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Basic definitions

Definition (Coupling)
Let µ and ν be probability measures on the same measurable
space (S,S). A coupling of µ and ν is a probability measure γ
on the product space (S × S,S × S) such that the marginals of
γ coincide with µ and ν, i.e.,

γ(A× S) = µ(A) and γ(S × A) = ν(A), ∀A ∈ S.

Similarly, for two random variables X and Y taking values in
(S,S), a coupling of X and Y is a joint variable (X ′,Y ′) taking
values in (S × S,S × S) whose law is a coupling of the laws of
X and Y . Note that X and Y need not be defined on the same
probability space—but X ′ and Y ′ do need to.
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Application: Harmonic functions on lattices and trees

Definitions and examples
Coupling inequality

Examples I

Example (Bernoulli variables)

Let X and Y be Bernoulli random variables with parameters 0 ≤ q < r ≤ 1
respectively. That is, P[X = 0] = 1− q and P[X = 1] = q, and similarly for Y .
Here S = {0, 1} and S = 2S .

- (Independent coupling) One coupling of X and Y is (X ′,Y ′) where
X ′ d

= X and Y ′ d
= Y are independent. Its law is(

P[(X ′,Y ′) = (i , j)]
)

i,j∈{0,1}
=

(
(1− q)(1− r) (1− q)r

q(1− r) qr

)
.

- (Monotone coupling) Another possibility is to pick U uniformly at
random in [0, 1], and set X ′′ = 1{U≤q} and Y ′′ = 1{U≤r}. The law of
coupling (X ′′,Y ′′) is(

P[(X ′′,Y ′′) = (i , j)]
)

i,j∈{0,1}
=

(
1− r r − q

0 q

)
.

Sébastien Roch, UW–Madison Modern Discrete Probability – Coupling



Basics
Application: Erdös-Rényi degree sequence

Application: Harmonic functions on lattices and trees

Definitions and examples
Coupling inequality

Examples II

Example (Bond percolation: monotonicity)

Let G = (V ,E) be a countable graph. Denote by Pp the law of bond
percolation on G with density p. Let x ∈ V and assume 0 ≤ q < r ≤ 1.

- Let {Ue}e∈E be independent uniforms on [0, 1].

- For p ∈ [0, 1], let Wp be the set of edges e such that Ue ≤ p.

Thinking of Wp as specifying the open edges in the percolation process on G
under Pp, we see that (Wq ,Wr ) is a coupling of Pq and Pr with the property
that P[Wq ⊆ Wr ] = 1. Let C(q)x and C(r)x be the open clusters of x under Wq

and Wr respectively. Because C(q)x ⊆ C(r)x ,

θ(q) := Pq[|Cx | = +∞] = P[|C(q)x | = +∞] ≤ P[|C(r)x | = +∞] = θ(r).
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Example (Biased random walks on Z)

For p ∈ [0,1], let (S(p)
t ) be nearest-neighbor random walk on Z

started at 0 with probability p of jumping to the right and
probability 1− p of jumping to the left. Assume 0 ≤ q < r ≤ 1.

- Let (X ′′i ,Y
′′
i )i be an infinite sequence of i.i.d. monotone

Bernoulli couplings with parameters q and r respectively.

- Define (Z (q)
i ,Z (r)

i ) := (2X ′′i − 1,2Y ′′i − 1).

- Let Ŝ(q)
t =

∑
i≤t Z (q)

i and Ŝ(r)
t =

∑
i≤t Z (r)

i .

Then (Ŝ(q)
t , Ŝ(r)

t ) is a coupling of (S(q)
t ,S(r)

t ) such that
Ŝ(q)

t ≤ Ŝ(r)
t for all n almost surely. So for all y and all t

P[S(q)
t ≤ y ] = P[Ŝ(q)

t ≤ y ] ≥ P[Ŝ(r)
t ≤ y ] = P[S(r)

t ≤ y ].
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Coupling inequality I

Let µ and ν be probability measures on (S,S). Recall the
definition of total variation distance:

‖µ− ν‖TV := sup
A∈S
|µ(A)− ν(A)|.

