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Basic definitions

Definition (Coupling)

Let x and v be probability measures on the same measurable
space (S, S). A coupling of 1 and v is a probability measure ~
on the product space (S x S, S x §) such that the marginals of
~ coincide with © and v, i.e.,

Y(Ax S)=p(A) and ~(S x A)=v(A), VAeS.

Similarly, for two random variables X and Y taking values in
(S,S), a coupling of X and Y is a joint variable (X', Y’) taking
values in (S x S, S x S) whose law is a coupling of the laws of
X and Y. Note that X and Y need not be defined on the same
probability space—but X’ and Y’ do need to.
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Example (Bernoulli variables)

Let X and Y be Bernoulli random variables with parameters 0 < g < r < 1
respectively. Thatis, P[X = 0] =1 — g and P[X = 1] = q, and similarly for Y.
Here S={0,1} and S = 2°.
- (Independent coupling) One coupling of X and Y'is (X', Y’) where
X' £ X and Y’ £ Y are independent. lts law is

(P[(X/’ 7= (i’j)])' ety <(1 ;(61’)£1r; e ;rq)r> :

)

- (Monotone coupling) Another possibility is to pick U uniformly at
random in [0, 1], and set X" = 1;y<q and Y = 1yy<p. The law of
coupling (X", Y")is

(P[(X”’ Y') = (i’j)])i,j€{0,1} - (1 0 ’ ’;q> ’
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Example (Bond percolation: monotonicity)

Let G = (V, E) be a countable graph. Denote by P, the law of bond
percolation on G with density p. Let x € Vandassume 0 < g < r < 1.

- Let {Us}ece be independent uniforms on [0, 1].
- For p € [0, 1], let W, be the set of edges e such that Us < p.

Thinking of W, as specifying the open edges in the percolation process on G
under Pp, we see that (Wg, W;) is a coupling of P4 and P, with the property
that P[W, C W;] = 1. Let ¢\? and " be the open clusters of x under W,
and W, respectively. Because C\? C ¢,

6(q) = Pq[|Cx| = +00] = P[|C{| = +00] < P[IC{"| = +00] = 6(r).
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Example (Biased random walks on Z)

For p € [0, 1], let (Sfp)) be nearest-neighbor random walk on Z
started at 0 with probability p of jumping to the right and
probability 1 — p of jumping to the left. Assume 0 < g < r < 1.

- Let (X, Y/'); be an infinite sequence of i.i.d. monotone
Bernoulli couplings with parameters q and r respectively.

- Define (Z\9,Z\")y .= (2x"—1 2Y" —1).

- Let8 P =3y, Z9and 8 =y, Z"
Then (59, 5(")) is a coupling of (8{?, 5{") such that
5{9 < & for all n almost surely. So for all y and all t

PSP < y] =P[5 < y] > P8 < y] =[S < y].
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Let 1 and v be probability measures on (S, S). Recall the
definition of total variation distance:

[ = vilry = sup |u(A) — v(A)].
AeS

Let 1w and v be probability measures on (S, S). For any
coupling (X,Y) of u and v,

lp—vitv <PX # Y]
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Proof:
w(A) —v(A) =P[X € A| —P[Y € A]
=PXecA X=Y]+PXecA X#Y]
—PlYEA X=Y]-P[YEA X£Y]
=PXeA X#Y]-P[Ye€A X#Y]
< PX # Y],
and, similarly, v(A) — u(A) < P[X # Y]. Hence

[n(A) — v(A)] < PIX # Y]
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Example: Poisson distributions

Let X ~ Poi(\) and Y ~ Poi(v) with A > v. Recall that a sum of
independent Poisson is Poisson. This fact leads to a natural
coupling: let Y ~ Poi(v), Z ~ Poi(\ — 1) independently of Y,
and X = Y+ Z. Then (X, Y) is a coupling and

lpx — pyllty <PX# Y] =P[Z >0/ =1-—e X <X—u
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In fact, the inequality is tight. For simplicity, we prove this in the
finite case only.

