
Chapter 4

Coupling

In this chapter we move on to coupling, another probabilistic technique with a wide
range of applications (far beyond discrete stochastic processes). The idea behind
the coupling method is deceptively simple: to compare two probability measures µ
and ν, it is sometimes useful to construct a joint probability space with marginals
µ and ν. For instance, in the classical application of coupling to the convergence
of Markov chains (Theorem 1.1.33), one simultaneously constructs two copies of a
Markov chain—one of which is already at stationarity—and shows that they can be
made to coincide after a random amount of time called the coupling time. We begin
in Section 4.1 by defining coupling formally and deriving its connection to the total
variation distance through the coupling inequality. We illustrate the basic idea on
a classical Poisson approximation result, which we apply to the degree sequence
of an Erdős-Rényi graph. In Section 4.2, we introduce the concept of stochastic
domination and some related correlation inequalities. We develop a key applica-
tion in percolation theory. Coupling of Markov chains is the subject of Section 4.3,
where it serves as a powerful tool to derive mixing time bounds. Finally, we end in
Section 4.4 with the Chen-Stein method for Poisson approximations, a technique
that applies in particular in some natural settings with dependent variables.

4.1 Background

We begin with some background on coupling. After defining the concept formally
and giving a few simple examples, we derive the coupling inequality, which pro-
vides a fundamental approach to bounding the distance between two distributions.
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As an application, we analyze the degree distribution in the Erdős-Rényi graph
model. Throughout this chapter, (S,S) is a measurable space. Also we will denote
by µZ the law of random variable Z.

4.1.1 Basic definitions

A formal definition of coupling follows. Recall (see Appendix B) that for measur-
able spaces (S1,S1) (S2,S2), we can consider the product space (S1×S2,S1×S2)
where

S1 × S2 := {(s1, s2) : s1 ∈ S1, s2 ∈ S2}
is the Cartesian product of S1 and S2, and S1 × S2 is the smallest σ-algebra on
S1 × S2 containing the rectangles A1 ×A2 for all A1 ∈ S1 and A2 ∈ S2.

Definition 4.1.1 (Coupling). Let µ and ν be probability measures on the same
measurable space (S,S). A coupling of µ and ν is a probability measure γ on the

coupling
product space (S × S,S × S) such that the marginals of γ coincide with µ and ν,
that is,

γ(A× S) = µ(A) and γ(S ×A) = ν(A), ∀A ∈ S.

For two random variables X and Y taking values in (S,S), a coupling of X and
Y is a joint variable (X ′, Y ′) taking values in (S × S,S × S) whose law as a
probability measure is a coupling of the laws of X and Y . Note that, under this
definition, X and Y need not be defined on the same probability space (but X ′ and
Y ′ do need to). We also say that (X ′, Y ′) is a coupling of µ and ν if the law of
(X ′, Y ′) is a coupling of µ and ν.

We give a few examples.

Example 4.1.2 (Coupling of Bernoulli variables). Let X and Y be Bernoulli ran-
dom variables with respective parameters 0 ≤ q < r ≤ 1. That is, P[X = 1] = q
and P[Y = 1] = r. Here S = {0, 1} and S = 2S .

- (Independent coupling) One coupling ofX and Y is (X ′, Y ′) whereX ′ d
= X

and Y ′ d
= Y are independent of one another. Its law is(
P[(X ′, Y ′) = (i, j)]

)
i,j∈{0,1}

=

(
(1− q)(1− r) (1− q)r
q(1− r) qr

)
.

- (Monotone coupling) Another possibility is to pick U uniformly at random
in [0, 1], and set X ′′ = 1{U≤q} and Y ′′ = 1{U≤r}. Then (X ′′, Y ′′) is a
coupling of X and Y with law(

P[(X ′′, Y ′′) = (i, j)]
)
i,j∈{0,1}

=

(
1− r r − q

0 q

)
.
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J

Example 4.1.3 (Bond percolation: monotonicity). Let G = (V,E) be a countable
graph. Denote by Pp the law of bond percolation (Definition 1.2.1) on G with
density p. Let x ∈ V and assume 0 ≤ q < r ≤ 1. Using the monotone coupling in
the previous example on each edge independently produces a coupling of Pq and
Pr. More precisely:

- Let {Ue}e∈E be independent uniforms on [0, 1].

- For p ∈ [0, 1], let Wp be the set of edges e such that Ue ≤ p.

Thinking ofWp as specifying the open edges in the percolation process onG under
Pp, we see that (Wq,Wr) is a coupling of Pq and Pr with the property that P[Wq ⊆
Wr] = 1. Let C(q)

x and C(r)
x be the open clusters of x underWq andWr respectively.

Because C(q)
x ⊆ C(r)

x ,

θ(q) := Pq[|Cx| = +∞]

= P[|C(q)
x | = +∞]

≤ P[|C(r)
x | = +∞]

= Pr[|Cx| = +∞]

= θ(r).

(We made this claim in Section 2.2.4.) J

Example 4.1.4 (Biased random walk on Z). For p ∈ [0, 1], let (S
(p)
t ) be nearest-

neighbor random walk on Z started at 0 with probability p of jumping to the right
and probability 1 − p of jumping to the left. (See the gambler’s ruin problem in
Example 3.1.43.) Assume 0 ≤ q < r ≤ 1. Using again the monotone coupling of
Bernoulli variables above we produce a coupling of (S

(q)
t ) and (S

(r)
t ).

- Let (X ′′i , Y
′′
i )i be an infinite sequence of i.i.d. monotone Bernoulli couplings

with parameters q and r respectively.

- Define (Z
(q)
i , Z

(r)
i ) := (2X ′′i − 1, 2Y ′′i − 1). Note that P[2X ′′1 − 1 = 1] =

P[X ′′1 = 1] = q and P[2X ′′1 − 1 = −1] = P[X ′′1 = 0] = 1− q, and similarly
for Y ′′i .

- Let Ŝ(q)
t =

∑
i≤t Z

(q)
i and Ŝ(r)

t =
∑

i≤t Z
(r)
i .
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Then (Ŝ
(q)
t , Ŝ

(r)
t ) is a coupling of (S

(q)
t ) and (S

(r)
t ) such that Ŝ(q)

t ≤ Ŝ
(r)
t for all t

almost surely. In particular, we deduce that for all y and all t

P[S
(q)
t ≤ y] = P[Ŝ

(q)
t ≤ y] ≥ P[Ŝ

(r)
t ≤ y] = P[S

(r)
t ≤ y].

J

4.1.2 . Random walks: harmonic functions on lattices and infinite d-
regular trees

Let (Xt) be a Markov chain on a finite or countably infinite state space V with
transition matrix P and let Px be the law of (Xt) started at x. We say that a
function h : V → R is bounded if supx∈V |h(x)| < +∞. Recall from Section 3.3
that h is harmonic (with respect to P ) on V if

h(x) =
∑
y∈V

P (x, y)h(y), ∀x ∈ V.

We first give a coupling-based criterion for bounded harmonic functions to be con-
stant. Recall that we treated the finite state-space case (where boundedness is au-
tomatic) in Corollary 3.3.3.

Lemma 4.1.5 (Coupling and bounded harmonic functions). If, for all y, z ∈ V ,
there is a coupling ((Yt)t, (Zt)t) of Py and Pz such that

lim
t
P[Yt 6= Zt] = 0,

then all bounded harmonic functions on V are constant.

Proof. Let h be bounded and harmonic on V with supx |h(x)| = M < +∞. Let
y, z be any points in V . Then, arguing as in Section 3.3.1, (h(Yt)) and (h(Zt)) are
martingales and, in particular,

E[h(Yt)] = E[h(Y0)] = h(y) and E[h(Zt)] = E[h(Z0)] = h(z).

So by Jensen’s inequality (Theorem B.4.15) and the boundedness assumption

|h(y)− h(z)| = |E[h(Yt)]− E[h(Zt)]|
≤ E |h(Yt)− h(Zt)|
≤ 2M P[Yt 6= Zt]

→ 0.

So h(y) = h(z).
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Harmonic functions on Zd Consider random walk on Ld for d ≥ 1. In that case,
we show that all bounded harmonic functions are constant.

Theorem 4.1.6 (Bounded harmonic functions on Zd). All bounded harmonic func-
tions on Ld are constant.

Proof. From (3.3.2), h is harmonic with respect to random walk on Ld if and only
if it is harmonic with respect to lazy random walk (Definition 1.1.31), that is, the
walk that stays put with probability 1/2 at every step. Let Py and Pz be the laws of
lazy random walk on Ld started at y and z respectively. We construct a coupling
((Yt), (Zt)) = ((Y

(i)
t )i∈[d], (Z

(i)
t )i∈[d]) of Py and Pz as follows: at time t, pick a

coordinate I ∈ [d] uniformly at random, then

• if Y (I)
t = Z

(I)
t then do nothing with probability 1/2 and otherwise pick

W ∈ {−1,+1} uniformly at random, set Y (I)
t+1 = Z

(I)
t+1 := Z

(I)
t + W and

leave the other coordinates unchanged;

• if instead Y (I)
t 6= Z

(I)
t , pick W ∈ {−1,+1} uniformly at random, and with

probability 1/2 set Y (I)
t+1 := Y

(I)
t +W and leave Zt and the other coordinates

of Yt unchanged, or otherwise set Z(I)
t+1 := Z

(I)
t + W and leave Yt and the

other coordinates of Zt unchanged.

It is straightforward to check that ((Yt), (Zt)) is indeed a coupling of Py and Pz .
To apply the previous lemma, it remains to bound P[Yt 6= Zt].

The key is to note that, for each coordinate i, the difference (Y
(i)
t −Z

(i)
t ) is itself

a nearest-neighbor random walk on Z started at y(i)− z(i) with holding probability
(i.e., probability of staying put) 1 − 1

d—until it hits 0. Simple random walk on Z
is irreducible and recurrent (Theorem 3.3.38). The holding probability does not
affect the type of the walk. So (Y

(i)
t − Z(i)

t ) hits 0 in finite time with probability
1. Hence, letting τ (i) be the first time Y (i)

t − Z
(i)
t = 0, we have P[Y

(i)
t 6= Z

(i)
t ] ≤

P[τ (i) > t]→ P[τ (i) = +∞] = 0.
By a union bound,

P[Yt 6= Zt] ≤
∑
i∈[d]

P[Y
(i)
t 6= Z

(i)
t ]→ 0,

as desired.

Exercise 4.1 asks for an example of a non-constant (necessarily unbounded)
harmonic function on Zd.
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Harmonic functions on Td On trees, the situation is different. Let Td be the
infinite d-regular tree with root ρ. For x ∈ Td, we let Tx be the subtree, rooted at
x, of descendants of x.

Theorem 4.1.7 (Bounded harmonic functions on Td). For d ≥ 3, let (Xt) be
simple random walk on Td and let P be the corresponding transition matrix. Let a
be a neighbor of the root and consider the function

h(x) := Px[Xt ∈ Ta for all but finitely many t].

Then h is a non-constant, bounded harmonic function on Td.

Proof. The function h is bounded since it is defined as a probability, and by the
usual first-step analysis

h(x) =
∑
y:y∼x

1

d
Py[Xt ∈ Ta for all but finitely many t] =

∑
y

P (x, y)h(y),

so h is harmonic on all of Td.
Let b 6= a be a neighbor of the root. The key of the proof is the following

lemma.

Lemma 4.1.8.
q := Pa[τρ = +∞] = Pb[τρ = +∞] > 0.

Proof. The equality of the two probabilities follows by symmetry. To see that
q > 0, let (Zt) be simple random walk on Td started at a until the walk hits ρ and
let Lt be the graph distance between Zt and the root. Then (Lt) is a biased random
walk on Z started at 1 jumping to the right with probability 1 − 1

d and jumping to
the left with probability 1

d . The probability that (Lt) hits 0 in finite time is < 1
because 1− 1

d >
1
2 when d ≥ 3 by the gambler’s ruin (Example 3.1.43).

Note that

h(ρ) ≤
(

1− 1

d

)
(1− q) < 1.

Indeed, if on the first step the random walk started at ρ moves away from a, an
event of probability 1 − 1

d , then it must come back to ρ in finite time to reach Ta.
Similarly, by the strong Markov property (Theorem 3.1.8),

h(a) = q + (1− q)h(ρ).

Since h(ρ) 6= 1 and q > 0, this shows that h(a) > h(ρ). So h is not constant.
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4.1.3 Total variation distance and coupling inequality

In the examples of Section 4.1.1, we used coupling to prove monotonicity state-
ments. Coupling is also useful to bound the distance between probability measures.
For this, we need the coupling inequality.

Total variation distance Let µ and ν be probability measures on (S,S). Recall
the definition of the total variation distance

‖µ− ν‖TV := sup
A∈S
|µ(A)− ν(A)|.

As the next lemma shows in the countable case, the total variation distance can
be thought of as an `1 distance on probability measures as vectors (up to a constant
factor).

Lemma 4.1.9 (Alternative definition of total variation distance). If S is countable,
then it holds that

‖µ− ν‖TV =
1

2

∑
x∈S
|µ(x)− ν(x)|.

Proof. Let E∗ := {x : µ(x) ≥ ν(x)}. Then, for any A ⊆ S, by definition of E∗

µ(A)− ν(A) ≤ µ(A ∩ E∗)− ν(A ∩ E∗) ≤ µ(E∗)− ν(E∗).

Similarly, we have

ν(A)− µ(A) ≤ ν(Ec∗)− µ(Ec∗)

= (1− ν(E∗))− (1− µ(E∗))

= µ(E∗)− ν(E∗).

The two bounds above are equal so |µ(A)− ν(A)| ≤ µ(E∗)− ν(E∗). Equality is
achieved when A = E∗. Also

µ(E∗)− ν(E∗) =
1

2
[µ(E∗)− ν(E∗) + ν(Ec∗)− µ(Ec∗)]

=
1

2

∑
x∈S
|µ(x)− ν(x)|.

That concludes the proof.

Like the `1 distance, the total variation distance is a metric. In particular, it
satisfies the triangle inequality.
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Lemma 4.1.10 (Total variation distance: triangle inequality). Let µ, ν, η be prob-
ability measures on (S,S). Then

‖µ− ν‖TV ≤ ‖µ− η‖TV + ‖η − ν‖TV.

Proof. From the definition,

sup
A∈S
|µ(A)− ν(A)| ≤ sup

A∈S
{|µ(A)− η(A)|+ |η(A)− ν(A)|}

≤ sup
A∈S
|µ(A)− η(A)|+ sup

A∈S
|η(A)− ν(A)|.

Coupling inequality We come to an elementary, yet fundamental inequality.

Lemma 4.1.11 (Coupling inequality). Let µ and ν be probability measures on
(S,S). For any coupling (X,Y ) of µ and ν,

‖µ− ν‖TV ≤ P[X 6= Y ].

Proof. For any A ∈ S,

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ A]

= P[X ∈ A, X = Y ] + P[X ∈ A, X 6= Y ]

− P[Y ∈ A, X = Y ]− P[Y ∈ A, X 6= Y ]

= P[X ∈ A, X 6= Y ]− P[Y ∈ A, X 6= Y ]

≤ P[X 6= Y ],

and, similarly, ν(A)− µ(A) ≤ P[X 6= Y ]. Hence

|µ(A)− ν(A)| ≤ P[X 6= Y ].

Taking a supremum over A gives the claim.

Here is a quick example.

Example 4.1.12 (A coupling of Poisson random variables). Let X ∼ Poi(λ) and
Y ∼ Poi(ν) with λ > ν. Recall that a sum of independent Poisson is Poisson
(see Exercise 6.7). This fact leads to a natural coupling: let Ŷ ∼ Poi(ν), Ẑ ∼
Poi(λ− ν) independently of Ŷ , and X̂ = Ŷ + Ẑ. Then (X̂, Ŷ ) is a coupling of X
and Y , and by the coupling inequality (Lemma 4.1.11)

‖µX − µY ‖TV ≤ P[X̂ 6= Ŷ ] = P[Ẑ > 0] = 1− e−(λ−ν) ≤ λ− ν,

where we used 1− e−x ≤ x for all x (see Exercise 1.16). J
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Figure 4.1: Proof by picture that: 1− p = α = β = ‖µ− ν‖TV.

Remarkably, the inequality in Lemma 4.1.11 is tight. For simplicity, we prove
this in the finite case only.

Lemma 4.1.13 (Maximal coupling). Assume S is finite and let S = 2S . Let µ and
ν be probability measures on (S,S). Then,

‖µ− ν‖TV = inf{P[X 6= Y ] : coupling (X,Y ) of µ and ν}.

Proof. We construct a coupling which achieves equality in the coupling inequality.
Such a coupling is called a maximal coupling.

maximal

coupling
Let A = {x ∈ S : µ(x) > ν(x)}, B = {x ∈ S : µ(x) ≤ ν(x)} and

p :=
∑
x∈S

µ(x) ∧ ν(x), α :=
∑
x∈A

[µ(x)− ν(x)], β :=
∑
x∈B

[ν(x)− µ(x)].

Assume p > 0 (otheriwse there is nothing to prove). First, two lemmas. See
Figure 4.1 for a proof by picture.

Lemma 4.1.14. ∑
x∈S

µ(x) ∧ ν(x) = 1− ‖µ− ν‖TV.
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Proof. We have

2‖µ− ν‖TV =
∑
x∈S
|µ(x)− ν(x)|

=
∑
x∈A

[µ(x)− ν(x)] +
∑
x∈B

[ν(x)− µ(x)]

=
∑
x∈A

µ(x) +
∑
x∈B

ν(x)−
∑
x∈S

µ(x) ∧ ν(x)

= 2−
∑
x∈B

µ(x)−
∑
x∈A

ν(x)−
∑
x∈S

µ(x) ∧ ν(x)

= 2− 2
∑
x∈S

µ(x) ∧ ν(x),

where we used that both µ and ν sum to 1. Rearranging gives the claim.

Lemma 4.1.15.∑
x∈A

[µ(x)− ν(x)] =
∑
x∈B

[ν(x)− µ(x)] = ‖µ− ν‖TV = 1− p.

Proof. The first equality is immediate by the fact that µ and ν are probability mea-
sures. The second equality follows from the first one together with the second line
in the proof of the previous lemma. The last equality is a restatement of the last
lemma.

The maximal coupling is defined as follows:

- With probability p, pick X = Y from γmin where

γmin(x) :=
1

p
µ(x) ∧ ν(x), x ∈ S.

- Otherwise, pick X from γA where

γA(x) :=
µ(x)− ν(x)

1− p
, x ∈ A,

and, independently, pick Y from

γB(x) :=
ν(x)− µ(x)

1− p
, x ∈ B.

Note that X 6= Y in that case because A and B are disjoint.
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The marginal law of X is: for x ∈ A,

p γmin(x) + (1− p) γA(x) = ν(x) + µ(x)− ν(x) = µ(x),

and for x ∈ B,

p γmin(x) + (1− p) γA(x) = µ(x) + 0 = µ(x).

A similar calculation holds for Y . Finally P[X 6= Y ] = 1− p = ‖µ− ν‖TV.

Remark 4.1.16. A proof of this result for general Polish spaces can be found in [dH,
Section 2.5].

We return to our coupling of Bernoulli variables.

Example 4.1.17 (Coupling of Bernoulli variables (continued)). Recall the setting
of Example 4.1.2. To construct the maximal coupling as above, we note that

A := {0}, B := {1},

p :=
∑
x

µ(x) ∧ ν(x) = (1− r) + q, 1− p = α = β := r − q,

(γmin(x))x=0,1 =

(
1− r

(1− r) + q
,

q

(1− r) + q

)
,

γA(0) := 1, γB(1) := 1.

The law of the maximal coupling (X ′′′, Y ′′′) is given by(
P[(X ′′′, Y ′′′) = (i, j)]

)
i,j∈{0,1}

=

(
p γmin(0) (1− p) γA(0)γB(1)

0 p γmin(1)

)
=

(
1− r r − q

0 q

)
.

Notice that it happens to coincide with the monotone coupling. J

Poisson approximation Here is a classical application of coupling: the approxi-
mation of a sum of independent Bernoulli variables with a Poisson. It gives a quan-
titative bound in total variation distance. LetX1, . . . , Xn be independent Bernoulli
random variables with parameters p1, . . . , pn respectively. We are interested in the
case where the pis are “small.” Let Sn :=

∑
i≤nXi. We approximate Sn with a

Poisson random variable Zn as follows: let W1, . . . ,Wn be independent Poisson
random variables with means λ1, . . . , λn respectively and define Zn :=

∑
i≤nWi.

We choose λi = − log(1− pi) for reasons that will become clear below. Note that
Zn ∼ Poi(λ) where λ =

∑
i≤n λi.
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Theorem 4.1.18 (Poisson approximation).

‖µSn − Poi(λ)‖TV ≤
1

2

∑
i≤n

λ2
i .

Proof. We couple the pairs Xi,Wi independently for i ≤ n. Let

W ′i ∼ Poi(λi) and X ′i = W ′i ∧ 1.

Because of our choice λi = − log(1− pi) which implies

1− pi = P[Xi = 0] = P[Wi = 0] = e−λi ,

(X ′i,W
′
i ) is indeed a coupling ofXi,Wi. Let S′n :=

∑
i≤nX

′
i andZ ′n :=

∑
i≤nW

′
i .

