn(x) < +∞,

and then

i∞(x, y) := c(x, y)[v∞(x)− v∞(y)]

= lim
n
c(x, y)[vn(x)− vn(y)]

= lim
n
in(x, y),

by Ohm’s law (when n is large enough that both x and y are in Gn). Because in is
a flow for all n, by taking limits in the flow-conservation constraints we see that so
is i∞. Note that by construction of i`

1

2

∑
x,y∈Gn

c(x, y)i∞(x, y)2 = lim
`≥n

1

2

∑
x,y∈Gn

c(x, y)i`(x, y)2

≤ lim sup
`≥n

E (i`)

< B,

uniformly in n. Because the left-hand side converges to the energy of i∞ as n →
+∞, we are done.

We give an application to Pólya’s theorem in Section 3.3.4.
Finally we derive a useful general result illustrating the robustness reaped from

Thomson’s principle. At a high level, a rough embedding from N to N ′ is a
mapping of the edges of N to paths of N ′ of comparable overall resistance that
do not overlap much. The formal definition follows. As we will see, the purpose
of a rough embedding is to allow a flow on N to be morphed into a flow on N ′ of
comparable energy.

Definition 3.3.31 (Rough embedding). Let N = (G, c) and N ′ = (G′, c′) be
networks with resistances r and r′ respectively. We say that a map φ from the
vertices of G to the vertices of G′ is a rough embedding if there are constants

rough

embedding
α, β < +∞ and a map Φ defined on the edges of G such that:

1. for every edge e = {x, y} in G, Φ(e) is a non-empty path of edges of G′

between φ(x) and φ(y) such that∑
e′∈Φ(e)

r′(e′) ≤ α r(e);
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2. for every edge e′ in G′, there are no more than β edges in G whose image
under Φ contains e′.

The map φ need not in general be a bijection.
We say that two networks are roughly equivalent if there exist rough embed-

roughly

equivalent
dings between them, one in each direction.

Example 3.3.32 (Independent-coordinate random walk). Let N = Ld with unit
resistances and letN ′ be the network corresponding to the independent-coordinate
random walk

(Y
(1)
t , . . . , Y

(d)
t ),

where each coordinate (Y
(i)
t ) is an independent simple random walk on Z started

at 0. For example the neighborhood of the origin in N ′ is {(x1, . . . , xd) : xi ∈
{−1, 1}, ∀i}. Note that N ′ contains only those points of Zd with coordinates of
identical parities.

Despite encoding quite different random walks, we claim that the networks N
and N ′ are roughly equivalent.

• N to N ′: Consider the map φ which associates to each x ∈ N a closest
point in N ′ chosen in some arbitrary manner. For Φ, associate to each edge
e = {x, y} ∈ N a shortest path in N ′ between φ(x) and φ(y), again chosen
arbitrarily. If φ(x) = φ(y), choose an arbitrary, non-empty, shortest cycle
through φ(x).

• N ′ to N : Consider the map φ which associates to each x ∈ N ′ the corre-
sponding point x in N . Construct Φ similarly to the previous case.

Exercise 3.19 asks for a rigorous proof of rough equivalence. See also Exer-
cise 3.20 for an important generalization of this example. J

Our main result about roughly equivalent networks is that they have the same
type.

Theorem 3.3.33 (Recurrence and rough equivalence). Let N and N ′ be roughly
equivalent, locally finite, connected networks. Then N is transient if and only if
N ′ is transient.

Proof. Assume N is transient and let θ be a unit flow from some a to∞ of finite
energy. The existence of this flow is guaranteed by Theorem 3.3.30. Let φ, Φ be a
rough embedding from N to N ′ with parameters α and β.

The basic idea of the proof is to map the flow θ onto N ′ using Φ. Because
flows are directional, it will be convenient to think of edges as being directed. For
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Figure 3.5: The flow on (x′, y′) is the sum of the flows on (x1, y1), (x2, y2), and
(x3, y3).

e = {x, y} in N , let
−→
Φ (x, y) be the path Φ(e) oriented from φ(x) to φ(y). So

(x′, y′) ∈
−→
Φ (x, y) means that {x′, y′} ∈ Φ(e) and that x′ is visited before y′ in the

path Φ(e) from φ(x) to φ(y). (If φ(x) = φ(y), choose an arbitrary orientation of
the cycle Φ(e) for

−→
Φ (x, y) and the reversed orientation for

−→
Φ (y, x).) Then define,

for x′, y′ with {x′, y′} in N ′,

θ′(x′, y′) :=
∑

(x,y):(x′,y′)∈
−→
Φ (x,y)

θ(x, y). (3.3.31)

See Figure 3.5.
We claim that θ′ is a flow to∞ of finite energy onN ′. We first check that θ′ is

a flow.

1. (Anti-symmetry) By construction, θ′(y′, x′) = −θ′(x′, y′), that is, θ′ is anti-
symmetric, because θ itself is anti-symmetric. We used the fact that

−→
Φ (y, x)

is
−→
Φ (x, y) oriented in the opposite direction.