Lemma
Let µ and ν be probability measures on (S,S). For any
coupling (X ,Y ) of µ and ν,

‖µ− ν‖TV ≤ P[X 6= Y ].
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Proof:

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ A]

= P[X ∈ A, X = Y ] + P[X ∈ A, X 6= Y ]

− P[Y ∈ A, X = Y ]− P[Y ∈ A, X 6= Y ]

= P[X ∈ A, X 6= Y ]− P[Y ∈ A, X 6= Y ]

≤ P[X 6= Y ],

and, similarly, ν(A)− µ(A) ≤ P[X 6= Y ]. Hence

|µ(A)− ν(A)| ≤ P[X 6= Y ].
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Example: Poisson distributions

Let X ∼ Poi(λ) and Y ∼ Poi(ν) with λ > ν. Recall that a sum of
independent Poisson is Poisson. This fact leads to a natural
coupling: let Ŷ ∼ Poi(ν), Ẑ ∼ Poi(λ− ν) independently of Y ,
and X̂ = Ŷ + Ẑ . Then (X̂ , Ŷ ) is a coupling and

‖µX − µY‖TV ≤ P[X̂ 6= Ŷ ] = P[Ẑ > 0] = 1− e−(λ−ν) ≤ λ− ν.
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Maximal coupling I

In fact, the inequality is tight. For simplicity, we prove this in the
finite case only.

Lemma

Assume S is finite and let S = 2S. Let µ and ν be probability
measures on (S,S). Then,

‖µ− ν‖TV = inf{P[X 6= Y ] : coupling (X ,Y ) of µ and ν}.

Let A = {x ∈ S : µ(x) > ν(x)}, B = {x ∈ S : µ(x) ≤ ν(x)} and

p :=
∑
x∈S

µ(x)∧ν(x), α :=
∑
x∈A

[µ(x)−ν(x)], β :=
∑
x∈B

[ν(x)−µ(x)].

Sébastien Roch, UW–Madison Modern Discrete Probability – Coupling



Basics
Application: Erdös-Rényi degree sequence
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Maximal coupling II

Figure : Proof by picture that: 1− p = α = β = ‖µ− ν‖TV.
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Maximal coupling III
Proof: Lemma:

∑
x∈S µ(x) ∧ ν(x) = 1− ‖µ− ν‖TV.

Proof of lemma:

2‖µ− ν‖TV =
∑
x∈S

|µ(x)− ν(x)|

=
∑
x∈A

[µ(x)− ν(x)] +
∑
x∈B

[ν(x)− µ(x)]

=
∑
x∈A

µ(x) +
∑
x∈B

ν(x)−
∑
x∈S

µ(x) ∧ ν(x)

= 2−
∑
x∈B

µ(x)−
∑
x∈A

ν(x)−
∑
x∈S

µ(x) ∧ ν(x)

= 2− 2
∑
x∈S

µ(x) ∧ ν(x).

Lemma:
∑

x∈A[µ(x)− ν(x)] =
∑

x∈B[ν(x)− µ(x)] = ‖µ− ν‖TV = 1− p.
Proof: First equality is immediate. Second equality follows from second line in
previous lemma.
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Maximal coupling IV

The maximal coupling is defined as follows:

- With probability p, pick X = Y from γmin where γmin(x) := 1
pµ(x) ∧ ν(x),

x ∈ S.

- Otherwise, pick X from γA where γA(x) := µ(x)−ν(x)
1−p , x ∈ A, and,

independently, pick Y from γB(x) := ν(x)−µ(x)
1−p , x ∈ B. Note that X 6= Y

in that case because A and B are disjoint.

The marginal law of X at x ∈ S is

pγmin(x) + (1− p)γA(x) = µ(x),

and similarly for Y . Finally P[X 6= Y ] = 1− p = ‖µ− ν‖TV.
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Example (Bernoulli variables, continued)

Let X and Y be Bernoulli random variables with parameters 0 ≤ q < r ≤ 1
respectively. That is, P[X = 0] = 1− q and P[X = 1] = q, and similarly for Y .
Here S = {0, 1} and S = 2S . Let µ and ν be the laws of X and Y
respectively. To construct the maximal coupling as above, we note that

p :=
∑

x

µ(x) ∧ ν(x) = (1− r) + q, 1− p = α = β := r − q,

A := {0}, B := {1},

(γmin(x))x=0,1 =

(
1− r

(1− r) + q
,

q
(1− r) + q

)
, γA(0) := 1, γB(1) := 1.