Then (S′n, Z
′
n) is a coupling of Sn, Zn. By the coupling inequality

‖µSn − µZn‖TV ≤ P[S′n 6= Z ′n]

≤
∑
i≤n

P[X ′i 6= W ′i ]

=
∑
i≤n

P[W ′i ≥ 2]

=
∑
i≤n

∑
j≥2

e−λi
λji
j!

≤
∑
i≤n

λ2
i

2

∑
`≥0

e−λi
λ`i
`!

=
∑
i≤n

λ2
i

2
.

Mappings reduce the total variation distance The following lemma will be
useful.

Lemma 4.1.19 (Mappings). Let X and Y be random variables taking values in
(S,S), let h be a measurable map from (S,S) to (S′,S ′), and let X ′ := h(X) and
Y ′ := h(Y ). The following inequality holds

‖µX′ − µY ′‖TV ≤ ‖µX − µY ‖TV.
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Proof. From the definition of the total variation distance, we seek to bound

sup
A′∈S′

∣∣P[X ′ ∈ A′]− P[Y ′ ∈ A′]
∣∣

= sup
A′∈S′

∣∣P[h(X) ∈ A′]− P[h(Y ) ∈ A′]
∣∣

= sup
A′∈S′

∣∣P[X ∈ h−1(A′)]− P[Y ∈ h−1(A′)]
∣∣ .

Since h−1(A′) ∈ S by the measurability of h, this last expression is less or equal
than

sup
A∈S
|P[X ∈ A]− P[Y ∈ A]| ,

which proves the claim.

Coupling of Markov chains In the context of Markov chains, a natural way to
couple is to do so step by step. We will refer to such couplings as Markovian. An
important special case is a Markovian coupling of a chain with itself.

Definition 4.1.20 (Markovian coupling). Let P and Q be transition matrices on
the same state space V . A Markovian coupling of P and Q is a Markov chain

Markovian

coupling
(Xt, Yt)t on V × V with transition matrix R satisfying: for all x, y, x′, y′ ∈ V ,∑

z′

R((x, y), (x′, z′)) = P (x, x′),

∑
z′

R((x, y), (z′, y′)) = Q(y, y′).

We will give many examples throughout this chapter. See also Example 4.2.14 for
an example of a coupling of Markov chains that is not Markovian.

4.1.4 . Random graphs: degree sequence in Erdős-Rényi model

Let Gn ∼ Gn,pn be an Erdős-Rényi graph with pn := λ
n and λ > 0 (see Defini-

tion 1.2.2). For i ∈ [n], let Di(n) be the degree of vertex i and define

Nd(n) :=

n∑
i=1

1{Di(n)=d},

the number of vertices of degree d.
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Theorem 4.1.21 (Erdős-Rényi graph: degree sequence).

1

n
Nd(n)→p fd := e−λ

λd

d!
, ∀d ≥ 0.

Proof. We proceed in two steps:

1. we use the coupling inequality (Lemma 4.1.11) to show that the expectation
of 1

nNd(n) is close to fd; and

2. we appeal to Chebyshev’s inequality (Theorem 2.1.2) to show that 1
nNd(n)

is close to its expectation.

We justify each step as a lemma.

Lemma 4.1.22 (Convergence of the mean).

lim
n→+∞

1

n
En,pn [Nd(n)] = fd, ∀d ≥ 1.

Proof. Note that the degrees Di(n), i ∈ [n], are identically distributed (but not
independent) so

1

n
En,pn [Nd(n)] = Pn,pn [D1(n) = d].

Moreover, by definition, D1(n) ∼ Bin(n − 1, pn). Let Sn ∼ Bin(n, pn) and
Zn ∼ Poi(λ). Using the Poisson approximation (Theorem 4.1.18) and a Taylor
expansion,

‖µSn − µZn‖TV ≤
1

2

∑
i≤n

(− log(1− pn))2

=
1

2

∑
i≤n

(
λ

n
+O(n−2)

)2

=
λ2

2n
+O(n−2).

We can further couple D1(n) and Sn as ∑
i≤n−1

Xi,
∑
i≤n

Xi

 ,

where the Xis are i.i.d. Ber(pn), that is, Bernoulli with parameter pn. By the
coupling inequality (Theorem 4.1.11),

‖µD1(n) − µSn‖TV ≤ P

 ∑
i≤n−1

Xi 6=
∑
i≤n

Xi

 = P[Xn = 1] = pn =
λ

n
.
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By the triangle inequality for the total variation distance (Lemma 4.1.10) and
the bounds above,

1

2

∑
d≥0

|Pn,pn [D1(n) = d]− fd| = ‖µD1(n) − µZn‖TV

≤ ‖µD1(n) − µSn‖TV + ‖µSn − µZn‖TV

≤ λ+ λ2/2

n
+O(n−2).

Therefore, for all d,∣∣∣∣ 1nEn,pn [Nd(n)]− fd
∣∣∣∣ ≤ 2λ+ λ2

n
+O(n−2)→ 0,

as n→ +∞.

Lemma 4.1.23 (Concentration around the mean).

Pn,pn
[∣∣∣∣ 1nNd(n)− 1

n
En,pn [Nd(n)]

∣∣∣∣ ≥ ε] ≤ 2λ+ 1

ε2n
, ∀d ≥ 1,∀n.

Proof. By Chebyshev’s inequality, for all ε > 0

Pn,pn
[∣∣∣∣ 1nNd(n)− 1

n
En,pn [Nd(n)]

∣∣∣∣ ≥ ε] ≤ Varn,pn [ 1
nNd(n)]

ε2
. (4.1.1)

To compute the variance, we note that

Varn,pn

[
1

n
Nd(n)

]

=
1

n2

En,pn
∑

i≤n
1{Di(n)=d}

2− (nPn,pn [D1(n) = d])2


=

1

n2

{
n(n− 1)Pn,pn [D1(n) = d,D2(n) = d]

+ nPn,pn [D1(n) = d]− n2Pn,pn [D1(n) = d]2
}

≤ 1

n
+
{
Pn,pn [D1(n) = d,D2(n) = d]− Pn,pn [D1(n) = d]2

}
, (4.1.2)

where we used the crude bound Pn,pn [D1(n) = d] ≤ 1. We bound the last line
using a neat coupling argument. Let Y1 and Y2 be independent Bin(n−2, pn), and
let X1 and X2 be independent Ber(pn). By separating the contribution of the edge
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between 1 and 2 from those of edges to other vertices, we see that the joint degrees
(D1(n), D2(n)) have the same distribution as (X1 + Y1, X1 + Y2). So the term in
curly bracket above is equal to

P[(X1 + Y1, X1 + Y2) = (d, d)]− P[X1 + Y1 = d]2

= P[(X1 + Y1, X1 + Y2) = (d, d)]− P[(X1 + Y1, X2 + Y2) = (d, d)]

≤ P[(X1 + Y1, X1 + Y2) = (d, d), (X1 + Y1, X2 + Y2) 6= (d, d)]

= P[(X1 + Y1, X1 + Y2) = (d, d), X2 + Y2 6= d]

= P[X1 = 0, Y1 = Y2 = d, X2 = 1]

+ P[X1 = 1, Y1 = Y2 = d− 1, X2 = 0]

≤ P[X2 = 1] + P[X1 = 1]

=
2λ

n
.

Plugging back into (4.1.2) we get Varn,pn
[

1
nNd(n)

]
≤ 2λ+1

n , and (4.1.1) gives the
claim.

Combining the lemmas concludes the proof of Theorem 4.1.21.

4.2 Stochastic domination

In comparing two probability measures, a natural relationship is that of “domina-
tion.” For instance, let (Xi)

n
i=1 be independent Z+-valued random variables with

P[Xi ≥ 1] ≥ p,

and let S =
∑n

i=1Xi be their sum. Now consider a separate random variable

S∗ ∼ Bin(n, p).

It is intuitively clear that one should be able to bound S from below by analyzing S∗
instead—which may be considerably easier. Indeed, in some sense, S “dominates”
S∗, that is, S should have a tendency to be bigger than S∗. One expects more
specifically that

P[S > x] ≥ P[S∗ > x].

Coupling provides a formal characterization of this notion, as we detail in this
section.

In particular we study an important special case known as positive associations.
Here a measure “dominates itself” in the following sense: conditioning on certain
events makes other events more likely. That concept is formalized in Section 4.2.3.
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Figure 4.2: The law of X , represented here by its cumulative distribution function
FX in solid, stochastically dominates the law of Y , in dashed. The construction of
a monotone coupling, (X̂, Ŷ ) := (F−1

X (U), F−1
Y (U)) where U is uniform in [0, 1],

is also depicted.

4.2.1 Definitions

We start with the simpler case of real random variables then consider partially
ordered sets, a natural setting for this concept.

Ordering of real random variables Recall that, intuitively, stochastic domina-
tion captures the idea that one variable “tends to take larger values” than the other.
For real random variables, it is defined in terms of tail probabilities, or equivalently
in terms of cumulative distribution functions. See Figure 4.2 for an illustration.

Definition 4.2.1 (Stochastic domination). Let µ and ν be probability measures on
R. The measure µ is said to stochastically dominate ν, denoted by µ � ν, if for all

stochastic

domination
x ∈ R

µ
[
(x,+∞)

]
≥ ν

[
(x,+∞)

]
.

A real random variable X stochastically dominates Y , denoted by X � Y , if the
law of X dominates the law of Y .

Example 4.2.2 (Bernoulli vs. Poisson). Let X ∼ Poi(λ) be Poisson with mean
λ > 0 and let Y be a Bernoulli trial with success probability p ∈ (0, 1). In order
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for X to stochastically dominate Y , we need to have

P[X > `] ≥ P[Y > `], ∀` ≥ 0.

This is always true for ` ≥ 1 since P[X > `] > 0 but P[Y > `] = 0. So it remains
to consider the case ` = 0. We have

1− e−λ = P[X > 0] ≥ P[Y > 0] = p,

if and only if
λ ≥ − log(1− p).

J

Note that stochastic domination does not require X and Y to be defined on
the same probability space. However the connection to coupling arises from the
following characterization.

Theorem 4.2.3 (Coupling and stochastic domination). The real random variable
X stochastically dominates Y if and only if there is a coupling (X̂, Ŷ ) of X and
Y such that

P[X̂ ≥ Ŷ ] = 1. (4.2.1)

We refer to (X̂, Ŷ ) as a monotone coupling of X and Y . monotone

couplingProof. Suppose there is such a coupling. Then for all x ∈ R

P[Y > x] = P[Ŷ > x] = P[X̂ ≥ Ŷ > x] ≤ P[X̂ > x] = P[X > x].

For the other direction, define the cumulative distribution functions FX(x) =
P[X ≤ x] and FY (x) = P[Y ≤ x]. Assume X � Y . The idea of the proof
is to use the following standard way of generating a real random variable (see
Theorem B.2.7)

X
d
= F−1

X (U), (4.2.2)

where U is a [0, 1]-valued uniform random variable and

F−1
X (u) := inf{x ∈ R : FX(x) ≥ u},

is a generalized inverse. It is natural to construct a coupling of X and Y by simply
using the same uniform random variable U in this representation, that is, we define
X̂ = F−1

X (U) and Ŷ = F−1
Y (U). See Figure 4.2. By (4.2.2), this is a coupling

of X and Y . It remains to check (4.2.1). Because FX(x) ≤ FY (x) for all x by
definition of stochastic domination, by the definition of the generalized inverse,

P[X̂ ≥ Ŷ ] = P[F−1
X (U) ≥ F−1

Y (U)] = 1,

as required.
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Example 4.2.4. Returning to the example in the first paragraph of Section 4.2,
let (Xi)

n
i=1 be independent Z+-valued random variables with P[Xi ≥ 1] ≥ p and

consider their sum S :=
∑n

i=1Xi. Further let S∗ ∼ Bin(n, p). Write S∗ as the sum∑n
i=1 Yi where (Yi) are independent Bernoullli variables with P[Yi = 1] = p. To

couple S and S∗, first set (Ŷi) := (Yi) and Ŝ∗ :=
∑n

i=1 Ŷi. Let X̂i be 0 whenever
Ŷi = 0. Otherwise (i.e., if Ŷi = 1), generate X̂i according to the distribution of
Xi conditioned on {Xi ≥ 1}, independently of everything else. By construction
X̂i ≥ Ŷi almost surely for all i and as a result

∑n
i=1 X̂i =: Ŝ ≥ Ŝ∗ almost surely,

or S � S∗ by Theorem 4.2.3. That implies for instance that P[S > x] ≥ P[S∗ > x]
as we claimed earlier. A slight modification of this argument gives the following
useful fact about binomials

n ≥ m, q ≥ p =⇒ Bin(n, q) � Bin(m, p).

Exercise 4.2 asks for a formal proof. J

Example 4.2.5 (Poisson distribution). Let X ∼ Poi(µ) and Y ∼ Poi(ν) with
µ > ν. Recall that a sum of independent Poisson is Poisson (see Exercise 6.7). This
fact leads to a natural coupling: let Ŷ ∼ Poi(ν), Ẑ ∼ Poi(µ− ν) independently of
Y , and X̂ = Ŷ + Ẑ. Then (X̂, Ŷ ) is a coupling and X̂ ≥ Ŷ a.s. because Ẑ ≥ 0.
Hence X � Y . J

We record two useful consequences of Theorem 4.2.3.

Corollary 4.2.6. Let X and Y be real random variables with X � Y and let
f : R → R be a non-decreasing function. Then f(X) � f(Y ) and furthermore,
provided E|f(X)|,E|f(Y )| < +∞, we have that

E[f(X)] ≥ E[f(Y )].

Proof. Let (X̂, Ŷ ) be the monotone coupling of X and Y whose existence is guar-
anteed by Theorem 4.2.3. Then f(X̂) ≥ f(Ŷ ) almost surely so that, provided the
expectations exist,

E[f(X)] = E[f(X̂)] ≥ E[f(Ŷ )] = E[f(Y )],

and furthermore (f(X̂), f(Ŷ )) is a monotone coupling of f(X) and f(Y ). Hence
f(X) � f(Y ).

Corollary 4.2.7. Let X1, X2 be independent random variables. Let Y1, Y2 be
independent random variables such that Xi � Yi, i = 1, 2. Then

X1 +X2 � Y1 + Y2.
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Proof. Let (X̂1, Ŷ1) and (X̂2, Ŷ2) be independent, monotone couplings of X1, Y1

and X2, Y2 on the same probability space. Then

X1 +X2
d
= X̂1 + X̂2 ≥ Ŷ1 + Ŷ2

d
= Y1 + Y2.

Example 4.2.8 (Binomial vs. Poisson). A sum of n independent Poisson variables
with mean λ is Poi(nλ). A sum of n independent Bernoulli trials with success
probability p is Bin(n, p). Using Example 4.2.2 and Corollary 4.2.7, we get

λ ≥ − log(1− p) =⇒ Poi(nλ) � Bin(n, p). (4.2.3)

The following special case will be useful later. Let 0 < Λ < 1 and let m be a
positive integer. Then

Λ

m− 1
≥ Λ

m− Λ
=

m

m− Λ
− 1 ≥ log

(
m

m− Λ

)
= − log

(
1− Λ

m

)
,

where we used that log x ≤ x − 1 for all x ∈ R+ (see Exercise 1.16). So, setting
λ := Λ

m−1 , p := Λ
m and n := m− 1 in (4.2.3), we get

Λ ∈ (0, 1) =⇒ Poi(Λ) � Bin

(
m− 1,

Λ

m

)
. (4.2.4)

J

Ordering on partially ordered sets The definition of stochastic domination
hinges on the totally ordered nature of R. It also extends naturally to posets. Let
(X ,≤) be a poset, that is, for all x, y, z ∈ X : poset

- (Reflexivity) x ≤ x;

- (Antisymmetry) if x ≤ y and y ≤ x then x = y; and

- (Transitivity) if x ≤ y and y ≤ z then x ≤ z.

Throughout, we assume that X is a measurable space.
For instance the set {0, 1}F is a poset when equipped with the relation x ≤ y

if and only if xi ≤ yi for all i ∈ F , where x = (xi)i∈F and y = (yi)i∈F .
Equivalently the subsets of F , denoted by 2F , form a poset with the inclusion
relation.

A totally ordered set satisfies in addition that, for any x, y, we have either x ≤ y
or y ≤ x. That is not satisfied in the previous example.
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Let F be a σ-algebra over the poset X . An event A ∈ F is increasing if x ∈ A
increasing

implies that any y ≥ x is also in A. A function f : X → R is increasing if
x ≤ y implies f(x) ≤ f(y). Some properties of increasing events are derived in
Exercise 4.4.

Definition 4.2.9 (Stochastic domination for posets). Let (X ,≤) be a poset and
let F be a σ-algebra on X . Let µ and ν be probability measures on (X ,F).
The measure µ is said to stochastically dominate ν, denoted by µ � ν, if for all
increasing A ∈ F

µ(A) ≥ ν(A).

An X -valued random variable X stochastically dominates Y , denoted by X � Y ,
if the law of X dominates the law of Y .

As before, a monotone coupling (X̂, Ŷ ) of X and Y is one which satisfies X̂ ≥ Ŷ
almost surely.

Example 4.2.10 (Monotonicity of the percolation function). We briefly revisit
Example 4.1.3 to illustrate our definitions. Consider bond percolation on the d-
dimensional lattice Ld (Definition 1.2.1). Here the poset is the collection of all
subsets of edges, specifying the open edges, with the inclusion relation. Recall that
the percolation function is given by

θ(p) := Pp[|C0| = +∞],

where C0 is the open cluster of the origin. We argued in Example 4.1.3 (see also
Section 2.2.4) that θ(p) is nondecreasing by considering the following alternative
representation of the percolation process under Pp: to each edge e, assign a uniform
[0, 1]-valued random variable Ue and declare the edge open if Ue ≤ p. Using the
same Ues for two different values of p, say p1 < p2, gives a monotone coupling of
the processes for p1 and p2. J

The existence of a monotone coupling is perhaps more surprising for posets.
We prove the result in the finite case only, which will be enough for our purposes.

Theorem 4.2.11 (Strassen’s theorem). Let X and Y be random variables taking
values in a finite poset (X ,≤) with the σ-algebra F = 2X . Then X � Y if and
only if there exists a monotone coupling (X̂, Ŷ ) of X and Y .

Proof. Suppose there is such a coupling. Then for all increasing A

P[Y ∈ A] = P[Ŷ ∈ A] = P[X̂ ≥ Ŷ ∈ A] ≤ P[X̂ ∈ A] = P[X ∈ A].

The proof in the other direction relies on the max-flow min-cut theorem (Theo-
rem 1.1.15). To see the connection with flows, let µX and µY be the laws of X and
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Y respectively, and denote by ν their joint distribution under the desired coupling.
Noting that we want ν(x, y) > 0 only if x ≥ y, the marginal conditions on the
coupling read ∑

y:x≥y
ν(x, y) = µX(x), ∀x ∈ X , (4.2.5)

and ∑
x:x≥y

ν(x, y) = µY (y), ∀y ∈ X . (4.2.6)

These equations can be interpreted as flow-conservation constraints. Consider
the following directed graph. There are two vertices, (w, 1) and (w, 2), for each
element w in X with edges connecting each (x, 1) to those (y, 2)s with x ≥ y.
These edges have capacity +∞. In addition there is a source a and a sink z.
The source has a directed edge of capacity µX(x) to (x, 1) for each x ∈ X and,
similarly, each (y, 2) has a directed edge of capacity µY (y) to the sink. The ex-
istence of a monotone coupling will follow once we show that there is a flow of
strength 1 between a and z. Indeed, in that case, all edges from the source and
all edges to the sink must be at capacity. If we let ν(x, y) be the flow on edge
〈(x, 1), (y, 2)〉, the systems in (4.2.5) and (4.2.6) encode conservation of flow on
the vertices (X ×{1})∪(X ×{2}). Hence the flow between X ×{1} and X ×{2}
yields the desired coupling. See Figure 4.3.

By the max-flow min-cut theorem (Theorem 1.1.15), it suffices to show that a
minimum cut has capacity 1. Such a cut is of course obtained by choosing all edges
out of the source. So it remains to show that no cut has capacity less than 1. This
is where we use the fact that µX(A) ≥ µY (A) for all increasing A. Because the
edges between X × {1} and X × {2} have infinite capacity, they cannot be used
in a minimum cut. So we can restrict our attention to those cuts containing edges
from a to A∗ × {1} and from Z∗ × {2} to z for subsets A∗, Z∗ ⊆ X .

We must have
A∗ ⊇ {x ∈ X : ∃y ∈ Zc∗, x ≥ y},

to block all paths of the form a ∼ (x, 1) ∼ (y, 2) ∼ z with x and y as in the
previous display; here Zc∗ = X \ Z∗. In fact, for a minimum cut, we further have

A∗ = {x ∈ X : ∃y ∈ Zc∗, x ≥ y},

as adding an x not satisfying this property is redundant. In particular A∗ is in-
creasing: if x1 ∈ A∗ and x2 ≥ x1, then ∃y ∈ Zc∗ such that x1 ≥ y and, since
x2 ≥ x1 ≥ y, we also have x2 ∈ A∗.