2. (Flow conservation) Next we check the flow-conservation constraints. Fix
z′ in N ′. By Condition 2 in Definition 3.3.31, there are finitely many edges
e in N such that Φ(e) visits z′. Let e = {x, y} be such an edge. There are
two cases:
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- Assume first that φ(x), φ(y) 6= z′ and let (u′, z′), (z′, w′) be the di-
rected edges incident with z′ on

−→
Φ (x, y). Observe that, in the def-

inition of θ′, (y, x) contributes θ(y, x) = −θ(x, y) to θ′(z′, u′) and
(x, y) contributes θ(x, y) to θ′(z′, w′). So these contributions can-
cel out in the flow-conservation constraint for z′, that is, in the sum∑

v′:v′∼z′ θ
′(z′, v′).

- If instead e = {x, y} is such that φ(x) = z′, let (z′, w′) be the first
edge on the path

−→
Φ (x, y). Edge (x, y) contributes θ(x, y) to θ′(z′, w′).

A similar statement applies to φ(y) = z′ by changing the role of x and
y. This case also applies to φ(x) = φ(y) = z′.

From the two cases above, summing over all paths visiting z′ gives∑
v′:v′∼z′

θ′(z′, v′) =
∑

z:φ(z)=z′

(∑
v:v∼z

θ(z, v)

)
.

Because θ is a flow, the sum in parentheses is 0 if z 6= a and 1 otherwise. So
the right-hand side is 0 unless a ∈ φ−1({z′}) in which case it is 1.

We have shown that θ′ is a unit flow from φ(a) to∞. It remains to bound the
energy of θ′. By (3.3.31), Cauchy-Schwarz, and Condition 2 in Definition 3.3.31,

θ′(x′, y′)2 =

 ∑
(x,y):(x′,y′)∈

−→
Φ (x,y)

θ(x, y)


2

≤

 ∑
(x,y):(x′,y′)∈

−→
Φ (x,y)

1


 ∑

(x,y):(x′,y′)∈
−→
Φ (x,y)

θ(x, y)2


≤ β

∑
(x,y):(x′,y′)∈

−→
Φ (x,y)

θ(x, y)2.

Summing over all pairs and using Condition 1 in Definition 3.3.31 gives

1

2

∑
x′,y′

r′(x′, y′)θ′(x′, y′)2 ≤ β
1

2

∑
x′,y′

r′(x′, y′)
∑

(x,y):(x′,y′)∈
−→
Φ (x,y)

θ(x, y)2

= β
1

2

∑
x,y

θ(x, y)2
∑

(x′,y′)∈
−→
Φ (x,y)

r′(x′, y′)

≤ αβ
1

2

∑
x,y

r(x, y)θ(x, y)2,
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which is finite by assumption. That concludes the proof.

As an application, we give a second proof of Pólya’s theorem in Section 3.3.4.

Other applications

So far we have emphasized applications to recurrence. Here we show that electrical
network theory can also be used to bound commute times. In Section 3.3.5, we give
further applications beyond random walks on graphs.

An application of Corollary 3.1.24 gives another probabilistic interpretation of
the effective resistance—and a useful formula.

Theorem 3.3.34 (Commute time identity). Let N = (G, c) be a finite, connected
network with vertex set V . For x 6= y, let the commute time τx,y be the time of the

commute time
first return to x after the first visit to y. Then

Ex[τx,y] = Ex[τy] + Ey[τx] = cN R(x↔ y),

where cN = 2
∑

e={x,y}∈N c(e).

Proof. This follows immediately from Corollary 3.1.24 and the definition of the
effective resistance (Definition 3.3.19). Specifically,

Ex[τy] + Ey[τx] =
1

πx Px[τy < τ+
x ]

=
1

(2
∑

e={x,y}∈N c(e))
−1c(x)Px[τy < τ+

x ]

= cN R(x↔ y).

Example 3.3.35 (Random walk on the torus). Consider random walk on the d-
dimensional torus Ldn with unit resistances. We use the commute time identity to
lower bound the mean hitting time Ex[τy] for arbitrary vertices x 6= y at graph
distance k on Ldn. To use the commute time identity (Theorem 3.3.34), note that
by symmetry Ex[τy] = Ey[τx] so that

Ex[τy] =
1

2
cN R(x↔ y) = dnd R(x↔ y). (3.3.32)

where we used that the number of vertices is nd and the graph is 2d-regular.
To simplify, assume n is odd and identify the vertices of Ldn with the box

B := {−(n− 1)/2, . . . , (n− 1)/2}d,
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in Ld centered at x = 0. Let ∂B∞j = {z ∈ Ld : ‖z‖∞ = j} and let Πj be the set
of edges between ∂B∞j and ∂B∞j+1. Note that on B the `1 norm of y is at most k
(the graph distance between x = 0 and y). Since the `∞ norm is at least 1/d times
the `1 norm on Ld, there exists J = O(k) such that all Πjs, j ≤ J , are cutsets
separating x from y. By the Nash-Williams inequality

R(x↔ y) ≥
∑

0≤j≤J
|Πj |−1 =

∑
0≤j≤J

Ω
(
j−(d−1)

)
=

{
Ω(log k), d = 2

Ω(1), d ≥ 3.