The law of the maximal coupling (X ′′′,Y ′′′) is(
P[(X ′′′,Y ′′′) = (i , j)]

)
i,j∈{0,1}

=

(
1− r r − q

0 q

)
,

which coincides with the monotone coupling.
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Poisson approximation I

Let X1, . . . ,Xn be independent Bernoulli random variables with
parameters p1, . . . ,pn respectively. We are interested in the
case where the pis are “small.” Let Sn :=

∑
i≤n Xi .

We approximate Sn with a Poisson random variable Zn as
follows: let W1, . . . ,Wn be independent Poisson random
variables with means λ1, . . . , λn respectively and define
Zn :=

∑
i≤n Wi . We choose λi = − log(1− pi) so as to ensure

(1− pi) = P[Xi = 0] = P[Wi = 0] = e−λi .

Note that Zn ∼ Poi(λ) where λ =
∑

i≤n λi .
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Poisson approximation II

Theorem

‖µSn − Poi(λ)‖TV ≤
1
2

∑
i≤n

λ2
i .

Proof: We couple the pairs (Xi ,Wi) independently for i ≤ n. Let

W ′i ∼ Poi(λi) and X ′i = W ′i ∧ 1.

Because λi = − log(1− pi), (X ′i ,W
′
i ) is a coupling of (Xi ,Wi). Let

S′n :=
∑

i≤n X ′i and Z ′n :=
∑

i≤n W ′i . Then (S′n,Z ′n) is a coupling of (Sn,Zn).
By the coupling inequality

‖µSn − µZn‖TV ≤ P[S′n 6= Z ′n] ≤
∑
i≤n

P[X ′i 6= W ′i ] =
∑
i≤n

P[W ′i ≥ 2]

=
∑
i≤n

∑
j≥2

e−λi
λj

i

j!
≤
∑
i≤n

λ2
i

2

∑
`≥0

e−λi λ
`
i

`!
=
∑
i≤n

λ2
i

2
.
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Maps reduce total variation distance

Theorem
Let X and Y be random variables taking values in (S,S), let h
be a measurable map from (S,S) to (S′,S ′), and let X ′ := h(X )
and Y ′ := h(Y ). It holds that

‖µX ′ − µY ′‖TV ≤ ‖µX − µY‖TV.

Proof:

sup
A′∈S′

∣∣P[X ′ ∈ A′]− P[Y ′ ∈ A′]
∣∣ = sup

A′∈S′

∣∣P[h(X ) ∈ A′]− P[h(Y ) ∈ A′]
∣∣

= sup
A′∈S′

∣∣∣P[X ∈ h−1(A′)]− P[Y ∈ h−1(A′)]
∣∣∣

= sup
A∈S
|P[X ∈ A]− P[Y ∈ A]| .
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Erdös-Rényi degree sequence I

Let Gn ∼ Gn,pn be an Erdös-Rényi graph with pn := λ
n and

λ > 0. For i ∈ [n], let Di(n) be the degree of vertex i and define

Nd(n) :=
n∑

i=1

1{Di (n)=d}.

Theorem

1
n

Nd(n)→p fd := e−λ
λd

d !
, ∀d ≥ 1.

Proof: We proceed in two steps:
1 we use the coupling inequality to show that the expectation of 1

n Nd(n) is
close to fd ;

2 we use Chebyshev’s inequality to show that 1
n Nd(n) is close to its

expectation.
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Lemma (Convergence of the mean)

1
n
En,pn [Nd(n)]→ fd , ∀d ≥ 1.

Proof of lemma: Note that the Di(n)s are identically distributed so
1
nEn,pn [Nd(n)] = Pn,pn [D1(n) = d ]. Moreover D1(n) ∼ Bin(n − 1, pn). Let
Sn ∼ Bin(n, pn) and Zn ∼ Poi(λ). By the Poisson approximation

‖µSn−µZn‖TV ≤
1
2

∑
i≤n

(− log(1− pn))
2 =

1
2

∑
i≤n

(
λ

n
+ O(n−2)

)2

=
λ2

2n
+O(n−2).