Observe further that, because y ≥ y, the set A∗ also includes Zc∗. If it were
the case that A∗ 6= Zc∗, then we could construct a cut with lower or equal capacity
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Figure 4.3: Construction of a monotone coupling through the max-flow repre-
sentation for independent Bernoulli pairs with parameters r (on the left) and
q < r (on the right). Edge labels indicate capacity. Edges without labels
have infinite capacity. The dotted edges depict a suboptimal cut. The dark ver-
tices correspond to the sets A∗ and Z∗ for this cut. The capacity of the cut is
r2 + r(1− r) + (1− q)2 + (1− q)q = r + (1− q) > r + (1− r) = 1.
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by fixing A∗ and setting Z∗ := Ac∗: suppose A∗ ∩ Z∗ is nonempty; because A∗ is
increasing, any y ∈ A∗ ∩Z∗ is such that paths of the form a ∼ (x, 1) ∼ (y, 2) ∼ z
with x ≥ y are cut by x ∈ A∗; so we do not need those ys in Z∗. Hence, for a
minimum cut, we can assume that in fact A∗ = Zc∗. The capacity of the cut is

µX(A∗) + µY (Z∗) = µX(A∗) + 1− µY (A∗) = 1 + (µX(A∗)− µY (A∗)) ≥ 1,

where the term in parenthesis is nonnegative by assumption and the fact that A∗ is
increasing. That concludes the proof.

Remark 4.2.12. Strassen’s theorem (Theorem 4.2.11) holds more generally on Polish
spaces with a closed partial order. See, e.g., [Lin02, Section IV.1.2] for the details.

The proof of Corollary 4.2.6 immediately extends to:

Corollary 4.2.13. Let X and Y be X -valued random variables with X � Y and
let f : X → R be an increasing function. Then f(X) � f(Y ) and furthermore,
provided E|f(X)|,E|f(Y )| < +∞, we have that

E[f(X)] ≥ E[f(Y )].

Ordering of Markov chains Stochastic domination also arises in the context of
Markov chains. We begin with an example. Recall the notion of a Markovian
coupling from Definition 4.1.20. The following coupling of Markov chains is not
Markovian.

Example 4.2.14 (Lazier chain). Consider a random walk (Xt) on the network
N = ((V,E), c) where V = {0, 1, . . . , n} and i ∼ j if and only if |i − j| ≤ 1
(including self-loops). Let N ′ = ((V,E), c′) be a modified version of N on the
same graph where, for all i, c(i, i) ≤ c′(i, i). That is, if (X ′t) is random walk on
N ′, then (X ′t) is “lazier” than (Xt) in that it is more likely to stay put. To simplify
the calculations, assume c(i, i) = 0 for all i.

Assume that both (Xt) and (X ′t) start at i0 and define Ms := maxt≤sXt and
M ′s := maxt≤sX

′
t. Since (X ′t) “travels less” than (Xt) the following claim is

intuitively obvious:

Claim 4.2.15.
Ms �M ′s.

We prove this by producing a monotone coupling. First set (X̂t)t∈Z+ := (Xt)t∈Z+ .
We then generate (X̂ ′t)t∈Z+ as a “sticky” version of (X̂t)t∈Z+ . That is, (X̂ ′t) follows
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exactly the same transitions as (X̂t) (including the self-loops), but at each time it
opts to stay where it currently is, say state j, for an extra time step with probability

αj :=
c′(j, j)∑
i:i∼j c

′(i, j)
,

which is in [0, 1] by assumption. Marginally, (X̂ ′t) is a random walk onN ′. Indeed,
we have by construction of the coupling that the probability of staying put when in
state j is

αj =
c′(j, j)∑
i:i∼j c

′(i, j)
,

and, for k 6= j with k ∼ j, the probability of moving to state k when in state j is

(1− αj)
c(j, k)∑
i:i∼j c(i, j)

=

(
[
∑

i:i∼j c
′(i, j)]− c′(j, j)∑
i:i∼j c

′(i, j)

)
c(j, k)∑
i:i∼j c(i, j)

=

(∑
i:i∼j c(i, j)∑
i:i∼j c

′(i, j)

)
c′(j, k)∑
i:i∼j c(i, j)

=
c′(j, k)∑
i:i∼j c

′(i, j)
,

where, on the second line, we used that c′(i, j) = c(i, j) for i 6= j and i ∼ j. This
coupling satisfies almost surely

M̂s := max
t≤s

X̂t ≥ max
t≤s

X̂ ′t =: M̂ ′s

because (X̂ ′t)t≤s visits a subset of the states visited by (X̂t)t≤s. In other words
(M̂s, M̂

′
s) is a monotone coupling of (Ms,M

′
s) and this proves the claim. J

As we indicated, the previous example involved an “asynchronous” coupling of
the chains. Often a simpler step-by-step approach—that is, through the construc-
tion of a Markovian coupling—is possible. We specialize the notion of stochastic
domination to that important case.

Definition 4.2.16 (Stochastic domination of Markov chains). Let P andQ be tran-
sition matrices on a finite or countably infinite poset (X ,≤). The transition matrix
Q is said to stochastically dominate the transition matrix P if

x ≤ y =⇒ P (x, ·) � Q(y, ·). (4.2.7)

If the above condition is satisfied for P = Q, we say that P is stochastically
monotone
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The analogue of Strassen’s theorem in this case is the following theorem, which
we prove in the finite case only again.

Theorem 4.2.17. Let (Xt)t∈Z+ and (Yt)t∈Z+ be Markov chains on a finite poset
(X ,≤) with transition matrices P and Q respectively. Assume that Q stochas-
tically dominates P . Then for all x0 ≤ y0 there is a coupling (X̂t, Ŷt) of (Xt)
started at x0 and (Yt) started at y0 such that almost surely

X̂t ≤ Ŷt, ∀t.

Furthermore, if the chains are irreducible and have stationary distributions π and
µ respectively, then π � µ.

Observe that, for a Markovian, monotone coupling to exist, it is not generally
enough for the weaker condition P (x, ·) � Q(x, ·) to hold for all x, as should
be clear from the proof. See also Exercise 4.3.

Proof of Theorem 4.2.17. Let

W := {(x, y) ∈ X × X : x ≤ y}.

For all (x, y) ∈ W , let R((x, y), ·) be the joint law of a monotone coupling of
P (x, ·) and Q(y, ·). Such a coupling exists by Strassen’s theorem and Condi-
tion (4.2.7). Let (X̂t, Ŷt) be a Markov chain onW with transition matrix R started
at (x0, y0). By construction, X̂t ≤ Ŷt for all t almost surely. That proves the first
half of the theorem.

For the second half, let A be increasing on X . Note that the first half implies
that for all s ≥ 1

P s(x0, A) = P[X̂s ∈ A] ≤ P[Ŷs ∈ A] = Qs(y0, A),

because X̂s ≤ Ŷs and A is increasing. Then, by a standard convergence result for
irreducible Markov chains (i.e., (1.1.5)),

π(A) = lim
t→+∞

1

t

∑
s≤t

P s(x0, A) ≤ lim
t→+∞

1

t

∑
s≤t

Qs(y0, A) = µ(A).

This proves the claim by definition of stochastic domination.

An example of application of this theorem is given in the next subsection.
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4.2.2 . Ising model: boundary conditions

Consider the d-dimensional lattice Ld. Let Λ be a finite subset of vertices in Ld
and define X := {−1,+1}Λ, which is a poset when equipped with the relation
σ ≤ σ′ if and only if σi ≤ σ′i for all i ∈ Λ. Generalizing Example 1.2.5, for
ξ ∈ {−1,+1}Ld , the (ferromagnetic) Ising model on Λ with boundary conditions

boundary

conditions
ξ and inverse temperature β is the probability distribution over spin configurations
σ ∈ X given by

µξβ,Λ(σ) :=
1

ZΛ,ξ(β)
e−βHΛ,ξ(σ),

where
HΛ,ξ(σ) := −

∑
i∼j
i,j∈Λ

σiσj −
∑
i∼j

i∈Λ,j /∈Λ

σiξj ,

is the Hamiltonian and

ZΛ,ξ(β) :=
∑
σ∈X

e−βHΛ,ξ(σ),

is the partition function. For shorthand, we occasionally write + and − instead of
+1 and −1.

For the all-(+1) and all-(−1) boundary conditions we denote the measure
above by µ+

β,Λ(σ) and µ−β,Λ(σ) respectively. In this section, we show that these
two measures are “extreme” in the following sense.

Claim 4.2.18. For all boundary conditions ξ ∈ {−1,+1}Ld ,

µ+
β,Λ � µ

ξ
β,Λ � µ

−
β,Λ.

Intuitively, because the ferromagnetic Ising model favors spin agreement, the all-
(+1) boundary condition tends to produce more +1s which in turn makes increas-
ing events more likely. And vice versa.

The idea of the proof is to use Theorem 4.2.17 with a suitable choice of Markov
chain.

Stochastic domination Recall that, in this context, vertices are often referred to
as sites. Adapting Definition 1.2.8, we consider the single-site Glauber dynamics,
which is the Markov chain on X which, at each time, selects a site i ∈ Λ uniformly
at random and updates the spin σi according to µξβ,Λ(σ) conditioned on agreeing
with σ at all sites in Λ\{i}. Specifically, for γ ∈ {−1,+1}, i ∈ Λ, and σ ∈ X , let
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σi,γ be the configuration σ with the state at i being set to γ. Then, letting n = |Λ|,
the transition matrix of the Glauber dynamics is

Qξβ,Λ(σ, σi,γ) :=
1

n
· eγβS

ξ
i (σ)

e−βS
ξ
i (σ) + eβS

ξ
i (σ)

,

where
Sξi (σ) :=

∑
j:j∼i
j∈Λ

σj +
∑
j:j∼i
j /∈Λ

ξj .

All other transitions have probability 0. It is straightforward to check that Qξβ,Λ is
a stochastic matrix.

This chain is clearly irreducible. It is also reversible with respect to µξβ,Λ.
Indeed, for all σ ∈ X and i ∈ Λ, let

Sξ6=i(σ) := HΛ,ξ(σ
i,+) + Sξi (σ) = HΛ,ξ(σ

i,−)− Sξi (σ),

Arguing as in Theorem 1.2.9, we have

µξβ,Λ(σi,−)Qξβ,Λ(σi,−, σi,+) =
e−βS

ξ
6=i(σ)e−βS

ξ
i (σ)

ZΛ,ξ(β)
· eβS

ξ
i (σ)

n[e−βS
ξ
i (σ) + eβS

ξ
i (σ)]

=
e−βS

ξ
6=i(σ)

nZΛ,ξ(β)[e−βS
ξ
i (σ) + eβS

ξ
i (σ)]

=
e−βS

ξ
6=i(σ)eβS

ξ
i (σ)

ZΛ,ξ(β)
· e−βS

ξ
i (σ)

n[e−βS
ξ
i (σ) + eβS

ξ
i (σ)]

= µξβ,Λ(σi,+)Qξβ,Λ(σi,+, σi,−).

In particular µξβ,Λ is the stationary distribution of Qξβ,Λ.

Claim 4.2.19.

ξ′ ≥ ξ =⇒ Qξ
′

β,Λ stochastically dominates Qξβ,Λ. (4.2.8)

Proof. Because the Glauber dynamics updates a single site at a time, establishing
stochastic domination reduces to checking simple one-site inequalities.

Lemma 4.2.20. To establish (4.2.8), it suffices to show that for all i and all σ ≤ τ

Qξβ,Λ(σ, σi,+) ≤ Qξ
′

β,Λ(τ, τ i,+). (4.2.9)
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Proof. Assume (4.2.9) holds. Let A be increasing in X and let σ ≤ τ . Then, for
the single-site Glauber dynamics, we have

Qξβ,Λ(σ,A) = Qξβ,Λ(σ,A ∩Bσ), (4.2.10)

where
Bσ := {σi,γ : i ∈ Λ, γ ∈ {−1,+1}},

and similarly for τ , ξ′. Moreover, because A is increasing and τ ≥ σ,

σi,γ ∈ A =⇒ τ i,γ ∈ A, (4.2.11)

and
σi,− ∈ A =⇒ σi,+ ∈ A. (4.2.12)

Letting

I±σ,A := {i ∈ Λ : σi,− ∈ A}, I+
σ,A := {i ∈ Λ : σi,− /∈ A, σi,+ ∈ A},

and similarly for τ , we have by (4.2.9), (4.2.10), (4.2.11), and (4.2.12),

Qξβ,Λ(σ,A) = Qξβ,Λ(σ,A ∩Bσ)

=
∑
i∈I+

σ,A

Qξβ,Λ(σ, σi,+) +
∑
i∈I±σ,A

[
Qξβ,Λ(σ, σi,−) +Qξβ,Λ(σ, σi,+)

]
≤
∑
i∈I+

σ,A

Qξ
′

β,Λ(τ, τ i,+) +
∑
i∈I±σ,A

[
Qξβ,Λ(σ, σi,−) +Qξβ,Λ(σ, σi,+)

]
=
∑
i∈I+

σ,A

Qξ
′

β,Λ(τ, τ i,+) +
∑
i∈I±σ,A

1

n

≤
∑
i∈I+

τ,A

Qξ
′

β,Λ(τ, τ i,+) +
∑
i∈I±τ,A

[
Qξ
′

β,Λ(τ, τ i,−) +Qξ
′

β,Λ(τ, τ i,+)
]

= Qξ
′

β,Λ(τ,A),

as claimed, where on the fifth line we used that I+
σ,A ⊆ I

+
τ,A ∪ I

±
τ,A by (4.2.11) and

that Qξ
′

β,Λ(τ, τ i,+) ≤ 1/n for all i (in particular for i ∈ I+
τ,A \ I

+
σ,A).

Returning to the proof of Claim 4.2.19, observe that

Qξβ,Λ(σ, σi,+) =
1

n
· eβS

ξ
i (σ)

e−βS
ξ
i (σ) + eβS

ξ
i (σ)

=
1

n
· 1

e−2βSξi (σ) + 1
,

which is increasing in Sξi (σ). Now σ ≤ τ and ξ ≤ ξ′ imply that Sξi (σ) ≤ Sξ
′

i (τ).
That proves the claim by Lemma 4.2.20.
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Finally:

Proof of Claim 4.2.18. Combining Theorem 4.2.17 and Claim 4.2.19 gives the re-
sult.

Remark 4.2.21. One can make sense of the limit of µ+
β,Λ and µ−β,Λ when |Λ| → +∞,

which is known as an infinite-volume Gibbs measure. For more, see for example [RAS15,
Chapters 7-10].

Observe that we have not used any special property of the d-dimensional lat-
tice. Indeed Claim 4.2.18 in fact holds for any countable, locally finite graph with
positive coupling constants. We give another proof in Example 4.2.33.

4.2.3 Correlation inequalities: FKG and Holley’s inequalities

A special case of stochastic domination is positive associations. In this section,
we restrict ourselves to posets of the form {0, 1}F for F finite. We begin with an
example.

Example 4.2.22 (Erdős-Rényi graph: positive associations). Consider an Erdős-
Rényi graph G ∼ Gn,p. Let E = {{x, y} : x, y ∈ [n], x 6= y}. Think of G as
taking values in the poset ({0, 1}E ,≤) where a 1 indicates that the corresponding
edge is present. In fact observe that the law ofG, which we denote as usual by Pn,p,
is a product measure on {0, 1}E . The event A that G is connected is increasing
because adding edges cannot disconnect an already connected graph. So is the
event B of having a chromatic number larger than 4. Intuitively then, conditioning
on A makes B more likely: the occurrence of A tends to be accompanied with a
larger number of edges which in turn makes B more probable.

This is an example of a more general phenomenon. That is, for any non-empty
increasing events A and B, we have:

Claim 4.2.23.
Pn,p[B |A] ≥ Pn,p[B]. (4.2.13)

Or, put differently, the conditional measure Pn,p[ · | A] stochastically dominates
the unconditional measure Pn,p[ · ]. This is a special case of what is known as
Harris’ inequality, proved below. Note that (4.2.13) is equivalent to Pn,p[A∩B] ≥
Pn,p[A]Pn,p[B], that is, to the fact that A and B are positively correlated. J

More generally:

Definition 4.2.24 (Positive associations). Let µ be a probability measure on {0, 1}F
where F is finite. Then µ is said to have positive associations, or is positively as-

positive

associations
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sociated, if for all increasing functions f, g : {0, 1}F → R

µ(fg) ≥ µ(f)µ(g),

where
µ(h) :=

∑
ω∈{0,1}F

µ(ω)h(ω).

In particular, for any increasing events A and B it holds that

µ(A ∩B) ≥ µ(A)µ(B),

that is, A and B are positively correlated. Denoting by µ(A |B) the conditional
positively

correlated
probability of A given B, this is equivalent to

µ(A |B) ≥ µ(A).

Remark 4.2.25. Note that positive associations is concerned only with “monotone” events.
See Remark 4.2.45.

Remark 4.2.26. A notion of negative associations, which is a somewhat more delicate
concept, was defined in Remark 3.3.43. See also [Pem00].

Let µ be positively associated. Note that if A and B are decreasing, that is,
decreasing

their complements are increasing (see Exercise 4.4), then

µ(A ∩B) = 1− µ(Ac ∪Bc)

= 1− µ(Ac)− µ(Bc) + µ(Ac ∩Bc)

≥ 1− µ(Ac)− µ(Bc) + µ(Ac)µ(Bc)

= µ(A)µ(B),

or µ(A |B) ≥ µ(A). Similarly, if A is increasing and B is decreasing, we have
µ(A ∩B) ≤ µ(A)µ(B), or

µ(A |B) ≤ µ(A). (4.2.14)

Harris’ inequality states that product measures on {0, 1}F have positive asso-
ciations. We prove a more general result known as the FKG inequality. For two
configurations ω, ω′ in {0, 1}F , we let ω ∧ ω′ and ω ∨ ω′ be the coordinatewise
minimum and maximum of ω and ω′.

Definition 4.2.27 (FKG condition). Let X = {0, 1}F where F is finite. A positive
probability measure µ on X satisfies the FKG condition if

FKG

conditionµ(ω ∨ ω′)µ(ω ∧ ω′) ≥ µ(ω)µ(ω′), ∀ω, ω′ ∈ X . (4.2.15)

This property is also known as log-supermodularity. We call such a measure an
FKG measure.
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FKG

inequality
Theorem 4.2.28 (FKG inequality). Let X = {0, 1}F where F is finite. Suppose µ
is a positive probability measure on X satisfying the FKG condition. Then µ has
positive associations.

Remark 4.2.29. Strict positivity is not in fact needed [FKG71]. The FKG condition is
equivalent to a strong form of positive associations. See Exercise 4.8.

Note that product measures satisfy the FKG condition with equality. Indeed if
µ(ω) is of the form

∏
f∈F µf (ωf ) then

µ(ω ∨ ω′)µ(ω ∧ ω′) =
∏
f

µf (ωf ∨ ω′f ) µf (ωf ∧ ω′f )

=
∏

f :ωf=ω′f

µf (ωf )2
∏

f :ωf 6=ω′f

µf (ωf )µf (ω′f )

=
∏

f :ωf=ω′f

µf (ωf )µf (ω′f )
∏

f :ωf 6=ω′f

µf (ωf )µf (ω′f )

= µ(ω)µ(ω′).

So the FKG inequality (Theorem 4.2.28) applies, for instance, to bond percola-
tion and the Erdős-Rényi random graph model. The pointwise nature of the FKG
condition also makes it relatively easy to check for measures which are defined
explicitly up to a normalizing constant, such as the Ising model.

Example 4.2.30 (Ising model with boundary conditions: checking FKG). Con-
sider again the setting of Section 4.2.2. We work on the space X := {−1,+1}Λ
rather than {0, 1}F . Fix a finite Λ ⊆ Ld, ξ ∈ {−1,+1}Ld and β > 0.

Claim 4.2.31. The measure µξβ,Λ satisfies the FKG condition and therefore has
positive associations.

Intuitively, taking the minimum (or maximum) of two spin configurations tends
to increase agreement and therefore leads to a higher likelihood. For σ, σ′ ∈ X ,
let τ = σ ∨ σ′ and τ = σ ∧ σ′. By taking logarithms in the FKG condition and
rearranging, we arrive at

HΛ,ξ(τ) +HΛ,ξ(τ) ≤ HΛ,ξ(σ) +HΛ,ξ(σ
′), (4.2.16)

and we see that proving the claim boils down to checking an inequality for each
term in the Hamiltonian (which, confusingly, has a negative sign in it).
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When i ∈ Λ and j /∈ Λ such that i ∼ j, we have

τ iξj + τ iξj = (τ i + τ i)ξj = (σi + σ′i)ξj = σiξj + σ′iξj . (4.2.17)

For i, j ∈ Λ with i ∼ j, note first that the case σj = σ′j reduces to the previous
calculation (with σj = σ′j playing the role of ξj), so we assume σi 6= σ′i and
σj 6= σ′j . Then

τ iτ j + τ iτ j = (+1)(+1) + (−1)(−1) = 2 ≥ σiσj + σ′iσ
′
j ,

since 2 is the largest value the rightmost expression ever takes. We have estab-
lished (4.2.16), which implies the claim.