From (3.3.32), we get:

Claim 3.3.36.

Ex[τy] =

{
Ω(nd log k), d = 2

Ω(nd), d ≥ 3.

J

Remark 3.3.37. The bounds in the previous example are tight up to constants. See [LPW06,
Proposition 10.13]. Note that the case d ≥ 3 does not in fact depend on the distance k.

See Exercise 3.22 for an application of the commute time identity to cover
times.

3.3.4 . Random walks: Pólya’s theorem, two ways

The following is a classical result.

Theorem 3.3.38 (Pólya’s theorem). Random walk on Ld is recurrent for d ≤ 2
and transient for d ≥ 3.

We prove the theorem for d = 2, 3 using the tools developed in the previous sub-
section. The other cases follow by Rayleigh’s principle (Corollary 3.3.29). There
are elementary proofs of this result. But we showed above that the electrical net-
work approach has the advantage of being robust to the details of the lattice. For a
different argument, see Exercise 2.10.

The case d = 2 follows from the Nash-Williams inequality (Corollary 3.3.26)
by letting Πj be the set of edges connecting vertices of `∞ norm j and j+1. Using
the fact that all conductances are 1, that |Πj | = O(j), and that

∑
j j
−1 diverges,

recurrence is established by Theorem 3.3.20.
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First proof

Now consider the case d = 3 and let a = 0 be the origin.
We construct a finite-energy flow to∞ using the method of random paths. Note

method of

random

paths

that a simple way to produce a unit flow to ∞ is to push a flow of 1 through an
infinite path (which, recall, are self-avoiding by definition). Taking this a step fur-
ther, let µ be a probability measure on infinite paths and define the anti-symmetric
function

θ(x, y) := E[1(x,y)∈Γ − 1(y,x)∈Γ] = P[(x, y) ∈ Γ]− P[(y, x) ∈ Γ],

where Γ is a random path distributed according to µ, oriented away from 0. (We
will give an explicit construction below where the appropriate formal probability
space will be clear.) Observe that

∑
y∼x[1(x,y)∈Γ − 1(y,x)∈Γ] = 0 for any x 6= 0

because vertices visited by Γ are entered and exited exactly once. That same sum
is 1 at x = 0. Hence θ is a unit flow to ∞. For edge e = {x, y}, consider the
following “edge marginal” of µ:

µ(e) := P[(x, y) ∈ Γ or (y, x) ∈ Γ] = P[(x, y) ∈ Γ] + P[(y, x) ∈ Γ] ≥ θ(x, y),

where we used that a path Γ cannot visit both (x, y) and (y, x) by definition. Then
we get the following bound.

Claim 3.3.39 (Method of random paths).

E (θ) ≤
∑
e

µ(e)2. (3.3.33)

For a measure µ concentrated on a single path, the sum above is infinite. To
obtain a useful bound, what we need is a large collection of spread out paths. On
the lattice L3, we construct µ as follows. Let U be a uniformly random point on
the unit sphere in R3 and let γ be the ray from 0 to∞ going through U . Imagine
centering a unit cube around each point in Z3 whose edges are aligned with the
axes. Then γ traverses an infinite number of such cubes. Let Γ be the correspond-
ing path in the lattice L3. To see that this procedure indeed produces a path observe
that γ, upon exiting a cube around a point z ∈ Z3, enters the cube of a neighboring
point z′ ∈ Z3 through a face corresponding to the edge between z and z′ on the
lattice L3 (unless it goes through a corner of the cube, but this has probability 0).
To argue that µ distributes its mass among sufficiently spread out paths, we bound
the probability that a vertex is visited by Γ. Let z be an arbitrary vertex in Z3.
Because the sphere of radius ‖z‖2 around the origin in R3 has area O(‖z‖22) and
its intersection with the unit cube centered around z has area O(1), it follows that

P[z ∈ Γ] = O
(
1/‖z‖22

)
.
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That immediately implies a similar bound on the probability that an edge is visited
by Γ. Moreover:

Lemma 3.3.40. There are O(j2) edges with an endpoint at `2 distance within
[j, j + 1] from the origin.

Proof. Consider an open ball of `2 radius 1/2 centered around each vertex of `2

norm within [j, j + 1]. Those balls are non-intersecting and have total volume
Θ(Nj), where Nj is the number of such vertices. On the other hand, the volume of
the shell of `2 inner and outer radii j− 1/2 and j+ 3/2 centered around the origin
(where all those balls lie) is

4

3
π(j + 3/2)3 − 4

3
π(j − 1/2)3 = O(j2).

Hence Nj = O(j2). Finally note that each vertex has 6 incident edges.

Plugging those bounds into (3.3.33), we get

E (θ) ≤
∑
j

O(j2) ·
[
O(1/j2)

]2
= O

(∑
j j
−2
)
< +∞.

Transience follows from Theorem 3.3.30. (This argument clearly does not work
on L where there are only two rays. You should convince yourself that it does not
work on L2 either. But see Exercise 3.17.)

