Modern Discrete Probability

IV - Coupling Review

Sébastien Roch UW-Madison Mathematics

November 29, 2014

・ロト ・ 理 ト ・ ヨ ト ・

3

- Definitions and examples
- Coupling inequality
- 2 Application: Erdös-Rényi degree sequence
- 3 Application: Harmonic functions on lattices and trees

イロト イポト イヨト イヨト

Definitions and examples

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees

Basic definitions

Definition (Coupling)

Let μ and ν be probability measures on the same measurable space (*S*, *S*). A *coupling* of μ and ν is a probability measure γ on the product space (*S* × *S*, *S* × *S*) such that the *marginals* of γ coincide with μ and ν , i.e.,

$$\gamma(A \times S) = \mu(A)$$
 and $\gamma(S \times A) = \nu(A)$, $\forall A \in S$.

Similarly, for two random variables *X* and *Y* taking values in (S,S), a *coupling* of *X* and *Y* is a joint variable (X', Y') taking values in $(S \times S, S \times S)$ whose law is a coupling of the laws of *X* and *Y*. Note that *X* and *Y* need not be defined on the same probability space—but *X'* and *Y'* do need to.

ヘロト 人間 ト ヘヨト ヘヨト

э

Definitions and examples Coupling inequality

Examples I

Example (Bernoulli variables)

Let *X* and *Y* be Bernoulli random variables with parameters $0 \le q < r \le 1$ respectively. That is, $\mathbb{P}[X = 0] = 1 - q$ and $\mathbb{P}[X = 1] = q$, and similarly for *Y*. Here $S = \{0, 1\}$ and $S = 2^S$.

- (Independent coupling) One coupling of X and Y is (X', Y') where $X' \stackrel{d}{=} X$ and $Y' \stackrel{d}{=} Y$ are independent. Its law is

$$\left(\mathbb{P}[(X',Y')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}(1-q)(1-r)&(1-q)r\\q(1-r)&qr\end{pmatrix}.$$

(Monotone coupling) Another possibility is to pick U uniformly at random in [0, 1], and set X'' = 1_{U≤q} and Y'' = 1_{U≤r}. The law of coupling (X'', Y'') is

$$\left(\mathbb{P}[(X'',Y'')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}1-r&r-q\\0&q\end{pmatrix}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э

Examples II

Definitions and examples Coupling inequality

Example (Bond percolation: monotonicity)

Let G = (V, E) be a countable graph. Denote by \mathbb{P}_p the law of bond percolation on *G* with density *p*. Let $x \in V$ and assume $0 \le q < r \le 1$.

- Let $\{U_e\}_{e \in E}$ be independent uniforms on [0, 1].
- For $p \in [0, 1]$, let W_p be the set of edges e such that $U_e \leq p$.

Thinking of W_p as specifying the open edges in the percolation process on G under \mathbb{P}_p , we see that (W_q, W_r) is a coupling of \mathbb{P}_q and \mathbb{P}_r with the property that $\mathbb{P}[W_q \subseteq W_r] = 1$. Let $\mathcal{C}_x^{(q)}$ and $\mathcal{C}_x^{(r)}$ be the open clusters of x under W_q and W_r respectively. Because $\mathcal{C}_x^{(q)} \subseteq \mathcal{C}_x^{(r)}$,

$$\theta(q) := \mathbb{P}_q[|\mathcal{C}_x| = +\infty] = \mathbb{P}[|\mathcal{C}_x^{(q)}| = +\infty] \le \mathbb{P}[|\mathcal{C}_x^{(r)}| = +\infty] = \theta(r).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees Definitions and examples Coupling inequality

Examples III

Example (Biased random walks on \mathbb{Z})

For $p \in [0, 1]$, let $(S_t^{(p)})$ be nearest-neighbor random walk on \mathbb{Z} started at 0 with probability p of jumping to the right and probability 1 - p of jumping to the left. Assume $0 \le q < r \le 1$.

 Let (X_i", Y_i")_i be an infinite sequence of i.i.d. monotone Bernoulli couplings with parameters q and r respectively.