We can couple D1(n) and Sn as (
∑

i≤n−1 Xi ,
∑

i≤n Xi) where the Xis are
i.i.d. Bernoulli with parameter λn . By the coupling inequality

‖µD1(n) − µSn‖TV ≤ P

 ∑
i≤n−1

Xi 6=
∑
i≤n

Xi

 = P[Xn = 1] =
λ

n
.

Sébastien Roch, UW–Madison Modern Discrete Probability – Coupling



Basics
Application: Erdös-Rényi degree sequence
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By the triangle inequality for total variation distance,

1
2

∑
d≥0

|Pn,pn [D1(n) = d ]− fd | ≤
λ+ λ2/2

n
+ O(n−2).

Therefore, ∣∣∣∣1nEn,pn [Nd(n)]− fd

∣∣∣∣ ≤ 2λ+ λ2

n
+ O(n−2)→ 0.
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Lemma (Concentration around the mean)

Pn,pn

[∣∣∣∣1n Nd(n)−
1
n
En,pn [Nd(n)]

∣∣∣∣ ≥ ε] ≤ 2λ+ 1
ε2n

, ∀d ≥ 1, ∀n.

Proof of lemma: By Chebyshev’s inequality, for all ε > 0

Pn,pn

[∣∣∣∣1n Nd(n)−
1
n
En,pn [Nd(n)]

∣∣∣∣ ≥ ε] ≤ Varn,pn [
1
n Nd(n)]
ε2 .

Note that

Varn,pn

[
1
n

Nd(n)
]
=

1
n2

En,pn

∑
i≤n

1{Di (n)=d}

2− (n Pn,pn [D1(n) = d ])2


=

1
n2

{
n(n − 1)Pn,pn [D1(n) = d ,D2(n) = d ]

+ n Pn,pn [D1(n) = d ]− n2Pn,pn [D1(n) = d ]2
}
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Erdös-Rényi degree sequence V

Varn,pn

[
1
n

Nd(n)
]
≤ 1

n
+
{
Pn,pn [D1(n) = d ,D2(n) = d ]− Pn,pn [D1(n) = d ]2

}
We bound the second term using a neat coupling argument. Let Y1 and Y2

be independent Bin(n − 2, pn) and let X1 and X2 be independent Ber(pn).
Then the term in curly bracket above is equal to

P[(X1 + Y1,X1 + Y2) = (d , d)]− P[(X1 + Y1,X2 + Y2) = (d , d)]

≤ P[(X1 + Y1,X1 + Y2) = (d , d), (X1 + Y1,X2 + Y2) 6= (d , d)]

= P[(X1 + Y1,X1 + Y2) = (d , d), X2 + Y2 6= d ]

= P[X1 = 0, Y1 = Y2 = d , X2 = 1] + P[X1 = 1, Y1 = Y2 = d − 1, X2 = 0]

≤ 2λ
n
.

So Varn,pn

[ 1
n Nd(n)

]
≤ 2λ+1

n .
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Coupling and bounded harmonic functions I

Lemma
Let (Xt) be a Markov chain on a (finite or) countable state
space V with transition matrix P and let Px be the law of (Xt)
started at x. Recall that a function h : V → R is P-harmonic on
V (or harmonic for short) if

h(x) =
∑
y∈V

P(x , y)h(y), ∀x ∈ V .

If, for all y , z ∈ V, there is a coupling ((Yt), (Zt)) of Py and Pz
such that

lim
t
P[Yt 6= Zt ] = 0,

then all bounded harmonic functions on V are constant.
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Coupling and bounded harmonic functions II

Proof: Let h be bounded and harmonic on V with supx |h(x)| = M < +∞. Let
y , z be any points in V . By harmonicity, (h(Yt)) and (h(Zt)) are martingales
and, in particular,

E[h(Yt)] = E[h(Y0)] = h(y) and E[h(Zt)] = E[h(Z0)] = h(z).

So by Jensen’s inequality and the boundedness assumption

|h(y)−h(z)| = |E[h(Yt)]− E[h(Zt)]| ≤ E |h(Yt)− h(Zt)| ≤ 2M P[Yt 6= Zt ]→ 0.

So h(y) = h(z).