Second proof

We briefly describe a second proof based on the independent-coordinate random
walk. Consider the networks N and N ′ in Example 3.3.32. Because they are
roughly equivalent (Definition 3.3.31), they have the same type by Theorem 3.3.33.
Recall that, because the number of returns to 0 is geometric with success probabil-
ity equal to the escape probability, random walk on N ′ is transient if and only if
the expected number of visits to 0 is finite (see (3.1.2)). By independence of the
coordinates, this expectation can be written as

∑
t≥0

(
P
[
Y

(1)
2t = 0

])d
=
∑
t≥0

((
2t

t

)
2−2t

)d
=
∑
t≥0

Θ(t−d/2),

where we used Stirling’s formula (see Appendix A). The rightmost sum is finite
if and only if d ≥ 3. That implies random walk on N ′ is transient under that
condition. By rough equivalence, the same is true of N .
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3.3.5 . Randomized algorithms: Wilson’s method for generating uni-
form spanning trees

In this section, we describe an application of electrical network theory to spanning
trees.

With a slight abuse of notation, we use e ∈ G to indicate that e is an edge of
G.

Uniform spanning trees Let G = (V,E) be a finite connected graph. Recall
that a spanning tree is a subtree of G containing all its vertices. Such a tree has
|V | − 1 edges. A uniform spanning tree is a spanning tree T chosen uniformly at

uniform

spanning tree
random among all spanning trees of G.

We make some simple observations first. BecauseG is connected, it has at least
one spanning tree by Corollary 1.1.6. Moreover, for any edge e ∈ G, there always
exists at least one spanning tree including it. To see this, let T ′ be any spanning tree
of G, which exists by the previous observation. If e /∈ T ′, then we obtain a new
spanning tree by adding e to T ′ and removing one edge 6= e in the cycle created.
As a consequence, the probability of inclusion P[e ∈ T ] in a uniform spanning tree
T cannot be 0. It is however possible for P[e ∈ T ] to equal to 1 if removing e
disconnects the graph. Such an edge is called a bridge.

bridge
A fundamental property of uniform spanning trees is the following negative

correlation between edges.

Claim 3.3.41. For a uniform spanning tree T of a connected graph G,

P[e ∈ T | e′ ∈ T ] ≤ P[e ∈ T ], ∀e 6= e′ ∈ G.

This property is perhaps not surprising. For one, the number of edges in a spanning
tree is fixed, so the inclusion of e′ makes it seemingly less likely for other edges to
be present. Yet proving Claim 3.3.41 is not trivial. The proof relies on the electrical
network perspective. The key is a remarkable formula for the inclusion of an edge
in a uniform spanning tree.

Theorem 3.3.42 (Kirchhoff’s resistance formula). Let G = (V,E) be a finite,
connected graph and let N be the network on G with unit resistances. If T is a
uniform spanning tree on G, then for all e = {x, y}

P[e ∈ T ] = R(x↔ y).

Before explaining how this formula arises, we show that it implies Claim 3.3.41.
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Proof of Claim 3.3.41. Recall that P[e′ ∈ T ] 6= 0. By the law of total probability,

P[e ∈ T ] = P[e ∈ T | e′ ∈ T ]P[e′ ∈ T ] + P[e ∈ T | e′ /∈ T ]P[e′ /∈ T ],

so, since P[e′ ∈ T ] + P[e′ /∈ T ] = 1, we can instead prove

P[e ∈ T | e′ /∈ T ] ≥ P[e ∈ T ]. (3.3.34)

Picking a uniform spanning tree on N conditioned on {e′ /∈ T} is the same as
picking a uniform spanning tree on the modified network N ′ where e′ is removed.
By Rayleigh’s principle (in the form of Corollary 3.3.28),

RN ′(x↔ y) ≥ RN (x↔ y),

and Kirchhoff’s resistance formula (Theorem 3.3.42) gives (3.3.34).

Remark 3.3.43. More generally, thinking of a uniform spanning tree T as a random subset
of edges, the law of T has the property of negative associations, defined as follows. An
event A ⊆ 2E is said to be increasing if ω ∪ {e} ∈ A whenever ω ∈ A. The event A
is said to depend only on F ⊆ E if for all ω1, ω2 ∈ 2E that agree on F , either both
are in A or neither is. The law PT of T has negative associations in the sense that for
any two increasing events A and B that depend only on disjoint sets of edges, we have
PT [A ∩ B] ≤ PT [A]PT [B]. See [LP16, Exercise 4.6].