- Define
$$(Z_i^{(q)}, Z_i^{(r)}) := (2X_i'' - 1, 2Y_i'' - 1).$$

- Let
$$\hat{S}_t^{(q)} = \sum_{i \leq t} Z_i^{(q)}$$
 and $\hat{S}_t^{(r)} = \sum_{i \leq t} Z_i^{(r)}$.

Then $(\hat{S}_t^{(q)}, \hat{S}_t^{(r)})$ is a coupling of $(S_t^{(q)}, S_t^{(r)})$ such that $\hat{S}_t^{(q)} \leq \hat{S}_t^{(r)}$ for all *n* almost surely. So for all *y* and all *t*

$$\mathbb{P}[\boldsymbol{S}_t^{(q)} \leq \boldsymbol{y}] = \mathbb{P}[\hat{\boldsymbol{S}}_t^{(q)} \leq \boldsymbol{y}] \geq \mathbb{P}[\hat{\boldsymbol{S}}_t^{(r)} \leq \boldsymbol{y}] = \mathbb{P}[\boldsymbol{S}_t^{(r)} \leq \boldsymbol{y}].$$

Definitions and examples Coupling inequality

Coupling inequality I

Let μ and ν be probability measures on (S, S). Recall the definition of total variation distance:

$$\|\mu - \nu\|_{\mathrm{TV}} := \sup_{\mathcal{A} \in \mathcal{S}} |\mu(\mathcal{A}) - \nu(\mathcal{A})|.$$

Lemma

Let μ and ν be probability measures on (S, S). For any coupling (X, Y) of μ and ν ,

$$\|\mu - \nu\|_{\mathrm{TV}} \leq \mathbb{P}[\mathbf{X} \neq \mathbf{Y}].$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees Definitions and examples Coupling inequality

Coupling inequality II

Proof:

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

= $\mathbb{P}[X \in A, X = Y] + \mathbb{P}[X \in A, X \neq Y]$
- $\mathbb{P}[Y \in A, X = Y] - \mathbb{P}[Y \in A, X \neq Y]$
= $\mathbb{P}[X \in A, X \neq Y] - \mathbb{P}[Y \in A, X \neq Y]$
 $\leq \mathbb{P}[X \neq Y],$

and, similarly, $\nu(A) - \mu(A) \leq \mathbb{P}[X \neq Y]$. Hence

$$|\mu(A) - \nu(A)| \leq \mathbb{P}[X \neq Y].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definitions and examples Coupling inequality

Example: Poisson distributions

Let $X \sim \text{Poi}(\lambda)$ and $Y \sim \text{Poi}(\nu)$ with $\lambda > \nu$. Recall that a sum of independent Poisson is Poisson. This fact leads to a natural coupling: let $\hat{Y} \sim \text{Poi}(\nu)$, $\hat{Z} \sim \text{Poi}(\lambda - \nu)$ independently of *Y*, and $\hat{X} = \hat{Y} + \hat{Z}$. Then (\hat{X}, \hat{Y}) is a coupling and

$$\|\mu_X - \mu_Y\|_{\mathrm{TV}} \leq \mathbb{P}[\hat{X} \neq \hat{Y}] = \mathbb{P}[\hat{Z} > 0] = 1 - e^{-(\lambda - \nu)} \leq \lambda - \nu.$$

く 同 と く ヨ と く ヨ と

Definitions and examples Coupling inequality

Maximal coupling I

In fact, the inequality is tight. For simplicity, we prove this in the finite case only.

Lemma

Assume S is finite and let $S = 2^S$. Let μ and ν be probability measures on (S, S). Then,

$$\|\mu - \nu\|_{\mathrm{TV}} = \inf\{\mathbb{P}[X \neq Y] : \text{ coupling } (X, Y) \text{ of } \mu \text{ and } \nu\}.$$

Let $A = \{x \in S : \mu(x) > \nu(x)\}$, $B = \{x \in S : \mu(x) \le \nu(x)\}$ and

$$p := \sum_{x \in S} \mu(x) \wedge \nu(x), \quad \alpha := \sum_{x \in A} [\mu(x) - \nu(x)], \quad \beta := \sum_{x \in B} [\nu(x) - \mu(x)].$$

イロト 不得 とくほ とくほ とう

1

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees Definitions and examples Coupling inequality

Maximal coupling II

Figure : Proof by picture that: $1 - p = \alpha = \beta = \|\mu - \nu\|_{TV}$.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees Definitions and examples Coupling inequality