Again, we have not used any special property of the lattice and the same result
holds for countable, locally finite graphs with positive coupling constants. Note
however that in the anti-ferromagnetic case, that is, if we multiply the Hamiltonian
by −1, the above argument does not work. Indeed there is no reason to expect
positive associations in that case. J

The FKG inequality in turn follows from a more general result known as Hol-
ley’s inequality.

Holley’s

inequality
Theorem 4.2.32 (Holley’s inequality). LetX = {0, 1}F where F is finite. Suppose
µ1 and µ2 are positive probability measures on X satisfying

µ2(ω ∨ ω′)µ1(ω ∧ ω′) ≥ µ2(ω)µ1(ω′), ∀ω, ω′ ∈ X . (4.2.18)

Then µ1 � µ2.

Before proving Holley’s inequality (Theorem 4.2.32), we check that it indeed
implies the FKG inequality. See Exercise 4.5 for an elementary proof in the inde-
pendent case, that is, of Harris’ inequality.

Proof of Theorem 4.2.28. Assume that µ satisfies the FKG condition and let f , g
be increasing functions. Because of our restriction to positive measures in Holley’s
inequality, we will work with positive functions. This is done without loss of gen-
erality. Indeed, letting 0 be the all-0 vector, note that f and g are increasing if and
only if f ′ := f − f(0) + 1 > 0 and g′ := g − g(0) + 1 > 0 are increasing and
that, moreover,

µ(f ′g′)− µ(f ′)µ(g′) = µ([f ′ − µ(f ′)][g′ − µ(g′)])

= µ([f − µ(f)][g − µ(g)])

= µ(fg)− µ(f)µ(g).
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In Holley’s inequality, we let µ1 := µ and define the positive probability mea-
sure

µ2(ω) :=
g(ω)µ(ω)

µ(g)
.

We check that µ1 and µ2 satisfy the conditions of Theorem 4.2.32. Note that ω′ ≤
ω ∨ ω′ for any ω so that, because g is increasing, we have g(ω′) ≤ g(ω ∨ ω′).
Hence, for any ω, ω′,

µ1(ω)µ2(ω′) = µ(ω)
g(ω′)µ(ω′)

µ(g)

= µ(ω)µ(ω′)
g(ω′)

µ(g)

≤ µ(ω ∧ ω′)µ(ω ∨ ω′)g(ω ∨ ω′)
µ(g)

= µ1(ω ∧ ω′)µ2(ω ∨ ω′),

where on the third line we used the FKG condition satisfied by µ.
So Holley’s inequality implies that µ2 � µ1. Hence, since f is increasing, by

Corollary 4.2.13

µ(f) = µ1(f) ≤ µ2(f) =
µ(fg)

µ(g)
,

and the theorem is proved.

Proof of Theorem 4.2.32. The idea of the proof is to use Theorem 4.2.17. This is
similar to what was done in Section 4.2.2. Again we use a single-site dynamic.
For x ∈ X and γ ∈ {0, 1}, we let xi,γ be x with coordinate i set to γ. We
write x ∼ y if ‖x − y‖1 = 1. Let n = |F |. We use a scheme analogous to the
Metropolis algorithm (see Example 1.1.30). A natural symmetric chain on X is to
pick a coordinate uniformly at random, and flip its value. We modify it to guarantee
reversibility with respect to the desired stationary distributions, namely µ1 and µ2.

For α, β > 0 small enough, the following transition matrix over X is irre-
ducible and reversible with respect to its stationary distribution µ2: for all i ∈ F ,
y ∈ X ,

Q(yi,0, yi,1) =
1

n
α {β} ,

Q(yi,1, yi,0) =
1

n
α

{
β
µ2(yi,0)

µ2(yi,1)

}
,

Q(y, y) = 1−
∑
z:z∼y

Q(y, z).
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Let P be similarly defined with respect to µ1 with the same values of α and β.
For reasons that will be clear below, the value of 0 < β < 1 is chosen small
enough that the sum of the two expressions in brackets above is smaller than 1
for all y, i in both P and Q. The value of α > 0 is then chosen small enough that
P (y, y), Q(y, y) ≥ 0 for all y. Reversibility follows immediately from the first two
equations. We call the first transition above an upward transition and the second
one a downward transition.

By Theorem 4.2.17, it remains to show thatQ stochastically dominates P . That
is, for any x ≤ y, we want to show that P (x, ·) � Q(y, ·). We produce a monotone
coupling (X̂, Ŷ ) of these two distributions. Because x ≤ y, our goal is never to
perform an upward transition in x simultaneously with a downward transition in y.
Observe that

µ1(xi,0)

µ1(xi,1)
≥ µ2(yi,0)

µ2(yi,1)
(4.2.19)

by taking ω = yi,0 and ω′ = xi,1 in Condition (4.2.18).
The coupling works as follows. Fix x ≤ y. With probability 1 − α, set

(X̂, Ŷ ) := (x, y). Otherwise, pick a coordinate i ∈ F uniformly at random. There
are several cases to consider depending on the coordinates xi, yi (with xi ≤ yi by
assumption):

- (xi, yi) = (0, 0): With probability β, perform an upward transition in both
coordinates, that is, set X̂ := xi,1 and Ŷ := yi,1. With probability 1− β, set
(X̂, Ŷ ) := (x, y) instead.

- (xi, yi) = (1, 1): With probability β µ2(yi,0)
µ2(yi,1)

, perform a downward transition

in both coordinates, that is, set X̂ := xi,0 and Ŷ := yi,0. With probability

β

(
µ1(xi,0)

µ1(xi,1)
− µ2(yi,0)

µ2(yi,1)

)
,

perform a downward transition in x only, that is, set X̂ := xi,0 and Ŷ :=
y. With the remaining probability, set (X̂, Ŷ ) := (x, y) instead. Note
that (4.2.19) and our choice of β guarantees that this step is well-defined.

- (xi, yi) = (0, 1): With probability β, perform an upward transition in x

only, that is, set X̂ := xi,1 and Ŷ := y. With probability β µ2(yi,0)
µ2(yi,1)

, perform

a downward transition in y only, that is, set X̂ := x and Ŷ := yi,0. With the
remaining probability, set (X̂, Ŷ ) := (x, y) instead. Again our choice of β
guarantees that this step is well-defined.
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A little accounting shows that this is indeed a coupling of P (x, ·) and Q(y, ·).
By construction, this coupling satisfies X̂ ≤ Ŷ almost surely. An application of
Theorem 4.2.17 concludes the proof.

Example 4.2.33 (Ising model revisited). Holley’s inequality implies Claim 4.2.18.
To see this, just repeat the calculations of Example 4.2.30, where now (4.2.17) is
replaced with an inequality. See Exercise 4.6. J

4.2.4 . Random graphs: Janson’s inequality and application to the clique
number in the Erdős-Rényi model

Let G = (V,E) ∼ Gn,pn be an Erdős-Rényi graph (see Definition 1.2.2). By
Claim 2.3.5, the property of being triangle-free has threshold n−1. That is, the
probability that G contains a triangle goes to 0 or 1 as n → +∞ according to
whether pn � n−1 or pn � n−1 respectively. In this section, we investigate what
happens “at the threshold,” by which we mean that we take pn = λ/n for some
λ > 0 not depending on n.

For any subset S of three distinct vertices ofG, letBS be the event that S forms
a triangle in G. So

ε := Pn,pn [BS ] = p3
n → 0. (4.2.20)

Denoting the unordered triples of distinct vertices by
(
V
3

)
, let Xn =

∑
S∈(V3) 1BS

be the number of triangles in G. By the linearity of expectation, the mean number
of triangles is

En,pnXn =

(
n

3

)
p3
n =

n(n− 1)(n− 2)

6

(
λ

n

)3

→ λ3

6
,

as n → +∞. If the events {BS}S were mutually independent, Xn would be
binomially distributed and the event that G is triangle-free would have probability∏

S∈(V3)

Pn,pn [Bc
S ] = (1− p3

n)(
n
3) → e−λ

3/6. (4.2.21)

In fact, by the Poisson approximation to the binomial (e.g., Theorem 4.1.18), we
would have that the number of triangles converges weakly to Poi(λ3/6).

In reality, of course, the events {BS} are not mutually independent. Observe
however that, for most pairs S, S′, the events BS and BS′ are in fact pairwise
independent. That is the case whenever |S ∩ S′| ≤ 1, that is, whenever the edges
connecting S are disjoint from those connecting S′. Write S ∼ S′ if S 6= S′ are
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not independent, that is, if |S ∩ S′| = 2. The expected number of unordered pairs
S ∼ S′ both forming a triangle is

∆ :=
1

2

∑
S,S′∈(V3)
S∼S′

Pn,pn [BS ∩BS′ ] =
1

2

(
n

3

)(
3

2

)
(n− 3)p5

n = Θ(n4p5
n)→ 0,

(4.2.22)
where the

(
n
3

)
comes from the number of ways of choosing S, the

(
3
2

)
comes from

the number of ways of choosing the vertices in common between S and S′, and the
n − 3 comes from the number of ways of choosing the third vertex of S′. Given
that the events {BS}S∈(V3) are “mostly” independent, it is natural to expect that
Xn behaves asymptotically as it would in the independent case. Indeed we prove:

Claim 4.2.34.
Pn,pn [Xn = 0]→ e−λ

3/6.

Remark 4.2.35. In fact, Xn
d→ Poi(λ3/6). See Exercises 2.18 and 4.9.

The FKG inequality (Theorem 4.2.28) immediately gives one direction. Recall
that Pn,pn , as a product measure over edge sets, satisfies the FKG condition and
therefore has positive associations by the FKG inequality. Moreover the events Bc

S

are decreasing for all S. Hence, applying positive associations inductively,

Pn,pn
[⋂

S∈(V3)B
c
S

]
≥

∏
S∈(V3)

Pn,pn [Bc
S ]→ e−λ

3/6,

where the limit follows from (4.2.21). As it turns out, the FKG inequality also
gives a bound in the other direction. This is known as Janson’s inequality, which
we state in a more general context.

Janson’s inequality Let X := {0, 1}F where F is finite. Let Bi, i ∈ I , be a
finite collection of events of the form

Bi := {ω ∈ X : ω ≥ β(i)},

for some β(i) ∈ X . Think of these as “bad events” corresponding to a certain
subset of coordinates being set to 1. By definition, the Bis are increasing. Assume
P is a positive product measure on X . Write i ∼ j if β(i)

r = β
(j)
r = 1 for at least

one r and note that Bi is independent of Bj if i � j. Set

∆ :=
∑
{i,j}
i∼j

P[Bi ∩Bj ].
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Theorem 4.2.36 (Janson’s inequality). Let X := {0, 1}F where F is finite and
P be a positive product measure on X . Let {Bi}i∈I and ∆ be as above. Assume
further that there is ε > 0 such that P[Bi] ≤ ε for all i ∈ I . Then∏

i∈I
P[Bc

i ] ≤ P[∩i∈IBc
i ] ≤ e

∆
1−ε
∏
i∈I
P[Bc

i ].

Before proving the theorem, we show that it implies Claim 4.2.34. We have
already shown in (4.2.20) and (4.2.22) that ε→ 0 and ∆→ 0. Janson’s inequality
(Theorem 4.2.36) immediately implies the claim by (4.2.21).

Proof of Theorem 4.2.36. The lower bound is the FKG inequality.
In the other direction, assume without loss of generality that I = [m]. The first

step is to apply the chain rule to obtain

P[∩i∈IBc
i ] =

m∏
i=1

P[Bc
i | ∩j∈[i−1] B

c
j ].

The rest is clever manipulation. For i ∈ [m], let N(i) := {` ∈ [m] : ` ∼ i} and
N<(i) := N(i)∩ [i−1]. Note thatBi is independent of {B` : ` ∈ [i−1]\N<(i)}.
Hence,

P[Bi | ∩j∈[i−1] B
c
j ] =

P
[
Bi ∩

(
∩j∈[i−1]B

c
j

)]
P[∩j∈[i−1]B

c
j ]

≥
P
[
Bi ∩

(
∩j∈N<(i)B

c
j

)
∩
(
∩j∈[i−1]\N<(i)B

c
j

)]
P[∩j∈[i−1]\N<(i)B

c
j ]

= P
[
Bi ∩

(
∩j∈N<(i)B

c
j

) ∣∣∩j∈[i−1]\N<(i)B
c
j

]
= P

[
Bi
∣∣∩j∈[i−1]\N<(i)B

c
j

]
×P
[
∩j∈N<(i)B

c
j

∣∣Bi ∩ (∩j∈[i−1]\N<(i)B
c
j

)]
= P [Bi]P

[
∩j∈N<(i)B

c
j

∣∣Bi ∩ (∩j∈[i−1]\N<(i)B
c
j

)]
,

where we used independence for the first term on the last line. By a union bound,
the second term on the last line is

P
[
∩j∈N<(i)B

c
j

∣∣Bi ∩ (∩j∈[i−1]\N<(i)B
c
j

)]
≥ 1−

∑
j∈N<(i)

P
[
Bj
∣∣Bi ∩ (∩j∈[i−1]\N<(i)B

c
j

)]
≥ 1−

∑
j∈N<(i)

P [Bj |Bi] ,
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where the last line follows from the FKG inequality. This requires some explana-
tions:

- On the event Bi, all coordinates ` with β(i)
` = 1 are fixed to 1, and the other

ones are free. So we can think of P[ · |Bi] as a positive product measure on
{0, 1}F ′ with F ′ := {` ∈ [m] : β

(i)
` = 0}.

- The event Bj is increasing, while the event ∩j∈[i−1]\N<(i)B
c
j is decreasing

as the intersection of decreasing events (see Exercise 4.4).

- So we can apply the FKG inequality in the form (4.2.14) to P[ · |Bi].

Combining the last three displays and using 1 + x ≤ ex for all x (see Exer-
cise 1.16), we get

P[∩i∈IBc
i ] ≤

m∏
i=1

P [Bc
i ] +

∑
j∈N<(i)

P [Bi ∩Bj ]


≤

m∏
i=1

P [Bc
i ]

1 +
1

1− ε
∑

j∈N<(i)

P [Bi ∩Bj ]


≤

m∏
i=1

P [Bc
i ] exp

 1

1− ε
∑

j∈N<(i)

P [Bi ∩Bj ]

 .

where we used the assumption P[Bi] ≤ ε on the second line. By the definition of
∆, we are done.

4.2.5 . Percolation: RSW theory and a proof of Harris’ theorem

Consider bond percolation (Definition 1.2.1) on the two-dimensional lattice L2.
Recall that the percolation function is given by

θ(p) := Pp[|C0| = +∞],

where C0 is the open cluster of the origin. We know from Example 4.2.10 that θ(p)
is non-decreasing. Let

pc(L2) := sup{p ≥ 0 : θ(p) = 0},

be the critical value. We proved in Section 2.2.4 that there is a non-trivial transition,
that is, pc(L2) ∈ (0, 1). See Exercise 2.3 for a proof that pc(L2) ∈ [1/3, 2/3].

Our goal in this section is to use the FKG inequality to improve this further to:



CHAPTER 4. COUPLING 273

Theorem 4.2.37 (Harris’ theorem).

θ(1/2) = 0.

Or, put differently, pc(L2) ≥ 1/2.

Remark 4.2.38. This bound is tight, that is, in fact pc(L2) = 1/2. The other direction is
known as Kesten’s theorem. See, e.g., [BR06a].

Here we present a proof of Harris’ theorem that uses an important tool in perco-
lation theory, the Russo-Seymour-Welsh (RSW) lemma, an application of the FKG
inequality.

Harris’ theorem

To motivate the RSW lemma, we start with the proof of Harris’ theorem.

Proof of Theorem 4.2.37. Fix p = 1/2. We use the dual lattice L̃2 as we did in
Section 2.2.4. Consider the annulus

Ann(`) := [−3`, 3`]2\[−`, `]2.

The existence of a closed dual cycle inside Ann(`), an event we denote by Od(`),
prevents the possibility of an infinite open path from the origin in the primal lattice
L2. See Figure 4.4. That is,

P1/2[|C0| = +∞] ≤
K∏
k=0

{1− P1/2[Od(3k)]}, (4.2.23)

for all K, where we took powers of 3 to make the annuli disjoint and therefore
independent. To prove the theorem, it suffices to show that there is a constant
c∗ > 0 such that, for all `, P1/2[Od(`)] ≥ c∗. Then the right-hand side of (4.2.23)
tends to 0 as K → +∞.

To simplify further, thinking of Ann(`) as a union of four rectangles [−3`,−`)×
[−3`, 3`], [−3`, 3`]× (`, 3`], etc., it suffices to consider the event O#

d (`) that each
one of these rectangles contains a closed dual path connecting its two shorter sides.
To be more precise, for the first rectangle above for instance, the path connects
[−3` + 1/2,−` − 1/2] × {3` − 1/2} to [−3` + 1/2,−` − 1/2] × {−3` + 1/2}
and stays inside the rectangle. See Figure 4.4. By symmetry the probability that
such a path exists is the same for all four rectangles. Denote that probability by ρ`.
Moreover the event that such a path exists is increasing so, although the four events
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Figure 4.4: Top: the event Od(`). Bottom: the event O#
d (`).
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are not independent, we can apply the FKG inequality (Theorem 4.2.28). Hence,
since O#

d (`) ⊆ Od(`), we finally get the bound

P1/2[Od(`)] ≥ ρ4
` .

The RSW lemma and some symmetry arguments, both of which are detailed
below, imply:

Claim 4.2.39. There is some c > 0 such that, for all `,

ρ` ≥ c.

That concludes the proof.

It remains to prove Claim 4.2.39. We first state the RSW lemma.

RSW theory

We have reduced the proof of Harris’ theorem to bounding the probability that
certain closed paths exist in the dual lattice. To be consistent with the standard
RSW notation, we switch to the primal lattice and consider open paths. We also let
p take any value in (0, 1).

Let Rn,α(p) be the probability that the rectangle

B(αn, n) := [−n, (2α− 1)n]× [−n, n],

has an open path connecting its left and right sides with the path remaining inside
the rectangle. Such a path is called an (open) left-right crossing. The event that a
left-right crossing exists in a rectangleB is denoted by LR(B). We similarly define
the event, TB(B), that a top-bottom crossing exists in B. In essence, the RSW
lemma says this: if there is a significant probability that a left-right crossing exists
in the squareB(n, n), then there is a significant probability that a left-right crossing
exists in the rectangle B(3n, n). More precisely, here is a version of the theorem
that will be enough for our purposes. (See Exercise 4.10 for a generalization.)

Lemma 4.2.40 (RSW lemma). For all n ≥ 2 (divisible by 4) and p ∈ (0, 1),

Rn,3(p) ≥ 1

256
Rn,1(p)11Rn/2,1(p)12. (4.2.24)

The right-hand side of (4.2.24) depends only on the probability of crossing a square
from left to right. By a duality argument, at p = 1/2, it turns out that this prob-
ability is at least 1/2 independently of n. Before presenting a proof of the RSW
lemma, we detail this argument and finish the proof of Harris’ theorem.
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Proof of Claim 4.2.39. The point of (4.2.24) is that, if Rn,1(1/2) is bounded away
from 0 uniformly in n, then so is the left-hand side. By the argument in the proof
of Harris’ theorem, this then implies that a closed cycle exists in Ann(n) with a
probability bounded away from 0 as well. Hence to prove Claim 4.2.39 it suffices
to give a lower bound on Rn,1(1/2). It is crucial that this bound not depend on the
“scale” n.

As it turns out, a simple duality-based symmetry argument does the trick. The
following fact about L2 is a variant of the contour lemma (Lemma 2.2.14). Its
proof is similar and Exercise 4.11 asks for the details (the “if” direction being the
non-trivial implication).

Lemma 4.2.41. There is an open left-right crossing in the primal rectangle [0, n+
1]× [0, n] if and only if there is no closed top-bottom crossing in the dual rectangle
[1/2, n+ 1/2]× [−1/2, n+ 1/2].

By symmetry, when p = 1/2, the two events in Lemma 4.2.41 have equal proba-
bility. So they must have probability 1/2 because they form a partition of the space
of outcomes. By monotonicity, that implies Rn,1(1/2) ≥ 1/2 for all n. The RSW
lemma then implies the required bound.

The proof of the RSW lemma involves a clever choice of event that relates the
existence of crossings in squares and rectangles. (Combining crossings of squares
into crossings of rectangles is not as trivial as it might look. Try it before reading
the proof.)

Proof of Lemma 4.2.40. There are several steps in the proof.

Step 1: it suffices to bound Rn,3/2(p) We first reduce the proof to finding a
bound on Rn,3/2(p). Let B′1 := B(2n, n) and B′2 := [n, 5n] × [−n, n]. Note
that B′1 ∪ B′2 = B(3n, n) and B′1 ∩ B′2 = [n, 3n] × [−n, n]. Then we have the
implication

LR(B′1) ∩ TB(B′1 ∩B′2) ∩ LR(B′2) ⊆ LR(B(3n, n)).

See Figure 4.5. Each event on the left-hand side is increasing so the FKG inequality
gives

Rn,3(p) ≥ Rn,2(p)2Rn,1(p).

A similar argument over B(2n, n) gives

Rn,2(p) ≥ Rn,3/2(p)2Rn,1(p).

Combining the two, we have proved:
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Figure 4.5: Illustration of the implication LR(B′1) ∩ TB(B′1 ∩ B′2) ∩ LR(B′2) ⊆
LR(B(3n, n)).
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Lemma 4.2.42 (Proof of RSW: step 1).