Assume S is finite and let S = 25. Let i and v be probability
measures on (S,S). Then,

| — v|rv = inf{P[X # Y] : coupling (X, Y) of u and v}.

Let A= {x € S:ux)>v(x)}, B={xeS:ux)<wv(x)}and

pi= S uAv(x), ai=Su)-v(0)l, 8= S x)-n(x)].

XeS xX€A xeB
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.
g

A 5 B

Figure : Proof by picture that: 1 —p=a = 8 = ||u — v|1v.
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Proof: Lemma: ), .o u(x) Av(x) =1 — ||p — v||1v.
Proof of lemma:

2l = vilv =Y u(x) = v(x)|

xeS

= > _[1(x) = v+ D _I(x) = u(x)]

XEA XEB

:Zﬂ(x)+2y(x)leu(x)AyX

XEA xeB xes

=23 ()~ S w0 — 32 u(x) Av(x)

xeB x€eA XeS

=2—2Z,u(x)/\l/(x)

xeSs

]
Lemma: Y, 4[u(x) — v(x)] = X, p[v(X) — p(x)] = |l — v|v =1-p.

Proof: First equality is immediate. Second equality follows from second line in
previous lemma. u
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The maximal coupling is defined as follows:
- With probability p, pick X = Y from ~min Where ymin(X) := 5 () A v(x),

x € S.
- Otherwise, pick X from v, where ya(x) := “(X1):;(X), x € A and,
independently, pick Y from yg(x) := “X=4, x ¢ B. Note that X # Y

in that case because A and B are disjoint.
The marginal law of X at x € S'is

PYmin(X) + (1 — p)ya(x) = p(x),

and similarly for Y. Finally P[X # Y] =1 - p=||p — v||1v. u
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Example (Bernoulli variables, continued)

Let X and Y be Bernoulli random variables with parameters 0 < g < r < 1
respectively. That is, P[X = 0] = 1 — g and P[X = 1] = g, and similarly for Y.
Here S = {0,1} and S = 25. Let 1 and v be the laws of X and Y
respectively. To construct the maximal coupling as above, we note that

p::Zp(X)/\V(X)Z('l—f)-Fq, 1-p=a=p:=r—q,
A= {0}, B:= {1},

_ 1—r q . L
Omn0cos = (e ogTg) . MO=1 s =1,
The law of the maximal coupling (X", Y"') is

(PLX™, Y = (i’j)])f,/e{o,1} = (1 o r;q) ’

which coincides with the monotone coupling.
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Let Xi,..., X, be independent Bernoulli random variables with
parameters ps, ..., p, respectively. We are interested in the
case where the p;s are “small.” Let S, .=}, , Xi.

We approximate S, with a Poisson random variable Z, as
follows: let Wy, ..., W, be independent Poisson random
variables with means A4, ..., A, respectively and define

Zy =Y, Wi. We choose \; = —log(1 — p;) so as to ensure

(1—p) =P[X; =0 =P[W;=0] = e .

Note that Z, ~ Poi(A\) where A =37, A;.
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: 1
115, — PoiN) v < 5 D22,

Proof: We couple the pairs (X;, W;) independently for i < n. Let
W/ ~Poi()\;)) and X/ = W/ A1.
Because \; = —log(1 — pi), (X{, W) is a coupling of (X;, W;). Let
Spi=> ., X and Z,:= >, W/. Then (S;, Z;) is a coupling of (Sp, Z,).
By the coupling inequality
s, — Hz.llv <P[Sy # Zi) < Y PIX; # W= PIW/ >2]

i<n i<n

DO ISEE NS WAT B
jl =42 0 L= 27

i<n j>2
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Let X and Y be random variables taking values in (S, S), let h
be a measurable map from (S, S) to (S',S’), and let X’ := h(X)
and Y' := h(Y). It holds that

liexr — pyrlltv < |lux — pyllTv.