Maximal coupling III

2

Proof: Lemma: $\sum_{x \in S} \mu(x) \wedge \nu(x) = 1 - \|\mu - \nu\|_{TV}$. Proof of lemma:

$$\begin{split} \|\mu - \nu\|_{\text{TV}} &= \sum_{x \in S} |\mu(x) - \nu(x)| \\ &= \sum_{x \in A} [\mu(x) - \nu(x)] + \sum_{x \in B} [\nu(x) - \mu(x)] \\ &= \sum_{x \in A} \mu(x) + \sum_{x \in B} \nu(x) - \sum_{x \in S} \mu(x) \wedge \nu(x) \\ &= 2 - \sum_{x \in B} \mu(x) - \sum_{x \in A} \nu(x) - \sum_{x \in S} \mu(x) \wedge \nu(x) \\ &= 2 - 2 \sum_{x \in S} \mu(x) \wedge \nu(x). \end{split}$$

Lemma: $\sum_{x \in A} [\mu(x) - \nu(x)] = \sum_{x \in B} [\nu(x) - \mu(x)] = ||\mu - \nu||_{TV} = 1 - p.$ *Proof:* First equality is immediate. Second equality follows from second line in previous lemma.

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees Definitions and examples Coupling inequality

Maximal coupling IV

The maximal coupling is defined as follows:

- With probability *p*, pick X = Y from γ_{\min} where $\gamma_{\min}(x) := \frac{1}{p}\mu(x) \wedge \nu(x)$, $x \in S$.
- Otherwise, pick X from γ_A where γ_A(x) := μ(x)-ν(x)/(1-ρ), x ∈ A, and, independently, pick Y from γ_B(x) := ν(x)-μ(x)/(1-ρ), x ∈ B. Note that X ≠ Y in that case because A and B are disjoint.

The marginal law of X at $x \in S$ is

$$p\gamma_{\min}(x) + (1-p)\gamma_A(x) = \mu(x),$$

and similarly for Y. Finally $\mathbb{P}[X \neq Y] = 1 - p = \|\mu - \nu\|_{TV}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees

Example

Example (Bernoulli variables, continued)

Let *X* and *Y* be Bernoulli random variables with parameters $0 \le q < r \le 1$ respectively. That is, $\mathbb{P}[X = 0] = 1 - q$ and $\mathbb{P}[X = 1] = q$, and similarly for *Y*. Here $S = \{0, 1\}$ and $S = 2^S$. Let μ and ν be the laws of *X* and *Y* respectively. To construct the maximal coupling as above, we note that

Coupling inequality

$$p := \sum_{x} \mu(x) \wedge \nu(x) = (1-r) + q, \qquad 1-p = \alpha = \beta := r-q,$$

$$A := \{0\}, \qquad B := \{1\},$$

$$(\gamma_{\min}(x))_{x=0,1} = \left(\frac{1-r}{(1-r)+q}, \frac{q}{(1-r)+q}\right), \qquad \gamma_A(0) := 1, \qquad \gamma_B(1) := 1.$$

The law of the maximal coupling (X''', Y''') is

$$\left(\mathbb{P}[(\boldsymbol{X}^{\prime\prime\prime},\boldsymbol{Y}^{\prime\prime\prime})=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}1-r&r-q\\0&q\end{pmatrix},$$

which coincides with the monotone coupling.

200

Definitions and examples Coupling inequality

Poisson approximation I

Let X_1, \ldots, X_n be independent Bernoulli random variables with parameters p_1, \ldots, p_n respectively. We are interested in the case where the p_i s are "small." Let $S_n := \sum_{i \le n} X_i$.