Let e = {x, y}. To get some insight into Kirchhoff’s resistance formula, we
first note that, if i is the unit current from x to y and v is the associated voltage, by
definition of the effective resistance

R(x↔ y) =
v(x)

‖i‖
= c(e)(v(x)− v(y)) = i(x, y), (3.3.35)

where we used Ohm’s law (i.e., (3.3.20)) as well as the fact that c(e) = 1, v(y) = 0,
and ‖i‖ = 1. Note that ‖i‖ and i(x, y) are not the same quantity: although ‖i‖ = 1,
i(x, y) is only the current along the edge to y. Furthermore by the probabilistic
interpretation of the current (Theorem 3.3.17), with Z = {y},

i(x, y) = Ex[NZ
x→y −NZ

y→x] = Px [(x, y) is traversed before τy] . (3.3.36)

Indeed, started at x, NZ
y→x = 0 and NZ

x→y ∈ {0, 1}. Kirchhoff’s resistance for-
mula is then established by relating the random walk on N to the probability that
e is present in a uniform spanning tree T . To do this we introduce a random-walk-
based algorithm for generating uniform spanning trees. This rather miraculous
procedure, known as Wilson’s method, is of independent interest. (For a classical
connection between random walks and spanning trees, see also Exercise 3.23.)
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Wilson’s method It will be somewhat easier to work in a more general context.
Let N = (G, c) be a finite, connected network on G with arbitrary conductances
and define the weight of a spanning tree T on N as

W (T ) =
∏
e∈T

c(e).

With a slight abuse, we continue to call a tree T picked at random among all span-
ning trees of G with probability proportional to W (T ) a “uniform” spanning tree
on N .

To state Wilson’s method, we need the notion of loop erasure. Let P = x0 ∼ loop erasure
. . . ∼ xk be a walk in N . The loop erasure of P is obtained by removing cycles in
the order they appear. That is, let j∗ be the smallest j such that xj = x` for some
` < j. Remove the subwalk x`+1 ∼ · · · ∼ xj from P , and repeat. The result is
self-avoiding, that is, a path, and is denoted by LE(P).

Let v0 be an arbitrary vertex of G, which we refer to as the root, and let T0

be the subtree made up of v0 alone. Starting with the root, order arbitrarily the
vertices of G as v0, . . . , vn−1. Wilson’s method constructs an increasing sequence
of subtrees as follows. See Figure 3.6. Let T := T0.

1. Let v be the vertex of G not in T with lowest index. Perform random walk
on N started at v until the first visit to a vertex of T . Let P be the resulting
walk.

2. Add the loop erasure LE(P) to T .

3. Repeat until all vertices of G are in T .

Let T0, . . . , Tm be the sequence of subtrees produced by Wilson’s method.

Claim 3.3.44. Forgetting the root, Tm is a uniform spanning tree on N .

This claim is far from obvious. Before proving it, we finish the proof of Kirch-
hoff’s resistance formula.

Proof of Theorem 3.3.42. From (3.3.35) and (3.3.36), it suffices to prove that, for
e = {x, y},

Px [(x, y) is traversed before τy] = P[e ∈ T ],

where the probability on the left-hand side refers to random walk on N with unit
resistances started at x and the probability on the right-hand side refers to a uniform
spanning tree T on N . Generate T using Wilson’s method started at root v0 = y
with the choice v1 = x. If the walk from x to y during the first iteration of Wilson’s
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Figure 3.6: An illustration of Wilson’s method. The dashed lines indicate erased
loops.
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method includes (x, y), then the loop erasure is simply x ∼ y and e is in T . On
the other hand, if the walk from x to y does not include (x, y), then e cannot be
used at a later stage because it would create a cycle. That immediately proves the
theorem.

It remains to prove the claim.

Proof of Claim 3.3.44. The idea of the proof is to cast Wilson’s method in the more
general framework of cycle popping algorithms. We begin by explaining how such
algorithms work.

Let P be the transition matrix corresponding to random walk on N = (G, c)
with G = (V,E) and root v0. To each vertex x 6= v0 in V , we assign an indepen-
dent stack of “colored directed edges”

Sx0 := (〈x, Y x
1 〉1, 〈x, Y x

2 〉2, . . .)

where each Y x
j is chosen independently at random from the distribution P (x, · ).

In particular all Y x
j s are neighbors of x in N . The index j in 〈x, Y x

j 〉j is the color
color

of the edge. It keeps track of the position of the edge in the original stack. (Picture
Sx as a spring-loaded plate dispenser located on vertex x.)

We consider a process which involves popping edges off the stacks. We use
the notation Sx to denote the current stack at x. The initial assignment of the
stack is Sx := Sx0 as above. Given the current stacks (Sx)x, we call visible graph

visible graph
the (colored) directed graph over V with edges Top(Sx) for all x 6= v0, where
Top(Sx) is the first edge in the current stack Sx. The latter are referred to as
visible edges. We denote the current visible graph by

−→
G�.

visible edge
Note that

−→
G� has out-degree 1 for all x 6= v0 and the root has out-degree

0. In particular all undirected cycles in
−→
G� are in fact directed cycles, and we

refer to them simply as cycles. (Indeed a set of edges forming an undirected cycle
that is not directed must have a vertex of out-degree 2.) Also recall the following
characterization from Corollary 1.1.8: an acyclic, undirected subgraph with |V |
vertices and |V |−1 edges is a spanning tree ofG. Hence if there is no cycle in

−→
G�,

then it must be a spanning tree (as an undirected graph) where, furthermore, all
edges point towards the root. Such a tree is also known as a spanning arborescence.

spanning

arborescence
Once that happens, we are done.