Rn,3(p) ≥ Rn,3/2(p)4Rn,1(p)3. (4.2.25)

Step 2: bounding Rn,3/2(p) The heart of the proof is to bound Rn,3/2(p) using
an event involving crossings of squares. Let

B1 := B(n, n) = [−n, n]× [−n, n],

B2 := [0, 2n]× [−n, n],

B12 := B1 ∩B2 = [0, n]× [−n, n],

S := [0, n]× [0, n].

Let Γ1 be the event that there are paths P1, P2, where P1 is a top-bottom crossing
of S and P2 is an open path connecting the left side of B1 to P1 and stays inside
B1. Similarly let Γ′2 be the event that there are paths P ′1, P

′
2, where P ′1 is a top-

bottom crossing of S and P ′2 is an open path connecting the right side of B2 to P ′1
and stays inside B2. Then we have the implication

Γ1 ∩ LR(S) ∩ Γ′2 ⊆ LR(B(3n/2, n)).

See Figure 4.6. By symmetry Pp[Γ1] = Pp[Γ′2]. Moreover, the events on the left-
hand side are increasing so by the FKG inequality:

Lemma 4.2.43 (Proof of RSW: step 2).

Rn,3/2(p) ≥ Pp[Γ1]2Rn/2,1(p). (4.2.26)

Step 3: bounding Pp[Γ1] It remains to bound Pp[Γ1]. That requires several ad-
ditional definitions. Let P1 and P2 be top-bottom crossings of S. There is a natural
partial order over such crossings. The path P1 divides S into two subgraphs: [P1}
which includes the left side of S (including edges on the left incident with P1 but
not those edges on P1 itself) and {P1] which includes the right side of S (and P1

itself). Then we write P1 � P2 if {P1] ⊆ {P2]. Assuming TB(S) holds, one
also gets the existence of a unique rightmost crossing. Roughly speaking, take the

rightmost

crossing
union of all top-bottom crossings of S as sets of edges; then the “right boundary”
of this set is a top-bottom crossing P ∗S such that P ∗S � P for all top-bottom cross-
ings P of S. (We accept as a fact the existence of a unique rightmost crossing. See
Exercise 4.11 for a related construction.)

Let IS be the set of (not necessarily open) paths connecting the top and bottom
of S and stay inside S. For P ∈ IS , we let P ′ be the reflection of P in B12\S
through the x-axis and we let P

P ′ be the union of P and P ′. Define [ PP ′ } to be the
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Figure 4.6: Top: illustration of the implication Γ1 ∩ LR(S) ∩ Γ′2 ⊆
LR(B(3n/2, n)). Bottom: the event LR+

(
[ PP ′ }

)
∩ {P = P ∗S}; the dashed path is

the mirror image of the rightmost top-bottom crossing in S; the shaded region on
the right is the complement in B1 of the set [ PP ′ }. Note that, because in the bottom
figure the left-right path must stay within [ PP ′ } by definition of P ∗S , the configura-
tion shown in the top figure where a left-right path (dotted) “travels behind” the
top-bottom crossing of S cannot occur.
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subgraph of B1 to the left of P
P ′ (including edges on the left incident with P

P ′ but
not those edges on P

P ′ itself). Let LR+
(
[ PP ′ }

)
be the event that there is a left-right

crossing of [ PP ′ } ending on P , that is, that there is an open path connecting the left
side of B1 and P that stays within [ PP ′ }. See Figure 4.6. Note that the existence of
a left-right crossing of B1 implies the existence of an open path connecting the left
side of B1 to P

P ′ . By symmetry we then get

Pp
[
LR+

(
[ PP ′ }

)]
≥ 1

2
Pp[LR(B1)] =

1

2
Rn,1(p). (4.2.27)

Now comes a subtle point. We turn to the rightmost crossing of S—for two rea-
sons:

• First, by uniqueness of the rightmost crossing, {P ∗S = P}P∈IS forms a par-
tition of TB(S). Recall that we are looking to bound a probability from
below, and therefore we have to be careful not to “double count.”

• Second, the rightmost crossing has a Markov-like property. Observe that,
for P ∈ IS , the event that {P ∗S = P} depends only the bonds in {P ]. In
particular it is independent of the bonds in [ PP ′ }, for example, of the event
LR+

(
[ PP ′ }

)
. Hence

Pp
[
LR+

(
[ PP ′ }

)
|P ∗S = P

]
= Pp

[
LR+

(
[ PP ′ }

)]
. (4.2.28)

Note that the event {P ∗S = P} is not increasing, as adding more open bonds
can shift the rightmost crossing rightward. Therefore, we cannot use the
FKG inequality here.

Combining (4.2.27) and (4.2.28), we get

Pp[Γ1] ≥
∑
P∈IS

Pp[P ∗S = P ]Pp
[
LR+

(
[ PP ′ }

)
|P ∗S = P

]
≥ 1

2
Rn,1(p)

∑
P∈IS

Pp[P ∗S = P ]

=
1

2
Rn,1(p)Pp[TB(S)]

=
1

2
Rn,1(p)Rn/2,1(p).

We have proved:

Lemma 4.2.44 (Proof of RSW: step 3).

Pp[Γ1] ≥ 1

2
Rn,1(p)Rn/2,1(p). (4.2.29)



CHAPTER 4. COUPLING 281

Step 4: putting everything together Combining (4.2.25), (4.2.26) and (4.2.29)
gives that

Rn,3(p) ≥ Rn,3/2(p)4Rn,1(p)3

≥ [Pp[Γ1]2Rn/2,1(p)]4Rn,1(p)3

≥

[(
1

2
Rn,1(p)Rn/2,1(p)

)2

Rn/2,1(p)

]4

Rn,1(p)3.

Collecting the terms concludes the proof of the RSW lemma.

Remark 4.2.45. This argument is quite subtle. It is instructive to read the remark after
[Gri97, Theorem 9.3].

4.3 Coupling of Markov chains and application to mixing

As we have seen, coupling is useful to bound total variation distance. In this section
we apply the technique to bound the mixing time of Markov chains.

4.3.1 Bounding the mixing time via coupling

Let P be an irreducible, aperiodic Markov transition matrix on the finite state space
V with stationary distribution π. Recall from Definition 1.1.35 that, for a fixed
0 < ε < 1/2, the mixing time of P is

tmix(ε) := min{t : d(t) ≤ ε},

where
d(t) := max

x∈V
‖P t(x, ·)− π‖TV.

It will be easier to work with

d̄(t) := max
x,y∈V

‖P t(x, ·)− P t(y, ·)‖TV.

The quantities d(t) and d̄(t) are related in the following way.

Lemma 4.3.1.
d(t) ≤ d̄(t) ≤ 2d(t), ∀t.

Proof. The second inequality follows from an application of the triangle inequality.
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For the first inequality, note that by definition of the total variation distance and
the stationarity of π

‖P t(x, ·)− π‖TV = sup
A⊆V
|P t(x,A)− π(A)|

= sup
A⊆V

∣∣∣∣∣∣
∑
y∈V

π(y)[P t(x,A)− P t(y,A)]

∣∣∣∣∣∣
≤ sup

A⊆V

∑
y∈V

π(y)|P t(x,A)− P t(y,A)|

≤
∑
y∈V

π(y)

{
sup
A⊆V
|P t(x,A)− P t(y,A)|

}
≤

∑
y∈V

π(y)‖P t(x, ·)− P t(y, ·)‖TV

≤ max
x,y∈V

‖P t(x, ·)− P t(y, ·)‖TV.

Coalescence Recall that a Markovian coupling of P with itself is a Markov chain
(Xt, Yt)t on V × V with transition matrix Q satisfying: for all x, y, x′, y′ ∈ V ,∑

z′

Q((x, y), (x′, z′)) = P (x, x′),

∑
z′

Q((x, y), (z′, y′)) = P (y, y′).

We say that a Markovian coupling is coalescing if further: for all z ∈ V ,
coalescing

x′ 6= y′ =⇒ Q((z, z), (x′, y′)) = 0.

Let (Xt, Yt) be a coalescing Markovian coupling of P . By the coalescing
condition, if Xs = Ys then Xt = Yt for all t ≥ s. That is, once (Xt) and (Yt)
meet, they remain equal. Let τcoal be the coalescence time (also called coupling

coalescence time
time), that is,

τcoal := inf{t ≥ 0 : Xt = Yt}.
The key to the coupling approach to mixing times is the following immediate con-
sequence of the coupling inequality (Lemma 4.1.11). For any starting point (x, y),

‖P t(x, ·)− P t(y, ·)‖TV ≤ P(x,y)[Xt 6= Yt] = P(x,y)[τcoal > t]. (4.3.1)

Combining (4.3.1) and Lemma 4.3.1, we get the main tool of this section.
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Theorem 4.3.2 (Bounding the mixing time: coupling method). Let (Xt, Yt) be a
coalescing Markovian coupling of an irreducible transition matrix P on a finite
state space V with stationary distribution π. Then

d(t) ≤ max
x,y∈V

P(x,y)[τcoal > t].

In particular

tmix(ε) ≤ inf
{
t ≥ 0 : P(x,y)[τcoal > t] ≤ ε, ∀x, y

}
.

Note that a Markovian coupling can be made coalescing by modifying it as follows:
when Xt = Yt, perform one step of the chain to determine Xt+1 and set Yt+1 :=
Xt+1. That modification does not affect the coalescence time.

We give a few simple examples of the coupling method in the next subsection.
First, we discuss a classical result.

Example 4.3.3 (Doeblin’s condition). Let P be a transition matrix on a countable
space V . One form of Doeblin’s condition (also called a minorization condition)

Doeblin’s

condition
is: there is s ∈ Z+ and δ > 0 such that

sup
z∈V

inf
w∈V

P s(w, z) > δ.

In words there is a state z0 ∈ V such that, starting from any state w ∈ V , the
probability of reaching z0 in exactly s steps is at least δ (which does not depend on
w). Assume such a z0 exists.

We construct a coalescing Markovian coupling (Xt, Yt) of P . Assume first that
s = 1 and let

P̃ (w, z) =
1

1− δ
[P (w, z)− δ1{z = z0}] .

It can be checked that P̃ is a stochastic matrix on V provided z0 satisfies the con-
dition above (see Exercise 4.13). We use a technique known as splitting. While

splitting
Xt 6= Yt, at the next time step: (i) with probability δ we setXt+1 = Yt+1 = z0, (ii)
otherwise we pick Xt+1 ∼ P̃ (Xt, · ) and Yt+1 ∼ P̃ (Yt, · ) independently. On the
other hand, if Xt = Yt, we maintain the equality and pick the next state according
to P . Put differently, the coupling Q is defined as: if x 6= y,

Q((x, y), (x′, y′)) = δ1{x′ = y′ = z0}+ (1− δ)P̃ (x, x′)P̃ (y, y′),

while if x = y,
Q((x, x), (x′, x′)) = P (x, x′).

Observe that, in case (i) above, coalescence occurs at time t + 1. In case (ii),
coalescence may or may not occur at time t + 1. In other words, while Xt 6=
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Yt, coalescence occurs at the next step with probability at least δ. So τcoal is
stochastically dominated by a geometric random variable with success probability
δ, or

max
x,y∈V

P(x,y)[τcoal > t] ≤ (1− δ)t.

By Theorem 4.3.2,

max
x∈V
‖P t(x, ·)− π‖TV ≤ (1− δ)t.

Exponential decay of the worst-case total variation distance to the stationary dis-
tribution is referred to as uniform geometric ergodicity.

uniform

geometric

ergodicity

Suppose now that s > 1. We apply the argument above to the chain P s this
time. We get

max
x,y∈V

P(x,y)[τcoal > ts] ≤ (1− δ)t,

so that, after a change of variable,

max
x∈V
‖P t(x, ·)− π‖TV ≤ (1− δ)bt/sc.

So, we have shown that uniform geometric ergodicity is implied by Doeblin’s con-
dition.

We note however that the rate of decay derived from this technique can be
very slow. For instance the condition always holds when P is finite, irreducible
and aperiodic (as follows from Lemma 1.1.32), but a straight application of the
technique may lead to a bound depending badly on the size of the state space V
(see Exercise 4.14). J

4.3.2 . Random walks: mixing on cycles, hypercubes, and trees

In this section, we consider lazy simple random walk on various graphs. By this we
mean that the walk stays put with probability 1/2 and otherwise picks an adjacent
vertex uniformly at random. In each case, we construct a coupling to bound the
mixing time. As a reference, we compare our upper bounds to the diameter-based
lower bound we will derive in Section 5.2.3. Specifically, by Claim 5.2.25, for a
finite, reversible Markov chain with stationary distribution π and diameter ∆ we
have the lower bound

tmix(ε) = Ω

(
∆2

log(n ∨ π−1
min)

)
,

where πmin is the smallest value taken by π.
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Cycle

Let (Zt) be lazy simple random walk on the cycle of size n, Zn := {0, 1 . . . , n−1},
where i ∼ j if |j − i| = 1 (mod n). For any starting points x, y, we construct a
Markovian coupling (Xt, Yt) of this chain. Set (X0, Y0) := (x, y). At each time,
flip a fair coin. On heads, Yt stays put and Xt moves one step, the direction of
which is uniform at random. On tails, proceed similarly with the roles of Xt and
Yt reversed. Let Dt be the clockwise distance between Xt and Yt. Observe that,
by construction, (Dt) is simple random walk on {0, . . . , n} and τcoal = τD{0,n}, the
first time (Dt) hits {0, n}.

We use Markov’s inequality (Theorem 2.1.1) to bound P(x,y)[τ
D
{0,n} > t].

Denote by D0 = dx,y the starting distance. By Wald’s second identity (Theo-
rem 3.1.40),

E(x,y)

[
τD{0,n}

]
= dx,y(n− dx,y).

Applying Theorem 4.3.2 and Markov’s inequality we get

d(t) ≤ max
x,y∈V

P(x,y)[τcoal > t]

≤ max
x,y∈V

E(x,y)

[
τD{0,n}

]
t

= max
x,y∈V

dx,y(n− dx,y)
t

≤ n2

4t
,

or:

Claim 4.3.4.
tmix(ε) ≤ n2

4ε
.

By the diameter-based lower bound on mixing in Section 5.2.3, this bound
gives the correct order of magnitude in n up to logarithmic factors. Indeed, the
diameter is ∆ = n/2 and πmin = 1/n so that Claim 5.2.25 gives

tmix(ε) ≥ n2

64 log n
,

for n large enough. Exercise 4.15 sketches a tighter lower bound.
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Hypercube

Let (Zt)t∈Z+ be lazy simple random walk on the n-dimensional hypercube Zn2 :=
{0, 1}n where i ∼ j if ‖i − j‖1 = 1. We denote the coordinates of Zt by
(Z

(1)
t , . . . , Z

(n)
t ). This is equivalent to performing the Glauber dynamics chain

on an empty graph (see Definition 1.2.8): at each step, we first pick a coordinate
uniformly at random, then refresh its value. Because of the way the updating is
done, the chain stays put with probability 1/2 at each time as required.

Inspired by this observation, the coupling (Xt, Yt) started at (x, y) is the fol-
lowing. At each time t, pick a coordinate i uniformly at random in [n], pick a bit
value b in {0, 1} uniformly at random independently of the coordinate choice. Set
both i coordinates to b, that is, X(i)

t = Y
(i)
t = b. By design we reach coalescence

when all coordinates have been updated at least once.
The following standard bound from the coupon collector’s problem (see Ex-

ample 2.1.4) is what is needed to conclude.

Lemma 4.3.5. Let τcoll be the time it takes to update each coordinate at least once.
Then, for any c > 0,

P [τcoll > dn log n+ cne] ≤ e−c.

Proof. Let Bi be the event that the i-th coordinate has not been updated by time
dn log n+ cne. Then, using that 1− x ≤ e−x for all x (see Exercise 1.16),

P[τcoll > dn log n+ cne] ≤
∑
i

P[Bi]

=
∑
i

(
1− 1

n

)dn logn+cne

≤ n exp

(
−n log n+ cn

n

)
= e−c.

Applying Theorem 4.3.2, we get

d(dn log n+ cne) ≤ max
x,y∈V

P(x,y)[τcoal > dn log n+ cne]

≤ P[τcoll > dn log n+ cne]
≤ e−c.

Hence for cε > 0 large enough:
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Claim 4.3.6.
tmix(ε) ≤ dn log n+ cεne.

Again we get a quick lower bound using the diameter-based result from Sec-
tion 5.2.3. Here ∆ = n and πmin = 1/2n so that Claim 5.2.25 gives

tmix(ε) ≥ n2

12 log n+ (4 log 2)n
= Ω(n),

for n large enough. So the upper bound we derived above is off at most by a
logarithmic factor in n. In fact:

Claim 4.3.7.
tmix(ε) ≥ 1

2
n log n−O(n).

Proof. For simplicity, we assume that n is odd. Let Wt be the number of 1s, or
Hamming weight, at time t. Let A be the event that the Hamming weight is≤ n/2.

Hamming weight
To bound the mixing time, we use the fact that for any z0

d(t) ≥ ‖P t(z0, ·)− π‖TV ≥ |P t(z0, A)− π(A)|. (4.3.2)

Under the stationary distribution, the Hamming weight is equal in distribution to
a Bin(n, 1/2). In particular the probability that a majority of coordinates are 0 is
1/2. That is, π(A) = 1/2.

On the other hand, let (Zt) start at z0, the all-1 vector. By the definition of A,

|P t(z0, A)− π(A)| = |P[Wt ≤ n/2]− 1/2|. (4.3.3)

We use Chebyshev’s inequality (Theorem 2.1.2) to bound the probability on the
right-hand side. So we need to compute the expectation and variance of Wt.

Let Ut be the number of (distinct) updated coordinates up to time t in the
Glauber dynamics representation of the chain discussed above. Observe that, con-
ditioned on Ut, the Hamming weight Wt is equal in distribution to Bin(Ut, 1/2) +
(n−Ut) as the updated coordinates are uniform and the other ones are 1. Thus we
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have

E[Wt] = E[E[Wt |Ut]]

= E
[

1

2
Ut + (n− Ut)

]
= E

[
n− 1

2
Ut

]
= n− 1

2
n

[
1−

(
1− 1

n

)t]

=
n

2

[
1 +

(
1− 1

n

)t]
, (4.3.4)

where on the fourth line we used the fact that E[Ut] = n
[
1−

(
1− 1

n

)t] by sum-
ming over the coordinates and using linearity of expectation.

As to the variance, using again the observation above about the distribution of
Wt given Ut,

Var[Wt] = E[Var[Wt |Ut]] + Var[E[Wt |Ut]]

=
1

4
E [Ut] +

1

4
Var[Ut]. (4.3.5)

It remains to compute Var[Ut]. Let I(i)
t be 1 if coordinate i has not been updated

up to time t and 0 otherwise. Note that for i 6= j

Cov[I
(i)
t , I

(j)
t ] = E[I

(i)
t I

(j)
t ]− E[I

(i)
t ]E[I

(j)
t ]

=

(
1− 2

n

)t
−
(

1− 1

n

)2t

=

(
1− 2

n

)t
−
(

1− 2

n
+

1

n2

)t
≤ 0,

that is, I(i)
t and I(j)

t are negatively correlated, while

Var[I
(i)
t ] = E[(I

(i)
t )2]− (E[I

(i)
t ])2 ≤ E[I

(i)
t ] =

(
1− 1

n

)t
.
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Then, writing n− Ut as the sum of these indicators, we have

Var[Ut] = Var[n− Ut]

=
n∑
i=1

Var[I
(i)
t ] + 2

∑
i<j

Cov[I
(i)
t , I

(j)
t ]

≤ n
(

1− 1

n

)t
.

Plugging this back into (4.3.5), we get

Var[Wt] ≤
n

4

[
1−

(
1− 1

n

)t]
+
n

4

(
1− 1

n

)t
=
n

4
.

For tα = 1
2n log n− n logα with α > 0, by (4.3.4),

E[Wtα ] =
n

2
+
n

2
etα(−1/n+Θ(1/n2)) =

n

2
+
α

2

√
n+ o(1),

where we used that by a Taylor expansion, for |z| ≤ 1/2, log (1− z) = −z +
Θ(z2). Fix 0 < ε < 1/2. By Chebyshev’s inequality, for tα = 1

2n log n− n logα
and n large enough,

P[Wtα ≤ n/2] ≤ P[|Wtα − E[Wtα ]| ≥ (α/2)
√
n] ≤ n/4

(α/2)2n
≤ 1

2
− ε,

for α large enough. By (4.3.2) and (4.3.3), that implies d(tα) ≥ ε and we are
done.