Sébastien Roch, UW–Madison Modern Discrete Probability – Coupling



Basics
Application: Erdös-Rényi degree sequence
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Harmonic functions on Zd I

Theorem

All bounded harmonic functions on Zd are constant.

Proof: Clearly, h is harmonic with respect to simple random walk if and only if
it is harmonic with respect to lazy simple random walk. Let Py and Pz be the
laws of lazy simple random walk on Zd started at y and z. We construct a
coupling ((Yt), (Zt)) = ((Y (i)

t )i∈[d ], (Z
(i)
t )i∈[d ]) of Py and Pz as follows: at time

t , pick a coordinate I ∈ [d ] uniformly at random, then

if Y (I)
t = Z (I)

t then do nothing with probability 1/2 and otherwise pick
W ∈ {−1,+1} uniformly at random, set Y (I)

t+1 = Z (I)
t+1 := Z (I)

t + W and
leave the other coordinates unchanged;

if instead Y (I)
t 6= Z (I)

t , pick W ∈ {−1,+1} uniformly at random, and with
probability 1/2 set Y (I)

t+1 := Y (I)
t + W and leave Zt and the other

coordinates of Yt unchanged, or otherwise set Z (I)
t+1 := Z (I)

t + W and
leave Yt and the other coordinates of Zt unchanged.
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Harmonic functions on Zd II

It is straightforward to check that ((Yt), (Zt)) is indeed a coupling of Py and
Pz . To apply the previous lemma, it remains to bound P[Yt 6= Zt ].

The key is to note that, for each coordinate i , the difference (Y (i)
t − Z (i)

t ) is
itself a random walk on Z started at y (i) − z(i) with holding probability
1− 1

d —until it hits 0. Simple random walk on Z is irreducible and recurrent.
The holding probability does not affect the type of the walk, as can be seen
for instance from the characterization in terms of effective resistance. So
(Y (i)

t −Z (i)
t ) hits 0 in finite time with probability 1. Hence, letting τ (i) be the first

time Y (i)
t − Z (i)

t = 0, we have P[Y (i)
t 6= Z (i)

t ] ≤ P[τ (i) > t ]→ P[τ (i) = +∞] = 0.

By a union bound,

P[Yt 6= Zt ] ≤
∑
i∈[d ]

P[Y (i)
t 6= Z (i)

t ]→ 0,

as desired.
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Harmonic functions on Td I

Let Td be the infinite d-regular tree with root ρ. For x ∈ Td , we
let Tx be the subtree, rooted at x , of descendants of x .

Theorem
For d ≥ 3, let (Xt) be simple random walk on Td and let P be
the corresponding transition matrix. Let a be a neighbor of the
root and consider the function

h(x) = Px [Xt ∈ Ta for all but finitely many t ].

Then h is a non-constant, bounded P-harmonic function on Td .

Sébastien Roch, UW–Madison Modern Discrete Probability – Coupling



Basics
Application: Erdös-Rényi degree sequence
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Harmonic functions on Td II
Proof: The function h is clearly bounded and by the usual one-step trick

h(x) =
∑
y∼x

1
d
Py [Xt ∈ T0 for all but finitely many t ] =

∑
y

P(x , y)h(y),

so h is P-harmonic.

Let b 6= a be a neighbor of the root. The key of the proof is:

Lemma

q := Pa[τρ = +∞] = Pb[τρ = +∞] > 0.

Proof of lemma: Let (Zt) be simple random walk on Td started at a until the
walk hits 0 and let Lt be the graph distance between Zt and the root. Then
(Lt) is a biased random walk on Z started at 1 jumping to the right with
probability 1− 1

d and jumping to the left with probability 1
d . The probability

that (Lt) hits 0 in finite time is < 1 because 1− 1
d > 2 when d ≥ 3.
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Harmonic functions on Td III

Note that

h(ρ) ≤
(

1− 1
d

)
(1− q) < 1.

Indeed if on the first step the random walk started at ρ moves away from a,
an event of probability 1− 1

d , then it must come back to ρ in finite time to
reach Ta. Similarly, by the strong Markov property,

h(a) = q + (1− q)h(ρ).

Since h(ρ) 6= 1 and q > 0, this shows that h(a) > h(ρ).
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