We approximate S_n with a Poisson random variable Z_n as follows: let W_1, \ldots, W_n be independent Poisson random variables with means $\lambda_1, \ldots, \lambda_n$ respectively and define $Z_n := \sum_{i \le n} W_i$. We choose $\lambda_i = -\log(1 - p_i)$ so as to ensure

$$(1-\rho_i)=\mathbb{P}[X_i=0]=\mathbb{P}[W_i=0]=e^{-\lambda_i}.$$

Note that $Z_n \sim \text{Poi}(\lambda)$ where $\lambda = \sum_{i < n} \lambda_i$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Application: Erdös-Rényi degree sequence Application: Harmonic functions on lattices and trees Definitions and examples Coupling inequality

Poisson approximation II

Theorem

$$\|\mu_{\mathcal{S}_n}-\operatorname{Poi}(\lambda)\|_{\mathrm{TV}}\leq \frac{1}{2}\sum_{i\leq n}\lambda_i^2.$$

Proof: We couple the pairs (X_i, W_i) independently for $i \leq n$. Let

$$W'_i \sim \operatorname{Poi}(\lambda_i)$$
 and $X'_i = W'_i \wedge 1$.

Because $\lambda_i = -\log(1 - p_i)$, (X'_i, W'_i) is a coupling of (X_i, W_i) . Let $S'_n := \sum_{i \le n} X'_i$ and $Z'_n := \sum_{i \le n} W'_i$. Then (S'_n, Z'_n) is a coupling of (S_n, Z_n) . By the coupling inequality

$$\begin{split} \|\mu_{\mathcal{S}_n} - \mu_{\mathcal{Z}_n}\|_{\mathrm{TV}} &\leq \mathbb{P}[\mathcal{S}'_n \neq \mathcal{Z}'_n] \leq \sum_{i \leq n} \mathbb{P}[\mathcal{X}'_i \neq \mathcal{W}'_i] = \sum_{i \leq n} \mathbb{P}[\mathcal{W}'_i \geq 2] \\ &= \sum_{i \leq n} \sum_{j \geq 2} e^{-\lambda_i} \frac{\lambda_j^i}{j!} \leq \sum_{i \leq n} \frac{\lambda_i^2}{2} \sum_{\ell \geq 0} e^{-\lambda_i} \frac{\lambda_\ell^\ell}{\ell!} = \sum_{i \leq n} \frac{\lambda_i^2}{2}. \end{split}$$

ヘロト 人間 とくほとくほとう

Definitions and examples Coupling inequality

Maps reduce total variation distance

Theorem

Let X and Y be random variables taking values in (S,S), let h be a measurable map from (S,S) to (S',S'), and let X' := h(X) and Y' := h(Y). It holds that

$$\|\mu_{\mathbf{X}'} - \mu_{\mathbf{Y}'}\|_{\mathrm{TV}} \le \|\mu_{\mathbf{X}} - \mu_{\mathbf{Y}}\|_{\mathrm{TV}}.$$

Proof:

$$\sup_{A'\in \mathcal{S}'} \left| \mathbb{P}[X'\in A'] - \mathbb{P}[Y'\in A'] \right| = \sup_{A'\in \mathcal{S}'} \left| \mathbb{P}[h(X)\in A'] - \mathbb{P}[h(Y)\in A'] \right|$$
$$= \sup_{A'\in \mathcal{S}'} \left| \mathbb{P}[X\in h^{-1}(A')] - \mathbb{P}[Y\in h^{-1}(A')] \right|$$
$$= \sup_{A\in \mathcal{S}} \left| \mathbb{P}[X\in A] - \mathbb{P}[Y\in A] \right|.$$

ヘロト ヘワト ヘビト ヘビト

- Definitions and examples
- Coupling inequality

2 Application: Erdös-Rényi degree sequence

3 Application: Harmonic functions on lattices and trees

くロト (過) (目) (日)

Erdös-Rényi degree sequence I

Let $G_n \sim \mathbb{G}_{n,p_n}$ be an Erdös-Rényi graph with $p_n := \frac{\lambda}{n}$ and $\lambda > 0$. For $i \in [n]$, let $D_i(n)$ be the degree of vertex *i* and define

$$N_d(n) := \sum_{i=1}^n \mathbb{1}_{\{D_i(n)=d\}}.$$

Theorem

$$rac{1}{n}N_d(n)
ightarrow_{
m p} f_d:=e^{-\lambda}rac{\lambda^d}{d!}, \qquad orall d\geq 1.$$

Proof: We proceed in two steps:

- we use the coupling inequality to show that the expectation of ¹/_nN_d(n) is close to f_d;
- 2 we use Chebyshev's inequality to show that $\frac{1}{n}N_d(n)$ is close to its expectation.