The previous proof relies on a “distinguishing statistic.” Recall from Lemma 4.1.19
that for any random variables X , Y and mapping h it holds that

‖µh(X) − µh(Y )‖TV ≤ ‖µX − µY ‖TV,

where µZ is the law of Z. The mapping used in the proof of the claim is the
Hamming weight. In essence, we gave a lower bound on the total variation distance
between the laws of the Hamming weight at stationarity and under P t(z0, · ). See
Exercise 4.16 for a more general treatment of the distinguishing statistic approach.
Remark 4.3.8. The upper bound in Claim 4.3.6 is indeed off by a factor of 2. See [LPW06,
Theorem 18.3] for an improved upper bound and a discussion of the so-called cutoff phe-
nomenon. The latter refers to the fact that for all 0 < ε < 1/2 it can be shown in this case

cutoffthat

lim
n→+∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1,

where t
(n)
mix(ε) is the mixing time on the n-dimensional hypercube. In words, for large n,

the total variation distance drops from 1 to 0 in a short time window. See Exercise 5.10 for
a necessary condition for cutoff.
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b-ary tree

Let (Zt)t∈Z+ be lazy simple random walk on the `-level rooted b-ary tree, T̂`b, with
` ≥ 2. The root, 0, is on level 0 and the leaves, L, are on level `. All vertices
have degree b + 1, except for the root which has degree b and the leaves which
have degree 1. By Example 1.1.29 (noting that laziness makes no difference), the
stationary distribution is

π(x) :=
δ(x)

2(n− 1)
,

where n is the number of vertices and δ(x) is the degree of x. We used that a tree
on n vertices has n − 1 edges (Corollary 1.1.7). We construct a coupling (Xt, Yt)
of this chain started at (x, y). Assume without loss of generality that x is no further
from the root than y, which we denote by x 4 y (which, here, does not mean that
y is a descendant of x). The coupling has two stages:

- In the first stage, at each time, flip a fair coin. On heads, Yt stays put and Xt

moves one step chosen uniformly at random among its neighbors. Similarly,
on tails, reverse the roles of Xt and Yt. Do this until Xt and Yt are on the
same level.

- In the second stage, that is, once the two chains are on the same level, at each
time first letXt move as a lazy simple random walk on T̂`b. Then let Yt move
in the same direction as Xt, that is, if Xt moves closer to the root, so does
Yt and so on.

By construction, Xt 4 Yt for all t. The key observation is the following. Let τ∗

be the first time (Xt) visits the root after visiting the leaves. By time τ∗, the two
chains have necessarily met: because Xt 4 Yt, when Xt reaches the leaves, so
does Yt; after that time, the coupling is in the second stage so Xt and Yt remain on
the same level; in particular, whenXt reaches the root (after visiting the leaves), so
does Yt. Hence τcoal ≤ τ∗. Intuitively, the mixing time is indeed dominated by the
time it takes to reach the root from the worst starting point, a leaf. See Figure 4.7
and the corresponding lower bound argument.

To estimate P(x,y)[τ
∗ > t], we use Markov’s inequality (Theorem 2.1.1), for

which we need a bound on E(x,y)[τ
∗]. We note that E(x,y)[τ

∗] is less than the mean
time for the walk to go from the root to the leaves and back. Let Lt be the level
of Xt and let N be the corresponding network (where the conductances are equal
to the number of edges on each level of the tree). In terms of Lt, the quantity we
seek to bound is the mean of τ0,`, the commute time of the chain (Lt) between the
states 0 and `. By the commute time identity (Theorem 3.3.34),

E[τ0,`] = cN R(0↔ `), (4.3.6)
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where
cN = 2

∑
e={x,y}∈N

c(e) = 4(n− 1),

where we simply counted the number of edges in T̂`b and the extra factor of 2
accounts for self-loops. Using network reduction techniques, we computed the
effective resistance R(0↔ `) in Examples 3.3.21 and 3.3.22—without self-loops.
Of course adding self-loops does not affect the effective resistance as we can use
the same voltage and current. So, ignoring them, we get

R(0↔ `) =
`−1∑
j=0

r(j, j + 1) =
`−1∑
j=0

b−(j+1) =
1

b
· 1− b−`

1− b−1
, (4.3.7)

which implies
1

b
≤ R(0↔ `) ≤ 1

b− 1
≤ 1.

Finally, applying Theorem 4.3.2 and Markov’s inequality and using (4.3.6), we get

d(t) ≤ max
x,y∈V

P(x,y)[τ
∗ > t]

≤ max
x,y∈V

E(x,y)[τ
∗]

t

≤
E[τ0,`]

t

≤ 4n

t
,

or:

Claim 4.3.9.
tmix(ε) ≤ 4n

ε
.

This time the diameter-based bound is far off. We have ∆ = 2` = Θ(log n)
and πmin = 1/2(n− 1) so that Claim 5.2.25 gives

tmix(ε) ≥ (2`)2

12 log n+ 4 log(2(n− 1))
= Ω(log n),

for n large enough.
Here is a better lower bound. We take b = 2 to simplify. Intuitively the mixing

time is significantly greater than the squared diameter because the chain tends to
be pushed away from the root. Consider the time it takes to go from the leaves
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Figure 4.7: Setup for the lower bound on the mixing time on a b-ary tree. (Here
b = 2.)

on one side of the root to the leaves on the other, both of which have substantial
weight under the stationary distribution. That typically takes time exponential in
the diameter—that is, linear in n. Indeed one first has to reach the root, which by
the gambler’s ruin problem (Example 3.1.43), takes an exponential in ` number of
“excursions” (see Claim 3.1.44 (ii)).

Formally let x0 be a leaf of T̂`b and let A be the set of vertices “on the other
side of root (inclusively),” that is, vertices whose graph distance from x0 is at least
`. See Figure 4.7. Then π(A) ≥ 1/2 by symmetry. We use the fact that

‖P t(x0, ·)− π‖TV ≥ |P t(x0, A)− π(A)|,

to bound the mixing time from below. We claim that, started at x0, the walk takes
time linear in n to reach A with nontrivial probability.

Consider again the level Lt of Xt. Using definition of the effective resistance
(Definition 3.3.19) as well as the expression for it in (4.3.7), we have

P`[τ0 < τ+
` ] =

1

c(`) R(0↔ `)
=

1

b`
· b− 1

1− b−`
=

b− 1

b` − 1
= O

(
1

n

)
.

Hence, started from the leaves, the number of excursions back to the leaves needed
to reach the root for the first time is geometric with success probability O(n−1).
Each such excursion takes time at least 2 (which corresponds to going right back
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to the leaves after the first step). So P t(x0, A) is bounded above by the probability
that at least one such excursion was successful among the first t/2 attempts. That
is,

P t(x0, A) ≤ 1−
(
1−O

(
n−1

))t/2
<

1

2
− ε,

for all t ≤ αεn with αε > 0 small enough and

‖Pαεn(x0, ·)− π‖TV ≥ |Pαεn(x0, A)− π(A)| > ε.

We have proved that tmix(ε) ≥ αεn.

4.3.3 Path coupling

Path coupling is a method for constructing Markovian couplings from “simpler”
couplings. The building blocks are one-step couplings starting from pairs of initial
states that are close in some “dissimilarity graph.”

Let (Xt) be an irreducible Markov chain on a finite state space V with transi-
tion matrix P and stationary distribution π. Assume that we have a dissimilarity
graph H0 = (V0, E0) on V0 := V with edge weights w0 : E0 → R+. This graph

dissimilarity

graph, path

metric

need not have the same edges as the transition graph of (Xt). We extend w0 to the
path metric

w0(x, y) := inf

{
m−1∑
i=0

w0(xi, xi+1) : x = x0, x1, . . . , xm = y is a path in H0

}
,

where the infimum is over all paths connecting x and y in H0. We call a path
achieving the infimum a minimum-weight path. It is straightforward to check that
w0 satisfies the triangle inequality. Let

∆0 := max
x,y

w0(x, y),

be the weighted diameter of H0.

Theorem 4.3.10 (Path coupling method). Assume that

w0(u, v) ≥ 1,

for all {u, v} ∈ E0. Assume further that there exists κ ∈ (0, 1) such that:

- (Local couplings) For all x, y with {x, y} ∈ E0, there is a coupling (X∗, Y ∗)
of P (x, ·) and P (y, ·) satisfying the following contraction property

E[w0(X∗, Y ∗)] ≤ κw0(x, y). (4.3.8)
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Then
d(t) ≤ ∆0 κ

t,

or

tmix(ε) ≤
⌈

log ∆0 + log ε−1

log κ−1

⌉
.

Proof. The crux of the proof is to extend (4.3.8) to arbitrary pairs of vertices.

Claim 4.3.11 (Global coupling). For all x, y ∈ V , there is a coupling (X∗, Y ∗) of
P (x, ·) and P (y, ·) such that (4.3.8) holds.

Iterating the coupling in this last claim immediately implies the existence of a
coalescing Markovian coupling (Xt, Yt) of P such that

E(x,y)[w0(Xt, Yt)] = E(x,y) [E[w0(Xt, Yt) |Xt−1, Yt−1]]

≤ E(x,y) [κw0(Xt−1, Yt−1)]

≤ · · ·
≤ κt E(x,y)[w0(X0, Y0)]

= κtw0(x, y)

≤ κt ∆0.

By assumption, 1{x 6=y} ≤ w0(x, y) so that by the coupling inequality and Lemma
4.3.1, we have

d(t) ≤ d̄(t) ≤ max
x,y

P(x,y)[Xt 6= Yt] ≤ max
x,y

E(x,y)[w0(Xt, Yt)] ≤ κt ∆0,

which implies the theorem.

Remark 4.3.12. In essence, w0 satisfies a form of Lyapounov condition (i.e., (3.3.15)) with
a “geometric drift.” See, e.g., [MT09, Chapter 15].

It remains to prove Claim 4.3.11.

Proof of Claim 4.3.11. Fix x′, y′ ∈ V such that {x′, y′} is not an edge in the dis-
similarity graph H0. The idea is to combine the local couplings on a minimum-
weight path between x′ and y′ inH0. Let x′ = x0 ∼ · · · ∼ xm = y′ be such a path.
For all i = 0, . . . ,m − 1, let (Z∗i,0, Z

∗
i,1) be a coupling of P (xi, ·) and P (xi+1, ·)

satisfying the contraction property (4.3.8).
Then we proceed as follows. Set Z(0) := Z∗0,0 and Z(1) := Z∗0,1. Then iter-

atively pick Z(i+1) according to the law P[Z∗i,1 ∈ · |Z∗i,0 = Z(i)]. By induction
on i, (X∗, Y ∗) := (Z(0), Z(m)) is then a coupling of P (x′, ·) and P (y′, ·). See
Figure 4.8.
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Figure 4.8: Coupling of P (x′, ·) and P (y′, ·) constructed from a sequence of local
couplings (Z∗0,0, Z

∗
0,1), . . . , (Z∗0,m−1, Z

∗
0,m−1).
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To be more formal, define the transition matrix

Ri(z
(i), z(i+1)) := P[Z∗i,1 = z(i+1) |Z∗i,0 = z(i)].

Observe that ∑
z(i+1)

Ri(z
(i), z(i+1)) = 1, (4.3.9)

and ∑
z(i)

P (xi, z
(i))Ri(z

(i), z(i+1)) = P (xi+1, z
(i+1)), (4.3.10)

by construction of the coupling (Z∗i,0, Z
∗
i,1) and the definition of Ri. The law of the

full coupling
(Z(0), . . . , Z(m))

is

P[(Z(0), . . . , Z(m)) = (z(0), . . . , z(m))]

= P (x0, z
(0))R0(z(0), z(1)) · · ·Rm−1(z(m−1), z(m)).

Using (4.3.9) and (4.3.10) inductively gives respectively

P[X∗ = z(0)] = P[Z(0) = z(0)] = P (x0, z
(0)),

P[Y ∗ = z(m)] = P[Z(m) = z(m)] = P (xm, z
(m)),

as required.
By the triangle inequality for w0, the coupling (X∗, Y ∗) satisfies

E[w0(X∗, Y ∗)] = E
[
w0(Z(0), Z(m))

]
≤

m−1∑
i=0

E
[
w0(Z(i), Z(i+1))

]
≤

m−1∑
i=0

κw0(xi, xi+1)

= κw0(x′, y′),

where, on the third line, we used (4.3.8) for adjacent pairs and the last line follows
from the fact that we chose a minimum-weight path.

That concludes the proof of the theorem.

We illustrate the path coupling method in the next subsection. See Exer-
cise 4.17 for an optimal transport perspective on the path coupling method.
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4.3.4 . Ising model: Glauber dynamics at high temperature

Let G = (V,E) be a finite, connected graph with maximal degree δ̄. Define X :=
{−1,+1}V . Recall from Example 1.2.5 that the (ferromagnetic) Ising model on V
with inverse temperature β is the probability distribution over spin configurations
σ ∈ X given by

µβ(σ) :=
1

Z(β)
e−βH(σ),

where
H(σ) := −

∑
i∼j

σiσj ,

is the Hamiltonian and
Z(β) :=

∑
σ∈X

e−βH(σ),

is the partition function. In this context, recall that vertices are often referred to as
sites. The single-site Glauber dynamics (Definition 1.2.8) of the Ising model is the
Markov chain on X which, at each time, selects a site i ∈ V uniformly at random
and updates the spin σi according to µβ(σ) conditioned on agreeing with σ at all
sites in V \{i}. Specifically, for γ ∈ {−1,+1}, i ∈ V , and σ ∈ X , let σi,γ be
the configuration σ with the state at i being set to γ. Then, letting n = |V |, the
transition matrix of the Glauber dynamics is

Qβ(σ, σi,γ) :=
1

n
· eγβSi(σ)

e−βSi(σ) + eβSi(σ)

=
1

n

{
1

2
+

1

2
tanh(γβSi(σ))

}
, (4.3.11)

where
Si(σ) :=

∑
j∼i

σj .

All other transitions have probability 0. Recall that this chain is irreducible and
reversible with respect to µβ . In particular µβ is the stationary distribution of Qβ .

In this section we give an upper bound on the mixing time, tmix(ε), of Qβ
using path coupling. We say that the Glauber dynamics is fast mixing if tmix(ε) =

fast mixing
O(n log n). We first make a simple observation:

Claim 4.3.13 (Glauber dynamics: lower bound on mixing).

tmix(ε) = Ω(n), ∀β > 0.
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Proof. Similarly to what we did in Section 4.3.2 in the context of random walk
on the hypercube (but for a lower bound this time), we use a coupon collecting
argument (see Example 2.1.4). Let σ̄ be the all-(−1) configuration and letA be the
set of configurations where at least half of the sites are +1. Then, by symmetry,
µβ(A) = µβ(Ac) = 1/2 where we assumed for simplicity that n is odd. By
definition of the total variation distance,

d(t) ≥ ‖Qtβ(σ̄, ·)− µβ(·)‖TV

≥ |Qtβ(σ̄, A)− µβ(A)|
= |Qtβ(σ̄, A)− 1/2|. (4.3.12)

So it remains to show that by time c n, for c > 0 small, the chain is unlikely to have
reached A. That happens if, say, fewer than a third of the sites have been updated.
Using the notation of Example 2.1.4, we are seeking a bound on Tn,n/3, that is, the
time to collect n/3 coupons out of n.

We can write this random variable as a sum of n/3 independent geometric
variables Tn,n/3 =

∑n/3
i=1 τn,i, where E[τn,i] =

(
1− i−1

n

)−1 and Var[τn,i] ≤(
1− i−1

n

)−2. Hence, approximating the Riemann sums below by integrals,

E[Tn,n/3] =

n/3∑
i=1

(
1− i− 1

n

)−1

= n
n∑

j=2n/3+1

j−1 = Θ(n), (4.3.13)

and

Var[Tn,n/3] ≤
n/3∑
i=1

(
1− i− 1

n

)−2

= n2
n∑

j=2n/3+1

j−2 = Θ(n). (4.3.14)

So by Chebyshev’s inequality (Theorem 2.1.2)

P[|Tn,n/3 − E[Tn,n/3]| ≥ ε n] ≤
Var[Tn,n/3]

(ε n)2
→ 0,

by (4.3.14). In view of (4.3.13), taking ε > 0 small enough and n large enough,
we have shown that for t ≤ cεn for some cε > 0

Qtβ(σ̄, A) ≤ 1/3,

which proves the claim by (4.3.12) and the definition of the mixing time (Defini-
tion 1.1.35).
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Remark 4.3.14. In fact, Ding and Peres proved that tmix(ε) = Ω(n log n) for any graph
on n vertices [DP11]. In Claim 4.3.7, we treated the special case of the empty graph,
which is equivalent to lazy random walk on the hypercube. See also Section 5.3.4 for a
much stronger lower bound at low temperature for certain graphs with good “expansion
properties.”

In our main result of this section, we show that the Glauber dynamics of the
Ising model is fast mixing when the inverse temperature β is small enough as a
function of the maximum degree.

Claim 4.3.15 (Glauber dynamics: fast mixing at high temperature).

β < δ̄−1 =⇒ tmix(ε) = O(n log n).

Proof. We use path coupling. LetH0 = (V0, E0) where V0 := X and {σ, ω} ∈ E0

if 1
2‖σ − ω‖1 = 1 (i.e., they differ in exactly one coordinate) with unit weight on

all edges. To avoid confusion, we reserve the notation ∼ for adjacency in G.
Let {σ, ω} ∈ E0 differ at coordinate i. We construct a coupling (X∗, Y ∗) of

Qβ(σ, ·) and Qβ(ω, ·). We first pick the same coordinate i∗ to update. If i∗ is such
that all its neighbors in G have the same state in σ and ω, that is, if σj = ωj for
all j ∼ i∗, we update X∗ from σ according to the Glauber rule and set Y ∗ := X∗.
Note that this includes the case i∗ = i. Otherwise, that is, if i∗ ∼ i, we proceed as
follows. From the state σ, the probability of updating site i∗ to state γ ∈ {−1,+1}
is given by the expression in brackets in (4.3.11), and similarly for ω. Unlike the
previous case, we cannot guarantee that the update is identical in both chains. In
order to minimize the chance of increasing the distance between the two chains,
we use a monotone coupling, which recall from Example 4.1.17 is maximal in the
two-state case. Specifically, we pick a uniform random variable U in [−1, 1] and
set

X∗i∗ :=

{
+1 if U ≤ tanh(βSi∗(σ)),
−1 otherwise,

and

Y ∗i∗ :=

{
+1 if U ≤ tanh(βSi∗(ω)),
−1 otherwise.

We set X∗j := σj and Y ∗j := ωj for all j 6= i∗. The expected distance between X∗

and Y ∗ is then

E[w0(X∗, Y ∗)]

= 1− 1

n︸︷︷︸
(a)

+
1

n

∑
j:j∼i

1

2
|tanh(βSj(σ))− tanh(βSj(ω))|︸ ︷︷ ︸

(b)

, (4.3.15)
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where: (a) corresponds to i∗ = i in which case w0(X∗, Y ∗) = 0; (b) corresponds
to i∗ ∼ i in which case w0(X∗, Y ∗) = 2 with probability

1

2
| tanh(βSi∗(σ))− tanh(βSi∗(ω))|,

by our coupling; and otherwise w0(X∗, Y ∗) = w0(σ, ω) = 1. To bound (b), we
note that for any j ∼ i

|tanh(βSj(σ))− tanh(βSj(ω))| = tanh(β(s+ 2))− tanh(βs), (4.3.16)

where
s := Sj(σ) ∧ Sj(ω).

The derivative of tanh is maximized at 0 where it is equal to 1. So the right-hand
side of (4.3.16) is ≤ β(s + 2) − βs = 2β. Plugging this back into (4.3.15) and
using 1− x ≤ e−x for all x (see Exercise 1.16), we get

E[w0(X∗, Y ∗)] ≤ 1− 1− δ̄β
n

≤ exp

(
−1− δ̄β

n

)
= κw0(σ, ω),

where

κ := exp

(
−1− δ̄β

n

)
< 1,

by our assumption on β. The diameter of H0 is ∆0 = n. By Theorem 4.3.10,

tmix(ε) ≤
⌈

log ∆0 + log ε−1

log κ−1

⌉
=

⌈
n(log n+ log ε−1)

1− δ̄β

⌉
,

which implies the claim.

Remark 4.3.16. A slighlty more careful analysis shows that the condition δ̄ tanh(β) < 1
is enough for the claim to hold. See [LPW06, Theorem 15.1].

4.4 Chen-Stein method

The Chen-Stein method serves to establish Poisson approximation results with
quantitative bounds in certain settings with dependent variables that are common,
for instance, in random graphs and string statistics.
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Setting The basic setup is a sum of Bernoulli (i.e., {0, 1}-valued) random vari-
ables {Xi}ni=1

W =

n∑
i=1

Xi, (4.4.1)

where the Xis are not assumed independent or identically distributed. Define

pi = P[Xi = 1], (4.4.2)

and

E[W ] = λ :=
n∑
i=1

pi. (4.4.3)

Letting µ denote the law of W and π be the Poisson distribution with mean λ, our
goal is to bound ‖µ− π‖TV.

We first state the main bounds and give some examples of its use. We then
motivate and prove the result, and return to further applications. Throughout the
next two subsections, we use the notation in (4.4.1), (4.4.2) and (4.4.3).

4.4.1 Main bounds and examples

We begin with an elementary observation.

Theorem 4.4.1 (Stein equation for the Poisson distribution). Let λ > 0. A non-
negative integer-valued random variableZ is Poi(λ) if and only if for all g bounded

E[λg(Z + 1)− Zg(Z)] = 0. (4.4.4)

The “only if” follows a direct calculation. The “if” follows from taking g(z) :=
1{z=k} for all k ≥ 1 and deriving a recursion. Exercise 4.18 asks for the details.
One might expect that if the left-hand side of (4.4.4) is “small for many gs,” then
Z is approximately Poisson.