Proof:

sup [P[X' € A]—P[Y' € A]| = sup |P[n(X) € A - P[A(Y) € A]|
Ales’

AleS’

= sup |[P[X € h"'(A)] —P[Y € h"'(A)]
Aes’

=sup|P[X € A] - P[Y € A]|.
AcS
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Let Gn ~ G p, be an Erdds-Rényi graph with p, := 2 and
A > 0. For i € [n], let D;(n) be the degree of vertex i and define

n
Ng(n) =" 1(p,(n)=d}-
=1

d
ENd(n) —p fd =€ "= vd > 1.

Proof: We proceed in two steps:
@ we use the coupling inequality to show that the expectation of INg(n)is
close to fy;
© we use Chebyshev’s inequality to show that 2 N,(n) is close to its
expectation.
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Lemma (Convergence of the mean)

%En,pn No(n)] = f,  Vd >1.

Proof of lemma: Note that the D;(n)s are identically distributed so
IEnpn [Na(N)] = Pn,p,[D1(n) = d]. Moreover Dy(n) ~ Bin(n — 1, py). Let
Sn ~ Bin(n, ps) and Z, ~ Poi(\). By the Poisson approximation

A PR =
s,z < 3 Z ~log(t —p)f =3 3= (5 + 00 = grrowr

We can couple Di(n) and Sp as (3_,.,_¢ Xi, >_,<, Xi) where the X;s are
i.i.d. Bernoulli with parameter 2. By the coupling inequality

DX#EY X

i<n—1 i<n

A
140y (ny — ts,llrv < P =PXp=1] = _.
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By the triangle inequality for total variation distance,

1 A+ X2/2 _
S BranlDi(n) = o) — 1) < 22 4 o(n72),
d>0
Therefore,
1 2X+ N2 _
B, [Na(7)] — 1o < : +o(n?) 0.
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Lemma (Concentration around the mean)
2X +1

Pnypn |: Nd(n) ]En .Pn [Nd(n)] > E:| S 527[‘]7 Vd Z 1,Vn.

Proof of lemma: By Chebyshev’s inequality, for alle > 0
} Varn,p, [ Na(n)]

Poon || N6(0) ~ 2B (]| > .

Note that

2
Varp,p, [%Nd(”)] = % {En,pn [(Z 1{D;(n)d}> ] — (nPnp,[Di1(n) = d])z}

= %{”(” — 1)Pnp,[D1(n) = d, D2(n) = d]

+ NP po[D1(n) = d] = 1B, [D1(n) = o |
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Varngy | 5 Na(0)| < 7+ {Fo D1(m) = d. Do) = o)~ P D1 () = o}

We bound the second term using a neat coupling argument. Let Y; and Y-
be independent Bin(n — 2, p,) and let Xj and Xz be independent Ber(pn).
Then the term in curly bracket above is equal to

P[(Xi + Y1, X1 + Yz2) = (d, d)] = P[(X1 + Y1, X2 + Y2) = (d, d)]
SP(X + Vi, X+ Y2) = (d,d), (X + Y1, Xo + Yz) # (d,d)]
=P[(X:1 + Y1, X1 + Y2) = (d,d), Xo + Y2 # d]
CPX =0, Vi=Ya=d, Xe = 1] +PX =1, Vi = Ya=d —1, Xp = 0]
2
n

So Varpp, [1Ng(n)] < 22 (] (]
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Coupling and bounded harmonic functions |

Lemma

Let (X;) be a Markov chain on a (finite or) countable state
space V with transition matrix P and let Py be the law of (X;)
started at x. Recall that a function h: V — R is P-harmonic on
V' (or harmonic for short) if

h(x)=>_P(x,y)h(y), VxeV.
yeVv

If, forally,z € V, there is a coupling ((Yt), (Zt)) of P, and P,
such that
|II?’] P[Yt 75 Zt] = 0,

then all bounded harmonic functions on V' are constant.
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Proof: Let h be bounded and harmonic on V with sup, |h(x)| = M < +oc. Let
¥,z be any points in V. By harmonicity, (h(Y:)) and (h(Z;)) are martingales
and, in particular,