As the name suggests, a cycle popping algorithm proceeds by popping cycles
in
−→
G� off the tops of the stacks until a spanning arborescence is produced. That

is, at every iteration, if
−→
G� contains at least one cycle, then a cycle

−→
C is picked

according to some rule, the top of each stack in
−→
C is popped, and a new visible

graph
−→
G� is revealed. See Figure 3.7 for an illustration.
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Figure 3.7: A realization of a cycle popping algorithm (from top to bottom). In all
three figures, the underlying graph is G while the arrows depict the visible edges.
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With these definitions in place, the proof of the claim involves the following
steps.

(i) Wilson’s method is a cycle popping algorithm. Recasting Wilson’s method,
we can think of the initial stacks (Sx0 ) as corresponding to picking—ahead of
time—all potential transitions in the random walks. With this representation,
the algorithm boils down to a recipe for choosing which cycle to pop next.
Indeed, at each iteration, we start from a vertex v not in the current tree T .
A key observation: following the visible edges from v traces a path whose
distribution is that of random walk on N . Loop erasure then corresponds
to popping cycles as they are closed. We pop only those visible edges on
the removed cycles, as they originate from vertices that will be visited again
by the algorithm and for which a new transition will then be needed. Those
visible edges in the resulting loop-erased path are not popped—note that they
are part of the final arborescence.

(ii) The popping order does not matter. We just argued that Wilson’s method is a
cycle popping algorithm. In fact we claim that any cycle popping algorithm,
that is, no matter what popping choices are made along the way, produces the
same final arborescence. To make this precise, we identify the popped cycles
uniquely. This is where the colors come in. A colored cycle is a directed

colored

cycle
cycle over V made of colored edges from the stacks (not necessarily of the
same color and not necessarily in the current visible graph). We say that a
colored cycle

−→
C is poppable for a visible graph

−→
G� if there exists a sequence

poppable cycle
of colored cycles

−→
C 1, . . . ,

−→
C r =

−→
C that can be popped in that order starting

from
−→
G�. Note that, by this definition,

−→
C 1 is a cycle in

−→
G�. Now we

claim that if
−→
C ′1 were popped first instead of

−→
C 1, producing the new visible

graph
−→
G ′�, then

−→
C would still be poppable for

−→
G ′�. This claim implies

that, in any cycle popping algorithm, either an infinite number of cycles are
popped or eventually all poppable cycles are popped—independently of the
order—producing the same outcome. (Note that, while the same cycle may
be popped more than once, the same colored cycle cannot.)

To prove the claim, note first that if
−→
C ′1 =

−→
C or if

−→
C ′1 does not share a vertex

with any of
−→
C 1, . . . ,

−→
C r there is nothing to prove. So let

−→
C j be the first cy-

cle in the sequence sharing a vertex with
−→
C ′1, say x. Let 〈x, y〉c and 〈x, y′〉c′

be the colored edges emanating from x in
−→
C j and

−→
C ′1 respectively. By def-

inition, x is not on any of
−→
C 1, . . . ,

−→
C j−1 so the edge originating from x is

not popped by that sequence and we must have 〈x, y〉c = 〈x, y′〉c′ as colored
edges. In particular, the vertex y is also a shared vertex of

−→
C j and

−→
C ′1, and



CHAPTER 3. MARTINGALES AND POTENTIALS 225

the same argument applies to it. Proceeding by induction leads to the conclu-
sion that

−→
C ′1 =

−→
C j as colored cycles. But then

−→
C is clearly poppable for the

visible graph resulting from popping
−→
C ′1 first, because it can be popped with

the rearranged sequence
−→
C ′1 =

−→
C j ,
−→
C 1, . . . ,

−→
C j−1,

−→
C j+1, . . . ,

−→
C r =

−→
C ,

where we used the fact that
−→
C ′1 does not share a vertex with

−→
C 1, . . . ,

−→
C j−1.

(iii) Termination occurs in finite time almost surely. We have shown so far that, in
any cycle popping algorithm, either an infinite number of cycles are popped
or eventually all poppable cycles are popped. But Wilson’s method—a cycle
popping algorithm as we have shown—stops after a finite amount of time
with probability 1. Indeed, because the network is finite and connected, the
random walk started at each iteration hits the current T in finite time almost
surely (by Lemma 3.1.25). To sum up, all cycle popping algorithms termi-
nate and produce the same spanning arborescence. It remains to compute the
distribution of the outcome.

(iv) The arborescence has the desired distribution. Let A be the spanning ar-
borescence produced by any cycle popping algorithm on the stacks (Sx0 ). To
compute the distribution of A, we first compute the distribution of a par-
ticular cycle popping realization leading to A. Because the popping order
does not matter, by “realization” we mean a collection C of colored cycles
together with a final spanning arborescence A. Notice that what lies in the
stacks “under” A is not relevant to the realization, that is, the same outcome
is produced no matter what is under A.

So, from the distribution of the stacks, the probability of observing (C,A) is
simply the product of the transitions corresponding to the “popped edges” in
C and the “final edges” in A, that is,∏

~e∈C∪A
P (~e) = Ψ(A)

∏
−→
C∈C

Ψ
(−→
C
)
,

where the function Ψ returns the product of the transition probabilities of a
set of directed edges. Thanks to the product form on the right-hand side,
summing over all possible Cs gives that the probability of producing A is
proportional to Ψ(A).