The following key result in some sense helps to formalize this intuition. We
prove it by constructing a Markov chain that “interpolates” between µ and π,
where (4.4.4) will arise naturally (see Section 4.4.2).

Theorem 4.4.2 (Chen-Stein method). Let W ∼ µ and π ∼ Poi(λ). Then there
exists a function h : {0, 1, . . . , n+ 1} → R such

‖µ− π‖TV = E [−λh(W + 1) +Wh(W )] . (4.4.5)

Moreover h satisfies the following Lipschitz condition: for all y, y′ ∈ {0, 1, . . . , n+
1},

|h(y′)− h(y)| ≤ (1 ∧ λ−1)|y′ − y|. (4.4.6)
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By bounding the right-hand side of (4.4.5) for any function satisfying (4.4.6), we
get a Poisson approximation result for µ.

One way to do this is to construct a certain type of coupling. We begin with a
definition, which will be justified in the corollary below. We write X ∼ Y |A to
mean that X is distributed as Y conditioned on the event A.

Definition 4.4.3 (Stein coupling). A Stein coupling is a pair (Ui, Vi), for each
Stein coupling

i = 1, . . . , n, such that

Ui ∼W, Vi ∼W − 1|Xi = 1.

Each pair (Ui, Vi) is defined on a joint probability space, but different pairs do not
need to.

How such a coupling is constructed will become clearer in the examples below.

Corollary 4.4.4. Let (Ui, Vi), i = 1, . . . , n, be a Stein coupling. Then

‖µ− π‖TV ≤ (1 ∧ λ−1)
n∑
i=1

pi E|Ui − Vi|. (4.4.7)

Proof. By (4.4.5), using the facts that λ =
∑n

i=1 pi and W =
∑n

i=1Xi, we get

‖µ− π‖TV

= E [−λh(W + 1) +Wh(W )]

= E

[
−

(
n∑
i=1

pi

)
h(W + 1) +

(
n∑
i=1

Xi

)
h(W )

]

=

n∑
i=1

(−piE [h(W + 1)] + E [Xih(W )])

=

n∑
i=1

(−piE [h(W + 1)] + E [h(W ) |Xi = 1] P[Xi = 1])

=

n∑
i=1

pi (−E [h(W + 1)] + E [h(W ) |Xi = 1]) .

Let (Ui, Vi), i = 1, . . . , n, be a Stein coupling (Definition 4.4.3). Then, we can
rewrite this last expression is

=

n∑
i=1

pi (−E [h(Ui + 1)] + E [h(Vi + 1)])

≤
n∑
i=1

piE [|h(Ui + 1)− h(Vi + 1)|] .
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By (4.4.6), we finally get

‖µ− π‖TV ≤ (1 ∧ λ−1)
n∑
i=1

pi E|Ui − Vi|,

which concludes the proof.

As a first example, we derive a Poisson approximation result in the independent
case. Compare to Theorem 4.1.18.

Example 4.4.5 (Independent Xis). Assume the Xis are independent. We prove
the following:

Claim 4.4.6.

‖µ− π‖TV ≤ (1 ∧ λ−1)

n∑
i=1

p2
i .

We use the following Stein coupling. For each i = 1, . . . , n, we let

Ui = W

and
Vi =

∑
j:j 6=i

Xj .

By independence,
Vi = W −Xi ∼W − 1|Xi = 1,

as desired. Plugging into (4.4.7), we obtain the bound

‖µ− π‖TV ≤ (1 ∧ λ−1)

n∑
i=1

pi E|Ui − Vi|

≤ (1 ∧ λ−1)

n∑
i=1

pi E

∣∣∣∣∣∣W −
∑
j 6=i

Xj

∣∣∣∣∣∣
≤ (1 ∧ λ−1)

n∑
i=1

pi E |Xi|

≤ (1 ∧ λ−1)
n∑
i=1

p2
i .

J
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Here is a less straightforward example.

Example 4.4.7 (Balls in boxes). Suppose we throw k balls uniformly at random in
n boxes independently. Let

Xi = 1{box i is empty},

and let W =
∑n

i=1Xi be the number of empty boxes. Note that the Xis are not
independent. In particular, we cannot use Theorem 4.1.18. Note that

pi =

(
1− 1

n

)k
,

for all i and, hence,

λ = n

(
1− 1

n

)k
.

For each i = 1, . . . , n, we generate the coupling (Ui, Vi) in the following way.
We let Ui = W . If box i is empty then Vi = W − 1. Otherwise, we re-distribute
all balls in box i among the remaining boxes and let Vi count the number of empty
boxes 6= i. By construction, both conditions of the Stein coupling are satisfied.
Moreover we have almost surely Vi ≤ Ui so that

n∑
i=1

piE|Ui − Vi| =
n∑
i=1

piE[Ui − Vi] = λ2 −
n∑
i=1

piE[Vi].

By the fact that Vi ∼W − 1|Xi = 1 and Bayes’ rule,

n∑
i=1

piE[Vi] =
n∑
i=1

P[Xi = 1]
n∑
k=1

(k − 1)P[Vi = k − 1]

=

n∑
i=1

n∑
k=1

(k − 1)P[W = k |Xi = 1]P[Xi = 1]

=

n∑
i=1

n∑
k=1

(k − 1)P[Xi = 1 |W = k]P[W = k].

Now we use the fact that P[Xi = 1 |W = k] = E[Xi |W = k] because Xi is an
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indicator variable. So the last line above is

=

n∑
i=1

n∑
k=1

(k − 1)E[Xi |W = k]P[W = k]

=

n∑
k=1

(k − 1)E

[
n∑
i=1

Xi

∣∣∣∣∣W = k

]
P[W = k]

=

n∑
k=1

(k − 1)k P[W = k]

= E[W 2]− E[W ].

It remains to compute E[W 2]. We have by symmetry

E[W 2] = nE[X2
1 ] + n(n− 1)E[X1X2]

= λ+ n(n− 1)

(
1− 2

n

)k
,

so by Corollary 4.4.4

‖µ− π‖TV ≤ (1 ∧ λ−1)

{
n2

(
1− 1

n

)2k

− n(n− 1)

(
1− 2

n

)k}
.

When k = n log n + Cn for instance, it can be checked that ‖µ − π‖TV =
O(log n/n). J

This last example is generalized in Exercise 4.22.
In special settings, one can give useful general bounds by constructing an ap-

propriate Stein coupling. We give an important example next. Recall that [n] =
{1, . . . , n}.

Theorem 4.4.8 (Chen-Stein method: dissociated case). Suppose that for each i
there is a neighborhood Ni ⊆ [n] \ {i} such that

Xi is independent of {Xj : j /∈ Ni ∪ {i}}.

Then

‖µ− π‖TV ≤ (1 ∧ λ−1)

n∑
i=1

p2
i +

∑
j∈Ni

(pipj + E[XiXj ])

 .
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Proof. We use the following Stein coupling. Let

Ui = W.

Then generate

(Y
(i)
j )j∈Ni ∼ (Xj)j∈Ni |{Xk : k /∈ Ni ∪ {i}}, Xi = 1,

and set
Vi =

∑
k/∈Ni∪{i}

Xk +
∑
j∈Ni

Y
(i)
j .

Because the law of {Xk : k /∈ Ni ∪ {i}} (and therefore of the first term in Vi) is
independent of the event {Xi = 1}, the above scheme satisfies the conditions of
the Stein coupling.

Hence we can apply Corollary 4.4.4. The construction of (Ui, Vi) guarantees
that Ui − Vi depends only on “i and its neighborhood.” Specifically, we get

‖µ− π‖TV ≤ (1 ∧ λ−1)
n∑
i=1

pi E|Ui − Vi|

= (1 ∧ λ−1)
n∑
i=1

pi E

∣∣∣∣∣∣
n∑
j=1

Xj −
∑

k/∈Ni∪{i}

Xk −
∑
j∈Ni

Y
(i)
j

∣∣∣∣∣∣
= (1 ∧ λ−1)

n∑
i=1

pi E

∣∣∣∣∣∣Xi +
∑
j∈Ni

(Xj − Y (i)
j )

∣∣∣∣∣∣
≤ (1 ∧ λ−1)

n∑
i=1

pi

E|Xi|+
∑
j∈Ni

(E|Xj |+ E|Y (i)
j |)

 ,

where we used the triangle inequality. Recalling that pi = P[Xi = 1] = E[Xi] =

E|Xi| and the definition of Y (i)
j , the last expression above is

= (1 ∧ λ−1)
n∑
i=1

pi

pi +
∑
j∈Ni

[pj + E[|Xj ||Xi = 1]


= (1 ∧ λ−1)

n∑
i=1

p2
i +

∑
j∈Ni

(pipj + piE[Xj |Xi = 1])


= (1 ∧ λ−1)

n∑
i=1

p2
i +

∑
j∈Ni

(pipj + E[XiXj ])

 .
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That concludes the proof.

Next we give an example of the previous theorem.

Example 4.4.9 (Longest head run). Let 0 < q < 1 and letZ1, Z2, . . . be i.i.d. Bern-
oulli random variables with success probability q = P[Zi = 1]. We are interested
in the distribution of R, the length of the longest run of 1s starting in the first n
tosses. For any positive integer t, let X(t)

1 := Z1 · · ·Zt and

X
(t)
i := (1− Zi−1)Zi · · ·Zi+t−1, i ≥ 2.

The event {X(t)
i = 1} indicates that a head run of length at least t starts at the i-th

toss. Now define

W (t) :=

n∑
i=1

X
(t)
i .

The key observation is that

{R < t} = {W (t) = 0}. (4.4.8)

Notice that, for fixed t, the X(t)
i s are neither independent nor identically dis-

tributed. However, they exhibit a natural neighborhood structure as in Theorem 4.4.8.
Indeed let

N (t)
i := {α ∈ [n] : |α− i| ≤ t} \ {i}.

Then, X(t)
i is independent of {X(t)

j : j /∈ Ni ∪ {i}}. For example,

X
(t)
i = (1− Zi−1)Zi · · ·Zi+t−1,

and
X

(t)
i+t+1 = (1− Zi+t)Zi+t+1 · · ·Zi+2t,

do not depend on any common Zj , while X(t)
i and

X
(t)
i+t = (1− Zi+t−1)Zi+t · · ·Zi+2t−1,

both depend on Zi+t−1.
We compute the quantities needed to apply Theorem 4.4.8. We have

p
(t)
1 := E[Z1 · · ·Zt] =

t∏
j=1

E[Zj ] = qt,
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and, for i ≥ 2,

p
(t)
i := E[(1− Zi−1)Zi · · ·Zi+t−1]

= E[1− Zi−1]

i+t−1∏
j=i

E[Zj ]

= (1− q)qt

≤ qt.

For i ≥ 1 and j ∈ N (t)
i , observe that a head run of length at least t cannot start

simultaneously at i and j. So E[X
(t)
i X

(t)
j ] = 0 in that case. We also have

λ(t) := E[W (t)] = qt + (n− 1)(1− q)qt ∈ [n(1− q)qt, nqt],

and ∣∣∣N (t)
i

∣∣∣ ≤ 2t.

We are ready to apply Theorem 4.4.8. We get, letting µ(t) denote the law of
W (t) and π(t) be the Poisson distribution with mean λ(t),

‖µ(t) − π(t)‖TV ≤ (1 ∧ (λ(t))−1)

n∑
i=1

(p
(t)
i )2 +

∑
j∈N (t)

i

(
p

(t)
i p

(t)
j + E[X

(t)
i X

(t)
j ]
)

≤ (1 ∧ (n(1− q)qt)−1)
[
nq2t + 2tnq2t

]
≤ 1

(1− q)n
(1 ∧ (nqt)−1)[2t+ 1](nqt)2.

This bound is non-asymptotic—it holds for any q, n, t. One special regime of note
is t = log1/q n+ C with large n. In that case, we have nqt → C ′ as n→ +∞ for
some 0 < C ′ < +∞ and the total variation above is of the order to O(log n/n).

Going back to (4.4.8), we finally obtain when t = log1/q n+ C that∣∣∣P[R < t]− e−λ(t)
∣∣∣ = O

(
log n

n

)
,

where recall that R and λ(t) implicitly depend on n. J

4.4.2 Some motivation and proof

The idea behind the Chen-Stein method is to interpolate between µ and π in Theo-
rem 4.4.2 by constructing a Markov chain with initial distribution µ and stationary
distribution π. Here we use a discrete-time, finite Markov chain.
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Proof of Theorem 4.4.2. We seek a bound on

‖µ− π‖TV = sup
A⊆Z+

|µ(A)− π(A)|

= µ(A∗)− π(A∗)

=
∑
z∈A∗

(µ(z)− π(z)), (4.4.9)

where A∗ = {z ∈ Z+ : µ(z) > π(z)}, by Lemma 4.1.15. Since W ≤ n almost
surely, µ(z) = 0 for all z > nwhich implies thatA∗ ⊆ {0, 1, . . . , n}. In particular,
it will suffice to bound µ(z) − π(z) for 0 ≤ z ≤ n. We also assume λ < n (the
case λ = n being uninteresting).

Constructing the Markov chain It will be convenient to truncate π at n, that is,
we define

π̄(z) =


π(z) 0 ≤ z ≤ n,
1−Π(n) z = n+ 1,

0 otherwise,

where Π(z) =
∑

w≤z π(w) is the cumulative distribution function of the Poisson
distribution with mean λ. We construct a Markov chain with stationary distribution
π̄. We will also need the chain to be aperiodic and irreducible over {0, 1, . . . , n +
1}.

We choose the transition matrix (P (x, y))0≤x,y≤n+1 to be that of a birth-death
chain reversible with respect to π̄, that is, we require P (x, y) = 0 unless |x−y| ≤ 1
and

P (x, x+ 1)

P (x+ 1, x)
=
π̄(x+ 1)

π̄(x)
, ∀x ∈ [n]. (4.4.10)

For x < n,

π̄(x+ 1)

π̄(x)
=
π(x+ 1)

π(x)
=
e−λλx+1/(x+ 1)!

e−λλx/x!
=

λ

x+ 1
.

In view of this, we want P (x, x + 1) ∝ λ and P (x, x − 1) ∝ x. We choose
the proportionality constant to ensure that all transition probabilities are in [0, 1].
Specifically, for x 6= y, the nonzero transition probabilities take values

P (x, y) =


1

2nλ, if 0 ≤ x ≤ n, y = x+ 1,
1

2nx, if 1 ≤ x ≤ n, y = x− 1,
1

2nλ
π(n)

1−Π(n) , if x = n+ 1, y = n.
(4.4.11)
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The probability of staying put is: 1− 1
2nλ if x = 0, 1− 1

2nx−
1

2nλ if 1 ≤ x ≤ n,
and 1− 1

2nλ
π(n)

1−Π(n) if x = n+1. Those are all strictly positive when λ < n. Hence
by construction P is aperiodic and irreducible, and it satisfies the detailed balance
conditions (4.4.10).

Recalling (3.3.6), the Laplacian is

∆f(x) =
∑
y

P (x, y)[f(y)− f(x)]

= P (x, x+ 1)[f(x+ 1)− f(x)]− P (x, x− 1)[f(x)− f(x− 1)]

= λg(x+ 1)− xg(x),

for 0 ≤ x ≤ n, where we defined

g(x) :=
f(x)− f(x− 1)

2n
, x ∈ {1, . . . , n+ 1}, (4.4.12)

and g(0) is arbitrary. At x = n+ 1,

∆f(n+ 1) = −λn π(n)

1−Π(n)
g(n+ 1).

It is a standard fact (see Exercise 4.19) that the expectation of the Laplacian
under the stationary distribution is 0. Inverting the relationship (4.4.12), for any
g : {0, . . . , n + 1} → R, there is a corresponding f (unique up to an additive
constant). So we have shown that if Z ∼ π̄ then

E
[
(λg(Z + 1)− Zg(Z))1{Z≤n} − λn

π(n)

1−Π(n)
g(Z)1{Z=n+1}

]
= 0,

that is,
E
[
(λg(Z + 1)− Zg(Z))1{Z≤n}

]
= λnπ(n)g(n+ 1).

Notice that, if g is extended to a bounded function on Z+, λ is fixed and Z ∼
Poi(λ), then taking n → +∞ recovers Theorem 4.4.1 by dominated convergence
(Proposition B.4.14).*

Markov chains calculations By the convergence theorem for Markov chains
(Theorem 1.1.33),

P t(y, z)→ π̄(z)

*The above argument is more natural in the setting of continuous-time Markov chains, but we
will not introduced them here.
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for all 0 ≤ y ≤ n + 1 and 0 ≤ z ≤ n + 1 as t → +∞. Hence, letting δz(x) =
1{x=z}, by telescoping

δz(y)− π̄(z) = lim
t→+∞

Ey[δz(X0)− δz(Xt)]

= lim
t→+∞

t−1∑
s=0

Ey[δz(Xs)− δz(Xs+1)], (4.4.13)

where the subscript of E indicates the initial state. We will later take expectations
over µ and use the fact that π(z) = π̄(z) on {0, 1 . . . , n} to interpolate between µ
and π.

First, we use standard Markov chains facts to compute (4.4.13). Define for
y ∈ {1, . . . , n+ 1}

gtz(y) :=
1

2n

t−1∑
s=0

(Ey[δz(Xs)]− Ey−1[δz(Xs)]), (4.4.14)

and gtz(0) := 0. The function gtz(y) is, up to a factor (whose purpose will be clearer
below), the difference between the expected number of visits to z up to time t− 1
when started at y and y− 1 respectively. It depends on µ only through λ and n. By
Chapman-Kolmogorov (Theorem 1.1.20) applied to the first step of the chain,

Ey[δz(Xs+1)] = P (y, y + 1)Ey+1[δz(Xs)]

+ P (y, y)Ey[δz(Xs)] + P (y, y − 1)Ey−1[δz(Xs)].

Using that P (y, y + 1) + P (y, y) + P (y, y − 1) = 1 and rearranging we get for
0 ≤ y ≤ n and 0 ≤ z ≤ n+ 1

t−1∑
s=0

Ey[δz(Xs)− δz(Xs+1)]

=
t−1∑
s=0

{
− P (y, y + 1)(Ey+1[δz(Xs)]− Ey[δz(Xs)])

+ P (y, y − 1)(Ey[δz(Xs)]− Ey−1[δz(Xs)])

}
= −2nP (y, y + 1)gtz(y + 1) + 2nP (y, y − 1)gtz(y)

= −λgtz(y + 1) + ygtz(y), (4.4.15)

where we used (4.4.11) on the last line.
We establish after the proof of the theorem that gtz(y) has a well-defined limit.

That fact is not immediately obvious as the limit is the “difference of two infinities.”
But a simple coupling argument does the trick.
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Lemma 4.4.10. Let gtz : {0, 1, . . . , n + 1} → R be defined in (4.4.14). Then
there exists a bounded function g∞z : {0, 1, . . . , n + 1} → R such that for all
0 ≤ z ≤ n+ 1 and 0 ≤ y ≤ n+ 1,

g∞z (y) = lim
t→+∞

gtz(y).

In fact, an explicit expression for g∞z can be derived via the following recur-
sion. That expression will be helpful to establish the Lipschitz condition in Theo-
rem 4.4.2.

Lemma 4.4.11. For all 0 ≤ y ≤ n and 0 ≤ z ≤ n+ 1,

δz(y)− π̄(z) = −λg∞z (y + 1) + yg∞z (y).

Proof. Combine (4.4.13), (4.4.15), and Lemma 4.4.10.

Lemma 4.4.11 leads to the following formula for g∞z , which we establish after the
proof of the theorem.

Lemma 4.4.12. For 1 ≤ y ≤ n+ 1 and 0 ≤ z ≤ n+ 1,

g∞z (y) =

{
Π(y−1)
yπ(y) π̄(z), if z ≥ y,
−1−Π(y−1)

yπ(y) π̄(z), if z < y.
(4.4.16)

and g∞z (0) = 0.

Interpolating between µ and π For A ⊆ {0, 1, . . . , n}, define

g∞A (y) :=
∑
z∈A

g∞z (y).

We obtain the following key bound.

Lemma 4.4.13 (Chen’s equation). Let W ∼ µ and π d
= Poi(λ). Then,

‖µ− π‖TV = E [−λg∞A∗(W + 1) +Wg∞A∗(W )] (4.4.17)

where A∗ = {z ∈ Z+ : µ(z) > π(z)}.

Proof. Fix z ∈ {0, 1, . . . , n}. Multiplying both sides in Lemma 4.4.11 by µ(y)
and summing over y in {0, 1, . . . , n} gives

µ(z)− π(z) = E [−λg∞z (W + 1) +Wg∞z (W )] .

Now summing over z in A∗ ⊆ {0, 1, . . . , n} and using (4.4.9) gives the claim.
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Lemma 4.4.12 can be used to derive a Lipschitz constant for g∞A . That lemma
is also established after the proof of the theorem.

Lemma 4.4.14. For A ⊆ {0, 1, . . . , n} and y, y′ ∈ {0, 1, . . . , n+ 1},

|g∞A (y′)− g∞A (y)| ≤ (1 ∧ λ−1)|y′ − y|.

Lemmas 4.4.13 and 4.4.14 imply the theorem with h := g∞A∗ .