Erdös-Rényi degree sequence II

Lemma (Convergence of the mean)

$$\frac{1}{n}\mathbb{E}_{n,p_n}\left[N_d(n)\right] \to f_d, \qquad \forall d \geq 1.$$

Proof of lemma: Note that the $D_i(n)$ s are identically distributed so $\frac{1}{n}\mathbb{E}_{n,p_n}[N_d(n)] = \mathbb{P}_{n,p_n}[D_1(n) = d]$. Moreover $D_1(n) \sim \operatorname{Bin}(n-1,p_n)$. Let $S_n \sim \operatorname{Bin}(n,p_n)$ and $Z_n \sim \operatorname{Poi}(\lambda)$. By the Poisson approximation

$$\|\mu_{S_n} - \mu_{Z_n}\|_{\mathrm{TV}} \leq \frac{1}{2} \sum_{i \leq n} \left(-\log(1 - p_n) \right)^2 = \frac{1}{2} \sum_{i \leq n} \left(\frac{\lambda}{n} + O(n^{-2}) \right)^2 = \frac{\lambda^2}{2n} + O(n^{-2}).$$

We can couple $D_1(n)$ and S_n as $(\sum_{i \le n-1} X_i, \sum_{i \le n} X_i)$ where the X_i s are i.i.d. Bernoulli with parameter $\frac{\lambda}{n}$. By the coupling inequality

$$\|\mu_{D_1(n)} - \mu_{S_n}\|_{\mathrm{TV}} \leq \mathbb{P}\left[\sum_{i \leq n-1} X_i \neq \sum_{i \leq n} X_i\right] = \mathbb{P}[X_n = 1] = \frac{\lambda}{n}.$$

ヘロト ヘアト ヘビト ヘビト

Erdös-Rényi degree sequence III

By the triangle inequality for total variation distance,

$$\frac{1}{2}\sum_{d\geq 0} |\mathbb{P}_{n,p_n}[D_1(n) = d] - f_d| \leq \frac{\lambda + \lambda^2/2}{n} + O(n^{-2}).$$

Therefore,

$$\left|\frac{1}{n}\mathbb{E}_{n,p_n}\left[N_d(n)\right]-f_d\right|\leq \frac{2\lambda+\lambda^2}{n}+O(n^{-2})\to 0.$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Erdös-Rényi degree sequence IV

Lemma (Concentration around the mean)

$$\mathbb{P}_{n,p_n}\left[\left|\frac{1}{n}N_d(n)-\frac{1}{n}\mathbb{E}_{n,p_n}\left[N_d(n)\right]\right|\geq \varepsilon\right]\leq \frac{2\lambda+1}{\varepsilon^2 n}, \qquad \forall d\geq 1, \forall n.$$

Proof of lemma: By Chebyshev's inequality, for all $\varepsilon > 0$

$$\mathbb{P}_{n,p_n}\left[\left|\frac{1}{n}N_d(n)-\frac{1}{n}\mathbb{E}_{n,p_n}\left[N_d(n)\right]\right|\geq \varepsilon\right]\leq \frac{\operatorname{Var}_{n,p_n}\left[\frac{1}{n}N_d(n)\right]}{\varepsilon^2}$$

Note that

$$\begin{aligned} \operatorname{Var}_{n,p_n} \left[\frac{1}{n} N_d(n) \right] &= \frac{1}{n^2} \left\{ \mathbb{E}_{n,p_n} \left[\left(\sum_{i \le n} \mathbb{1}_{\{D_i(n) = d\}} \right)^2 \right] - (n \mathbb{P}_{n,p_n} [D_1(n) = d])^2 \right\} \\ &= \frac{1}{n^2} \left\{ n(n-1) \mathbb{P}_{n,p_n} [D_1(n) = d, D_2(n) = d] \\ &+ n \mathbb{P}_{n,p_n} [D_1(n) = d] - n^2 \mathbb{P}_{n,p_n} [D_1(n) = d]^2 \right\} \end{aligned}$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Erdös-Rényi degree sequence V

$$\operatorname{Var}_{n,p_n}\left[\frac{1}{n}N_d(n)\right] \leq \frac{1}{n} + \left\{ \mathbb{P}_{n,p_n}[D_1(n) = d, D_2(n) = d] - \mathbb{P}_{n,p_n}[D_1(n) = d]^2 \right\}$$