For this argument to work though, there are two small details to take care of.
First, note that we want the probability of the “uncolored” arborescence. But
observe that, in fact, there is no need to keep track of the colors on the edges
ofA because these are determined by C. Secondly, we need for the collection
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of possible Cs not to vary with A. But it is clear that any arborescence could
lie under any C.

To see that we are done, let T be the undirected spanning tree corresponding to
the outcome, A, of Wilson’s method. Then, because P (x, y) = c(x,y)

c(x) , we get

Ψ(A) =
W (T )∏
x6=v0

c(x)
,

where note that the denominator does not depend on T . So if we forget the orien-
tation of A which is determined by the root (i.e., sum over all choices of root), we
get a spanning tree whose distribution is proportional to W (T ), as required.
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Exercises

Exercise 3.1 (Reflection). Give a rigorous proof of Theorem 3.1.9 through a for-
mal application of the strong Markov property (i.e., specify ft and Ft in Theo-
rem 3.1.8).

Exercise 3.2 (Time of k-th return). Give a rigorous proof of (3.1.1) through a
formal application of the strong Markov property (i.e., specify ft and Ft in Theo-
rem 3.1.8).

Exercise 3.3 (Tightness of Matthews’ bounds). Show that the bounds (3.1.6) and (3.1.7)
are tight up to smaller order terms for the coupon collector problem (Example 2.1.4).
[Hint: State the problem in terms of the cover time of a random walk on the com-
plete graph with self-loops.]

Exercise 3.4 (Pólya’s urn: a suprisingly simple formula). Consider the setting of
Example 3.1.49. Prove that

P[Gt = m+ 1] =

(
t

m

)
m!(t−m)!

(t+ 1)!
.

[Hint: Consider the probability of one particular sequence of outcomes producing
the desired event.]

Exercise 3.5 (Optional stopping theorem). Give a rigorous proof of the remaining
cases of the optional stopping theorem (Theorem 3.1.38).

Exercise 3.6 (Supermartingale inequality). Let (Mt) be a nonnegative, supermartin-
gale. Show that, for any b > 0,

P
[
sup
s≥0

Ms ≥ b
]
≤ E[M0]

b
.

[Hint: Mimic the proof of the submartingale case.]

Exercise 3.7 (Azuma-Hoeffding: a second proof). This exercise leads the reader
through an alternative proof of the Azuma-Hoeffding inequality.

(i) Show that for all x ∈ [−1, 1] and a > 0

eax ≤ cosh a+ x sinh a.

(ii) Use a Taylor expansion to show that for all x

coshx ≤ ex2/2.
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(iii) LetX1, . . . , Xn be (not necessarily independent) random variables such that,
for all i, |Xi| ≤ ci for some constant ci < +∞ and

E [Xi1 · · ·Xik ] = 0, ∀ 1 ≤ k ≤ n, ∀ 1 ≤ i1 < · · · < ik ≤ n. (3.3.37)

Show, using (i) and (ii), that for all b > 0

P

[
n∑
i=1

Xi ≥ b

]
≤ exp

(
− b2

2
∑n

i=1 c
2
i

)
.

(iv) Prove that (iii) implies a variant of the Azuma-Hoeffding inequality (Theo-
rem 3.2.1) for bounded increments.

(v) Show that the random variables in Exercise 2.6 (after centering) do not sat-
isfy (3.3.37) (without using the claim in part (ii) of that exercise).

Exercise 3.8 (Lipschitz condition). Give a rigorous proof of Lemma 3.2.31.

Exercise 3.9 (Lower bound on expected spectral norm). LetA be an n×n random
matrix. Assume that the entries Ai,j , i, j = 1, . . . , n, are independent, centered
random variables in [−1, 1]. Suppose further that there is 0 < σ2 < +∞ such that
Var[Aij ] ≥ σ2 for all i, j. Show that there is 0 < c < +∞ such that

E‖A‖ ≥ c
√
n,

for n large enough. [Hint: Use the fact that ‖A‖2 ≥ ‖Ae1‖2 together with Cheby-
shev’s inequality.]

Exercise 3.10 (Kirchhoff’s laws). Consider a finite, connected network with a
source and a sink. Show that an anti-symmetric function on the edges satisfying
Kirchhoff’s two laws is a current function (i.e., it corresponds to a voltage function
through Ohm’s law).

Exercise 3.11 (Dirichlet problem: non-uniqueness). Let (Xt) be the birth-and-
death chain on Z+ with P (x, x + 1) = p and P (x, x − 1) = 1 − p for all x ≥ 1,
and P (0, 1) = 1, for some 0 < p < 1. Fix h(0) = 1.

(i) When p > 1/2, show that there is more than one bounded extension of h to
Z+\{0} that is harmonic on Z+\{0}. [Hint: Consider Px[τ0 = +∞].]

(ii) When p ≤ 1/2, show that there exists a unique bounded extension of h to
Z+\{0} that is harmonic on Z+\{0}.
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Exercise 3.12 (Maximum principle). Let N = (G, c) be a finite or countable,
connected network with G = (V,E). Let W be a finite, connected, proper subset
of V .