Proofs of technical lemmas It remains to prove Lemmas 4.4.10, 4.4.12 and
4.4.14.

Proof of Lemma 4.4.10. We use a coupling argument. Let (Ys, Ỹs)
+∞
s=0 be an in-

dependent Markovian coupling of (Ys), the chain started at y − 1, and (Ỹs), the
chain started at y. Let τ be the first time s that Ys = Ỹs. Because Ys and Ỹs
are independent and P is a birth-death chain with strictly positive nearest-neighbor
and staying-put transition probabilities, the coupled chain (Ys, Ỹs)

+∞
s=0 is aperiodic

and irreducible over {0, 1, . . . , n + 1}2. By the exponential tail of hitting times,
Lemma 3.1.25, it holds that E[τ ] < +∞.

Modify the coupling (Ys, Ỹs) to enforce Ỹs = Ys for all s ≥ τ (while not
changing (Ys)), that is, to make it coalescing. By the Strong Markov property
(Theorem 3.1.8), the resulting chain (Y ∗s , Ỹ

∗
s ) is also a Markovian coupling of the

chain started at y − 1 and y respectively. Using this coupling, we rewrite

gtz(y) =
1

2n

t−1∑
s=0

(Ey[δz(Xs)]− Ey−1[δz(Xs)])

=
1

2n

t−1∑
s=0

E[δz(Ỹ
∗
s )− δz(Y ∗s )]

=
1

2n
E

[
t−1∑
s=0

(δz(Ỹ
∗
s )− δz(Y ∗s ))

]
.

The random variable inside the expectation is bounded in absolute value by∣∣∣∣∣
t−1∑
s=0

(δz(Ỹ
∗
s )− δz(Y ∗s ))

∣∣∣∣∣ ≤ τ,
uniformly in t. Indeed, after s = τ , the terms in the sum are 0, while before
s = τ the terms are bounded by 1 in absolute value. By the integrability of τ ,
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the dominated convergence theorem (Proposition B.4.14) allows to take the limit,
leading to

g∞z (y) = lim
t→+∞

1

2n
E

[
t−1∑
s=0

(δz(Ỹ
∗
s )− δz(Y ∗s ))

]

=
1

2n
E

[
+∞∑
s=0

(δz(Ỹ
∗
s )− δz(Y ∗s ))

]
< +∞.

That concludes the proof.

Proof of Lemma 4.4.12. Our starting point is Lemma 4.4.11, from which we de-
duce the recursive formula

g∞z (y + 1) =
1

λ
{yg∞z (y) + π(z)− δz(y)} , (4.4.18)

for 0 ≤ y ≤ n and 0 ≤ z ≤ n.
We guess a general formula and then check it. By (4.4.18),

g∞z (1) =
1

λ
{π(z)− δz(0)} , (4.4.19)

g∞z (2) =
1

λ
{g∞z (1) + π(z)− δz(1)}

=
1

λ

{
1

λ
{π(z)− δz(0)}+ π(z)− δz(1)

}
=

1

λ2
{π(z)− δz(0)}+

1

λ
{π(z)− δz(1)},

g∞z (3) =
1

λ
{2g∞z (2) + π(z)− δz(2)}

=
1

λ

{
2

1

λ2
{π(z)− δz(0)}+ 2

1

λ
{π(z)− δz(1)}+ π(z)− δz(2)

}
=

2

λ3
{π(z)− δz(0)}+

2

λ2
{π(z)− δz(1)}+

1

λ
{π(z)− δz(2)},

and so forth. We posit the general formula

g∞z (y) =
(y − 1)!

λy

y−1∑
k=0

λk

k!
{π(z)− δz(k)}, (4.4.20)
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for 1 ≤ y ≤ n+ 1 and 0 ≤ z ≤ n.
The formula is straightforward to confirm by induction. Indeed it holds for

y = 1 as can be seen in (4.4.19) (and recalling that 0! = 1 by convention) and,
assuming it holds for y, we have by (4.4.18)

g∞z (y + 1) =
1

λ
{yg∞z (y) + π(z)− δz(y)}

=
1

λ

{
y

(y − 1)!

λy

y−1∑
k=0

λk

k!
{π(z)− δz(k)}+ π(z)− δz(y)

}

=
y!

λy+1

y−1∑
k=0

λk

k!
{π(z)− δz(k)}+

1

λ
{π(z)− δz(y)}

=
y!

λy+1

y∑
k=0

λk

k!
{π(z)− δz(k)},

as desired.
We rewrite (4.4.20) according to whether the term δz(y) = 1{z = y} plays a

role in the equation. For z ≥ y > 0, the equation simplifies to

g∞z (y) =
(y − 1)!

λy

y−1∑
k=0

λk

k!
π(z)

=
1

y

y!

e−λλy

y−1∑
k=0

e−λλk

k!
π(z)

=
Π(y − 1)

yπ(y)
π(z).

For 0 ≤ z < y, we get instead

g∞z (y) =
(y − 1)!

λy

{(
y−1∑
k=0

λk

k!
π(z)

)
− λz

z!

}

=
1

y

y!

e−λλy

{(
y−1∑
k=0

e−λλk

k!
π(z)

)
− π(z)

}

=
Π(y − 1)− 1

yπ(y)
π(z).

The cases z = n+ 1 are analogous. That concludes the proof.
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Proof of Lemma 4.4.14. It suffices to prove that, for A ⊆ {0, 1, . . . , n} and y ∈
{0, 1, . . . , n},

|g∞A (y + 1)− g∞A (y)| ≤ (1 ∧ λ−1), (4.4.21)

and then use the triangle inequality.
We start with the case y ≥ 1. We use the expression derived in Lemma 4.4.12.

For 1 ≤ y < z ≤ n+ 1,

g∞z (y + 1)− g∞z (y) =
Π(y)

(y + 1)π(y + 1)
π̄(z)− Π(y − 1)

yπ(y)
π̄(z)

= π̄(z)
1

yπ(y)

{y
λ

Π(y)−Π(y − 1)
}
,

where we used that π(y + 1)/π(y) = λ/(y + 1). We show that the expression in
curly brackets is non-negative. Indeed, taking out the term k′ = 0 in the first sum
below and changing variables, we get

y

λ

y∑
k′=0

e−λλk
′

(k′)!
−

y−1∑
k=0

e−λλk

k!

=
y

λ
e−λ +

y−1∑
k=0

e−λλ(k+1)−1

(k + 1)!/y
−

y−1∑
k=0

e−λλk

k!

≥ y

λ
e−λ +

y−1∑
k=0

e−λλk

k!
−

y−1∑
k=0

e−λλk

k!

≥ 0.

So g∞z (y + 1)− g∞z (y) ≥ 0 for 1 ≤ y < z. A similar calculation, which we omit,
shows that the same inequality holds for z < y ≤ n. The cases y = 0, which are
analogous, are detailed below.

For notational convenience, it will be helpful to define g∞z (n + 2) = 0 for all
z. Then, for y = n+ 1 and z ≤ n, we get

g∞z (n+ 2)− g∞z (n+ 1) = 0 +
1−Π(n)

(n+ 1)π(n+ 1)
π(z) ≥ 0.

Moreover, by telescoping,

0 = g∞z (n+ 2)− g∞z (0) =
n+1∑
y=0

{g∞z (y + 1)− g∞z (y)}.

We have argued that all the terms in this last sum are non-negative—with the sole
exception of the term y = z. Hence, for a fixed 0 ≤ z ≤ n, it must be that
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the maximum of |g∞z (y + 1) − g∞z (y)| is achieved at y = z. The case z =
n + 1 is analogous. By definition of g∞z , for a fixed 0 ≤ y ≤ n, it holds that∑

z{g∞z (y + 1) − g∞z (y)} = 0 and the maximum of |g∞A (y + 1) − g∞A (y)| over
A ⊆ {0, 1, . . . , n} is achieved at A = {y}. It remains to bound that last case.

We have, using π(y + 1)/π(y) = λ/(y + 1) again, that for 1 ≤ y ≤ n

|g∞y (y + 1)− g∞y (y)|

=

∣∣∣∣− 1−Π(y)

(y + 1)π(y + 1)
π(y)− Π(y − 1)

yπ(y)
π(y)

∣∣∣∣
=

1

λ

∑
k≥y+1

e−λ
λk

k!
+

1

y

y−1∑
k=0

e−λ
λk

k!

=
e−λ

λ


y∑

k′=1

λk
′

(k′)!

k′

y
+
∑
k≥y+1

λk

k!


≤ e−λ

λ

∑
k≥1

λk

k!


=
e−λ

λ

{
eλ − 1

}
=

1− e−λ

λ
.

For λ ≥ 1, we have 1−e−λ
λ ≤ 1

λ = (1 ∧ λ−1), while for 0 < λ < 1 we have
1−e−λ
λ ≤ λ

λ = 1 = (1 ∧ λ−1) by Exercise 1.16.
It remains to consider the cases y = 0. Recall that g∞z (0) = 0. By Lemma 4.4.12,

for z ≥ 1,

g∞z (1)− g∞z (0) = g∞z (1)

=
Π(0)

π(1)
π̄(z)

≥ 0.

And

g∞0 (1)− g∞0 (0) = g∞0 (1) = −1−Π(0)

π(1)
π(0) = −1− e−λ

λ
.

So we have established (4.4.21) and that concludes the proof.
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4.4.3 . Random graphs: clique number at the threshold in the Erdős-
Rényi model

We revisit the subgraph containment problem of Section 2.3.2 (and Section 4.2.4).
Let Gn ∼ Gn,pn be an Erdős-Rényi graph with n vertices and density pn. Let
ω(G) be the clique number of a graph G, that is, the size of its largest clique. We
showed previously that the property ω(G) ≥ 4 has threshold function n−2/3. Here
we consider what happens when

pn = Cn−2/3,

for some constant C > 0. We use the Chen-Stein method in the form of Theo-
rem 4.4.8.

For an enumeration S1, . . . , Sm of the 4-tuples of vertices inGn, letA1, . . . , Am
be the events that the corresponding 4-cliques are present and define Zi = 1Ai .
Then W =

∑m
i=1 Zi is the number of 4-cliques in Gn. We argued previously (see

Claim 2.3.4) that
qi := E[Zi] = p6

n,

and

λ := E[W ] =

(
n

4

)
p6
n.

In our regime of interest, λ is of constant order.
Observe that the Zis are not independent because the 4-tuples may share po-

tential edges. However they admit a neighborhood structure as in Theorem 4.4.8.
Specifically, for i = 1, . . . ,m, define

Ni = {j : Si and Sj share at least two vertices} \ {i}.

Then the conditions of Theorem 4.4.8 are satisfied, that is, Xi is independent of
{Zj : j /∈ Ni ∪ {i}}. We argued previously (again see Claim 2.3.4) that

|Ni| =
(

4

3

)
(n− 4) +

(
4

2

)(
n− 4

2

)
= Θ(n2),

where the first term counts the number of Sjs sharing exactly three vertices with
Si, in which case E[ZiZj ] = p9

n, and the second term counts those sharing two, in
which case E[ZiZj ] = p11

n .
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We are ready to apply the bound in Theorem 4.4.8. Let π be the Poisson distri-
bution with mean λ. Using the formulas above, we get when pn = Cn−2/3

‖µ− π‖TV

≤ (1 ∧ λ−1)

n∑
i=1

q2
i +

∑
j∈Ni

(qiqj + E[ZiZj ])


≤ (1 ∧ λ−1)

(
n

4

)
×
[
p12
n +

{(
4

3

)
(n− 4)(p12

n + p9
n) +

(
4

2

)(
n− 4

2

)
(p12
n + p11

n )

}]
= (1 ∧ λ−1) Θ(n4p12

n + n5p9
n + n6p11

n )

= (1 ∧ λ−1) Θ(n4n−8 + n5n−6 + n6n−22/3)

= (1 ∧ λ−1) Θ(n−1),

which goes to 0 as n→ +∞.
See Exercise 4.21 for an improved bound.
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Exercises

Exercise 4.1 (Harmonic function on Zd: unbounded). Give an example of an un-
bounded harmonic function on Z. Give one on Zd for general d. [Hint: What is the
simplest function after the constant one?]

Exercise 4.2 (Binomial vs. Binomial). Use coupling to show that

n ≥ m, q ≥ p =⇒ Bin(n, q) � Bin(m, p).

Exercise 4.3 (A chain that is not stochastically monotone). Consider random walk
on a network N = ((V,E), c) where V = {0, 1, . . . , n} and i ∼ j if and only if
|i− j| = 1 (in particular, not including self-loops). Show that the transition matrix
is, in general, not stochastically monotone (see Definition 4.2.16).

Exercise 4.4 (Increasing events: properties). Let F be a σ-algebra over the poset
X . Recall that an eventA ∈ F is increasing if x ∈ A implies that any y ≥ x is also
in A and that a function f : X → R is increasing if x ≤ y implies f(x) ≤ f(y).

(i) Show that an event A ∈ F is increasing if and only if the indicator function
1A is increasing.

(ii) Let A,B ∈ F be increasing. Show that A ∩B and A ∪B are increasing.

(iii) An event A is decreasing if x ∈ A implies that any y ≤ x is also in A. Show
that A is decreasing if and only if Ac is increasing.

(iv) Let A,B ∈ F be decreasing. Show that A ∩B and A ∪B are decreasing.

Exercise 4.5 (Harris’ inequality: alternative proof). We say that f : Rn → R is
coordinatewise nondecreasing if it is nondecreasing in each variable while keeping
the other variables fixed.

(i) (Chebyshev’s association inequality) Let f : R → R and g : R → R be
coordinatewise nondecreasing and let X be a real random variable. Show
that

E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

[Hint: Consider the quantity (f(X) − f(X ′))(g(X) − g(X ′)) where X ′ is
an independent copy of X .]

(ii) (Harris’ inequality) Let f : Rn → R and g : Rn → R be coordinatewise
nondecreasing and let X = (X1, . . . , Xn) be independent real random vari-
ables. Show by induction on n that

E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

[Hint: You may need Lemma B.6.15.]
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Exercise 4.6. Provide the details for Example 4.2.33.

Exercise 4.7 (FKG: sufficient conditions). Let X := {0, 1}F where F is finite and
let µ be a positive probability measure on X . We use the notation introduced in the
proof of Holley’s inequality (Theorem 4.2.32).

(i) To check the FKG condition, show that it suffices to check that, for all x ≤
y ∈ X and i ∈ F ,

µ(yi,1)

µ(yi,0)
≥ µ(xi,1)

µ(xi,0)
.

[Hint: Write µ(ω ∨ ω′)/µ(ω) as a telescoping product.]

(ii) To check the FKG condition, show that it suffices to check (4.2.15) only for
those ω, ω′ ∈ X such that ‖ω − ω′‖1 = 2 and neither ω ≤ ω′ nor ω′ ≤ ω.
[Hint: Use (i).]

Exercise 4.8 (FKG and strong positive associations). Let X := {0, 1}F where F
is finite and let µ be a positive probability measure on X . For Λ ⊆ F and ξ ∈ X ,
let

X ξΛ := {ωΛ × ξΛc : ωΛ ∈ {0, 1}Λ},

where ωΛ × ξΛc agrees with ω on coordinates in Λ and with ξ on coordinates in
F\Λ. Define the measure µξΛ over {0, 1}Λ as

µξΛ(ωΛ) :=
µ(ωΛ × ξΛc)

µ(X ξΛ)
.

That is, µξΛ is µ conditioned on agreeing with ξ on F\Λ. The measure µ is said to
be strongly positively associated if µξΛ(ωΛ) is positively associated for all Λ and ξ.
Prove that the FKG condition is equivalent to strong positive associations. [Hint:
Use Exercise 4.7 as well as the FKG inequality.]

Exercise 4.9 (Triangle-freeness: a second proof). Consider again the setting of
Section 4.2.4.

(i) Let et be the minimum number of edges in a t-vertex union of k not mutually
vertex-disjoint triangles. Show that, for any k ≥ 2 and k ≤ t < 3k, it holds
that et > t.

(ii) Use Exercise 2.18 to give a second proof of the fact that P[Xn = 0] →
e−λ

3/6.
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Exercise 4.10 (RSW lemma: generalα). LetRn,α(p) be as defined in Section 4.2.5.
Show that for all n ≥ 2 (divisible by 4) and p ∈ (0, 1)

Rn,α(p) ≥
(

1

2

)2α−2

Rn,1(p)6α−7Rn/2,1(p)6α−6.

Exercise 4.11 (Primal and dual crossings). Modify the proof of Lemma 2.2.14 to
prove Lemma 4.2.41.

Exercise 4.12 (Square-root trick). Let µ be an FKG measure on {0, 1}F where F
is finite. Let A1 and A2 be increasing events with µ(A1) = µ(A2). Show that

µ(A1) ≥ 1−
√

1− µ(A1 ∪A2).

Exercise 4.13 (Splitting: details). Show that P̃ , as defined in Example 4.3.3, is a
transition matrix on V provided z0 satisfies the condition there.

Exercise 4.14 (Doeblin’s condition in finite case). Let P be a transition matrix on
a finite state space.

(i) Show that Doeblin’s condition (see Example 4.3.3) holds when P is finite,
irreducible and aperiodic.

(ii) Show that Doeblin’s condition holds for lazy random walk on the hypercube
with s = n. Use it to derive a bound on the mixing time.

Exercise 4.15 (Mixing on cycles: lower bound). Let (Zt) be lazy, simple random
walk on the cycle of size n, Zn := {0, 1 . . . , n − 1}, where i ∼ j if |j − i| = 1
(mod n). Assume n is divisible by 4 and fix 0 < ε < 1/2.

(i) LetA = {n/2, . . . , n−1}. By coupling (Zt) with lazy, simple random walk
on Z, show that

Pαn
2
(n/4, A) <

1

2
− ε,

for α ≤ αε for some αε > 0. [Hint: You may want to use Chebyshev’s
inequality (Theorem 2.1.2) or Kolmogorov’s maximal inequality (Coroll-
ary 3.1.46).]

(ii) Deduce that
tmix(ε) ≥ αεn2.

Exercise 4.16 (Lower bound on mixing: distinguishing statistic). Let X and Y
be random variables on a finite state space S. Let h : S → R be a measurable
real-valued map. Assume that

E[h(Y )]− E[h(X)] ≥ rσ,
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where r > 0 and σ2 := max{Var[h(X)],Var[h(Y )]}. Show that

‖µX − µY ‖TV ≥ 1− 8

r2
.

[Hint: Consider the interval on one side of the midpoint between E[h(X)] and
E[h(Y )].]

Exercise 4.17 (Path coupling and optimal transport). Let V be a finite state space
and let P be an irreducible transition matrix on V with stationary distribution π.
Let w0 be a metric on V . For probability measures µ, ν on V , let

W0(µ, ν) := inf {E[w0(X,Y )] : (X,Y ) is a coupling of µ and ν} ,

be the so-called Wasserstein distance (or transportation metric) between µ and ν.
Wasserstein

distance(i) Show that W0 is a metric. [Hint: See the proof of Claim 4.3.11.]

(ii) Assume that the conditions of Theorem 4.3.10 hold. Show that for any prob-
ability measures µ, ν

W0(µP, νP ) ≤ κW0(µ, ν).

(iii) Use (i) and (ii) to prove Theorem 4.3.10.

Exercise 4.18 (Stein equation for the Poisson distribution). Let λ > 0. Show that
a non-negative integer-valued random variable Z is Poi(λ) if and only if for all g
bounded

E[λg(Z + 1)− Zg(Z)] = 0.

Exercise 4.19 (Laplacian and stationarity). Let P be an irreducible transition ma-
trix on a finite or countably infinite spate space V . Recall the Laplacian operator
is

∆f(x) =

[∑
y

P (x, y)f(y)

]
− f(x),

provided the sum if finite. Show that a probability distribution µ over V is station-
ary for P if and only if for all bounded measurable functions∑

x∈V
µ(x)∆f(x) = 0.
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Exercise 4.20 (Chen-Stein method for positively related variables). Using the no-
tation in (4.4.1), (4.4.2) and (4.4.3), suppose that for each i we can construct a
coupling {(X(i)

j : j = 1, . . . , n), (Y
(i)
j : j 6= i)} with (X

(i)
j )j ∼ (Xj)j such that

(Y
(i)
j , j 6= i) ∼ (X

(i)
j , j 6= i)|X(i)

i = 1 and Y
(i)
j ≥ X(i)

j , ∀j 6= i.

Show that

‖µ− π‖TV ≤ (1 ∧ λ−1)

{
Var(W )− λ+ 2

n∑
i=1

p2
i

}
.

Exercise 4.21 (Chen-Stein and 4-cliques). Use Exercise 4.20 to give an improved
asymptotic bound in the setting of Section 4.4.3.

Exercise 4.22 (Chen-Stein for negatively related variables). Using the notation
in (4.4.1), (4.4.2) and (4.4.3), suppose that for each i we can construct a coupling
{(X(i)

j : j = 1, . . . , n), (Y
(i)
j : j 6= i)} with (X

(i)
j )j ∼ (Xj)j such that

(Y
(i)
j , j 6= i) ∼ (X

(i)
j , j 6= i)|X(i)

i = 1 and Y
(i)
j ≤ X(i)

j ,∀j 6= i.

Show that
‖µ− π‖TV ≤ (1 ∧ λ−1) {λ−Var(W )} .
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