E[h(Y1)] = E[h(Yo)] = h(y) and E[h(Z)] = E[h(Z)] = h(z).
So by Jensen’s inequality and the boundedness assumption

|h(y)—h(2)| = [E[h(Y?)] — E[A(Z)]] < E[h(Y:) — h(Z)| < 2MP[Y: # Z] — 0.

So h(y) = h(2). [ ]
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All bounded harmonic functions on 72 are constant.

Proof: Clearly, h is harmonic with respect to simple random walk if and only if
it is harmonic with respect to lazy simple random walk. Let P, and P; be the
laws of lazy simple random walk on Z¢ started at y and z. We construct a
coupling (( Y1), (&) = ((Yt(")),-e[dh (Z,(i)),e[d]) of P, and PP, as follows: at time
t, pick a coordinate / € [d] uniformly at random, then

Q if Yt(’) = Z,(’) then do nothing with probability 1/2 and otherwise pick
W € {—1,+1} uniformly at random, set \/,+1 = fo1 =2" + Wand
leave the other coordinates unchanged;

@ if instead Y # Z pick W € {—1,+41} uniformly at random, and with
probability 1/2 set Y, r+1 =Y ) 1 W and leave Z; and the other

coordinates of Y; unchanged, or otherwise set Z\, := Z" + W and
leave Y; and the other coordinates of Z; unchanged.
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It is straightforward to check that ((Y:), (Z)) is indeed a coupling of P, and
IP,. To apply the previous lemma, it remains to bound P[Y; # Z].

The key is to note that, for each coordinate /, the difference (Y,(") - Zt(i)) is
itself a random walk on Z started at y) — z() with holding probability

1 — 2—until it hits 0. Simple random walk on Z is irreducible and recurrent.
The holding probability does not affect the type of the walk, as can be seen
for mstance from the characterization in terms of effective reS|stance So
(Y7 = Z%) hits 0 in finite time with probabmty 1. Hence letting 7 be the first

time Y’ — Z = 0, we have P[Y{" # Z\"] < P[+() > #] - P[r) = 400] = 0.

By a union bound,

PVi £ 2] < > PV # Z" -0,
i€ld]

as desired. =
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Let T4 be the infinite d-regular tree with root p. For x € Ty, we
let Ty be the subtree, rooted at x, of descendants of x.

Theorem

For d > 3, let (X;) be simple random walk on T4 and let P be
the corresponding transition matrix. Let a be a neighbor of the
root and consider the function

h(x) = Px[Xt € T, for all but finitely many t|.

Then h is a non-constant, bounded P-harmonic function on Ty.
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Proof: The function h is clearly bounded and by the usual one-step trick

h(x)=>" %Py[xt € To for all but finitely many 1] = >~ P(x, y)h(y),
y

yrox

so his P-harmonic.

Let b # a be a neighbor of the root. The key of the proof is:

q := Paf[r, = +00] = Pp[7, = +00] > 0.

Proof of lemma: Let (Z;) be simple random walk on T started at a until the
walk hits 0 and let L; be the graph distance between Z; and the root. Then
(L¢) is a biased random walk on Z started at 1 jumping to the right with
probability 1 — % and jumping to the left with probability . The probability
that (L) hits 0 in finite time is < 1 because 1 — % > 2 when d > 3. ]
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Note that
Moy < (1-5) - <t

Indeed if on the first step the random walk started at p moves away from a,
an event of probability 1 — 1, then it must come back to p in finite time to
reach T,. Similarly, by the strong Markov property,

h(a) = g+ (1 = g)h(p).
Since h(p) # 1 and g > 0, this shows that h(a) > h(p). [ ]
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