(i) Let h : V → R be a function on V . Prove the maximum principle: if h is
harmonic on W , that is, it satisfies

h(x) =
1

c(x)

∑
y∼x

c(x, y)h(y), ∀x ∈W,

and if h achieves its supremum on W , then h is constant on W ∪ ∂VW ,
where

∂VW = {z ∈ V \W : ∃y ∈W, y ∼ z}.

(ii) Let h : W c → R be a bounded function on W c := V \W . Let h1 and h2

be extensions of h to W that are harmonic on W . Use part (i) to prove that
h1 ≡ h2.

Exercise 3.13 (Poisson equation: uniqueness). Show that u is the unique solution
of the system in Theorem 3.3.6 under the conditions of Theorem 3.3.1. [Hint: Use
Theorem 3.3.9 and mimic the proof of Theorem 3.3.1.]

Exercise 3.14 (Effective resistance: metric). Show that effective resistances be-
tween pairs of vertices form a metric.

Exercise 3.15 (Dirichlet principle: proof). Prove Theorem 3.3.25.

Exercise 3.16 (Martingale problem). Let V be countable, let (Xt) be a stochastic
process adapted to (Ft) and taking values in V , and let P be a transition prob-
ability on V with associated Laplacian operator ∆. Show that the following are
equivalent:

(i) The process (Xt) is a Markov chain with transition probability P .

(ii) For any bounded measurable function f : V → R, the process

Mf
t = f(Xt)−

t−1∑
s=0

∆f(Xs),

is a martingale with respect to (Ft).

Exercise 3.17 (Random walk on L2: effective resistance). Consider random walk
on L2, which we showed is recurrent. Let (Gn) be the exhaustive sequence cor-
responding to vertices at distance at most n from the origin and let Zn be the
corresponding sink-set. Show that R(0↔ Zn) = Θ(log n). [Hint: Use the Nash-
Williams inequality and the method of random paths.]
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Exercise 3.18 (Random walk on regular graphs: effective resistance). Let G be a
d-regular graph with n vertices and d > n/2. Let N be the network (G, c) with
unit conductances. Let a and z be arbitrary distinct vertices.

(i) Show that there are at least 2d− n vertices x 6= a, z such that a ∼ x ∼ z is
a path.

(ii) Prove that

Ea(τa,z) ≤
2dn

2d− n
.

Exercise 3.19 (Independent-coordinate random walk). Give a rigorous proof that
the two networks in Example 3.3.32 are roughly equivalent.

Exercise 3.20 (Rough isometries). Graphs G = (V,E) and G′ = (V ′, E′) are
roughly isometric (or quasi-isometric) if there is a map φ : V → V ′ and constants

rough isometry
0 < α, β < +∞ such that for all x, y ∈ V

α−1d(x, y)− β ≤ d′(φ(x), φ(y)) ≤ αd(x, y) + β,

where d and d′ are the graph distances on G and G′ respectively, and furthermore
all vertices in G′ are within distance β of the image of V . Let N = (G, c) and
N ′ = (G′, c′) be countable, connected networks with uniformly bounded con-
ductances, resistances and degrees. Prove that if G and G′ are roughly isometric
then N and N ′ are roughly equivalent. [Hint: Start by proving that being roughly
isometric is an equivalence relation.]

Exercise 3.21 (Random walk on the cycle: hitting time). Use the commute time
identity (Theorem 3.3.34) to compute Ex[τy] in Example 3.3.35 in the case d = 1.
Give a second proof using a direct martingale argument.

Exercise 3.22 (Random walk on the binary tree: cover time). As in Example 3.3.15,
let N be the rooted binary tree with n levels T̂n2 and equal conductances on all
edges.

(i) Show that the maximal hitting time Eaτb is achieved for a and b such that
their most recent common ancestor is the root 0. Furthermore argue that
in that case Ea[τb] = Ea[τa,0], where recall that τa,0 is the commute time
between a and 0.

(ii) Use the commute time identity (Theorem 3.3.34) and Matthews’ cover time
bounds (Theorem 3.1.27) to give an upper bound on the mean cover time of
the order of O(n22n).
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Exercise 3.23 (Markov chain tree theorem). Let P be the transition matrix of a fi-
nite, irreducible Markov chain with stationary distribution π. Let G be the directed
graph corresponding to the positive transitions of P . For an arborescence A of G,
define its weight as

Ψ(A) =
∏
~e∈A

P (~e).

Consider the following process on spanning arborescences over G. Let ρ be the
root of the current spanning arborescence A. Pick an outgoing edge ~e = (ρ, x) of
ρ according to P (ρ, · ). Edge ~e is not in A by definition of an arborescence. Add
~e to A. This creates a cycle. Remove the edge of this cycle originating from x,
producing a new arborescence A′ with root x. Repeat the process.

(i) Show that this chain is irreducible.

(ii) Show that Ψ is a stationary measure for this chain.

(iii) Prove the Markov chain tree theorem: The stationary distribution π of P is
proportional to

πx =
∑

A : root(A)=x

Ψ(A).
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