We bound the second term using a neat coupling argument. Let Y_1 and Y_2 be independent $Bin(n - 2, p_n)$ and let X_1 and X_2 be independent $Ber(p_n)$. Then the term in curly bracket above is equal to

$$\begin{split} \mathbb{P}[(X_1 + Y_1, X_1 + Y_2) &= (d, d)] - \mathbb{P}[(X_1 + Y_1, X_2 + Y_2) &= (d, d)] \\ &\leq \mathbb{P}[(X_1 + Y_1, X_1 + Y_2) &= (d, d), \ (X_1 + Y_1, X_2 + Y_2) \neq (d, d)] \\ &= \mathbb{P}[(X_1 + Y_1, X_1 + Y_2) &= (d, d), \ X_2 + Y_2 \neq d] \\ &= \mathbb{P}[X_1 = 0, \ Y_1 = Y_2 = d, \ X_2 = 1] + \mathbb{P}[X_1 = 1, \ Y_1 = Y_2 = d - 1, \ X_2 = 0] \\ &\leq \frac{2\lambda}{n}. \end{split}$$

So $\operatorname{Var}_{n,p_n}\left[\frac{1}{n}N_d(n)\right] \leq \frac{2\lambda+1}{n}$.

ヘロン ヘアン ヘビン ヘビン

- Definitions and examples
- Coupling inequality

2 Application: Erdös-Rényi degree sequence

Application: Harmonic functions on lattices and trees

ヘロト ヘアト ヘビト ヘビト

Coupling and bounded harmonic functions I

Lemma

Let (X_t) be a Markov chain on a (finite or) countable state space V with transition matrix P and let \mathbb{P}_x be the law of (X_t) started at x. Recall that a function $h : V \to \mathbb{R}$ is P-harmonic on V (or harmonic for short) if

$$h(x) = \sum_{y \in V} P(x, y)h(y), \quad \forall x \in V.$$

If, for all $y, z \in V$, there is a coupling $((Y_t), (Z_t))$ of \mathbb{P}_y and \mathbb{P}_z such that

$$\lim_t \mathbb{P}[Y_t \neq Z_t] = 0,$$

then all bounded harmonic functions on V are constant.

ヘロア 人間 ア ヘヨア ヘヨア

ъ

Coupling and bounded harmonic functions II

Proof: Let *h* be bounded and harmonic on *V* with $\sup_x |h(x)| = M < +\infty$. Let *y*, *z* be any points in *V*. By harmonicity, $(h(Y_t))$ and $(h(Z_t))$ are martingales and, in particular,

$$\mathbb{E}[h(Y_t)] = \mathbb{E}[h(Y_0)] = h(y) \text{ and } \mathbb{E}[h(Z_t)] = \mathbb{E}[h(Z_0)] = h(z).$$

So by Jensen's inequality and the boundedness assumption

 $\begin{aligned} |h(y)-h(z)| &= |\mathbb{E}[h(Y_t)] - \mathbb{E}[h(Z_t)]| \le \mathbb{E} |h(Y_t) - h(Z_t)| \le 2M \mathbb{P}[Y_t \neq Z_t] \to 0. \\ \text{So } h(y) &= h(z). \end{aligned}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Harmonic functions on \mathbb{Z}^d

Theorem

All bounded harmonic functions on \mathbb{Z}^d are constant.

Proof: Clearly, *h* is harmonic with respect to simple random walk if and only if it is harmonic with respect to lazy simple random walk. Let \mathbb{P}_y and \mathbb{P}_z be the laws of lazy simple random walk on \mathbb{Z}^d started at *y* and *z*. We construct a coupling $((Y_t), (Z_t)) = ((Y_t^{(i)})_{i \in [d]}, (Z_t^{(i)})_{i \in [d]})$ of \mathbb{P}_y and \mathbb{P}_z as follows: at time *t*, pick a coordinate $I \in [d]$ uniformly at random, then

- if $Y_t^{(l)} = Z_t^{(l)}$ then do nothing with probability 1/2 and otherwise pick $W \in \{-1, +1\}$ uniformly at random, set $Y_{t+1}^{(l)} = Z_{t+1}^{(l)} := Z_t^{(l)} + W$ and leave the other coordinates unchanged;
- if instead $Y_t^{(l)} \neq Z_t^{(l)}$, pick $W \in \{-1, +1\}$ uniformly at random, and with probability 1/2 set $Y_{t+1}^{(l)} := Y_t^{(l)} + W$ and leave Z_t and the other coordinates of Y_t unchanged, or otherwise set $Z_{t+1}^{(l)} := Z_t^{(l)} + W$ and leave Y_t and the other coordinates of Z_t unchanged.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Harmonic functions on \mathbb{Z}^d II

It is straightforward to check that $((Y_t), (Z_t))$ is indeed a coupling of \mathbb{P}_y and \mathbb{P}_z . To apply the previous lemma, it remains to bound $\mathbb{P}[Y_t \neq Z_t]$.

The key is to note that, for each coordinate *i*, the difference $(Y_t^{(i)} - Z_t^{(i)})$ is itself a random walk on \mathbb{Z} started at $y^{(i)} - z^{(i)}$ with holding probability $1 - \frac{1}{d}$ —until it hits 0. Simple random walk on \mathbb{Z} is irreducible and recurrent. The holding probability does not affect the type of the walk, as can be seen for instance from the characterization in terms of effective resistance. So $(Y_t^{(i)} - Z_t^{(i)})$ hits 0 in finite time with probability 1. Hence, letting $\tau^{(i)}$ be the first time $Y_t^{(i)} - Z_t^{(i)} = 0$, we have $\mathbb{P}[Y_t^{(i)} \neq Z_t^{(i)}] \leq \mathbb{P}[\tau^{(i)} > t] \rightarrow \mathbb{P}[\tau^{(i)} = +\infty] = 0$.

By a union bound,

$$\mathbb{P}[Y_t \neq Z_t] \leq \sum_{i \in [d]} \mathbb{P}[Y_t^{(i)} \neq Z_t^{(i)}] \to 0,$$

as desired.

・ロット (雪) () () () ()

Harmonic functions on \mathbb{T}_d I

Let \mathbb{T}_d be the infinite d-regular tree with root ρ . For $x \in \mathbb{T}_d$, we let T_x be the subtree, rooted at x, of descendants of x.

Theorem

For $d \ge 3$, let (X_t) be simple random walk on \mathbb{T}_d and let P be the corresponding transition matrix. Let a be a neighbor of the root and consider the function

 $h(x) = \mathbb{P}_{x}[X_{t} \in T_{a} \text{ for all but finitely many } t].$

Then h is a non-constant, bounded P-harmonic function on \mathbb{T}_d .

ヘロト 人間 ト ヘヨト ヘヨト

Harmonic functions on \mathbb{T}_d II

Proof: The function h is clearly bounded and by the usual one-step trick

$$h(x) = \sum_{y \sim x} \frac{1}{d} \mathbb{P}_y[X_t \in T_0 \text{ for all but finitely many } t] = \sum_y P(x, y)h(y),$$

so h is P-harmonic.

Let $b \neq a$ be a neighbor of the root. The key of the proof is:

Lemma

$$q := \mathbb{P}_a[\tau_\rho = +\infty] = \mathbb{P}_b[\tau_\rho = +\infty] > 0.$$

Proof of lemma: Let (Z_t) be simple random walk on \mathbb{T}_d started at *a* until the walk hits 0 and let L_t be the graph distance between Z_t and the root. Then (L_t) is a biased random walk on \mathbb{Z} started at 1 jumping to the right with probability $1 - \frac{1}{d}$ and jumping to the left with probability $\frac{1}{d}$. The probability that (L_t) hits 0 in finite time is < 1 because $1 - \frac{1}{d} > 2$ when $d \ge 3$.

Harmonic functions on \mathbb{T}_d III

Note that

$$h(\rho) \leq \left(1-\frac{1}{d}\right)(1-q) < 1.$$

Indeed if on the first step the random walk started at ρ moves away from *a*, an event of probability $1 - \frac{1}{d}$, then it must come back to ρ in finite time to reach T_a . Similarly, by the strong Markov property,

$$h(a) = q + (1 - q)h(\rho).$$

Since $h(\rho) \neq 1$ and q > 0, this shows that $h(a) > h(\rho)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