Modern Discrete Probability

IV - Branching processes Review

> Sebastien Roch ´ *UW–Madison Mathematics*

November 15, 2014

Sébastien Roch, UW–Madison [Modern Discrete Probability – Branching processes](#page-39-0)

イロメ イ押 メイヨメ イヨメ

ă.

[Extinction](#page-6-0)

- [Random-walk representation](#page-20-0)
- 4 [Application: Bond percolation on Galton-Watson trees](#page-37-0)

4 ロ) (何) (日) (日)

 2990

B

Galton-Watson branching processes I

Definition

A *Galton-Watson branching process* is a Markov chain of the following form:

- Let $Z_0 := 1$.
- Let $X(i, t)$, $i \geq 1$, $t \geq 1$, be an array of i.i.d. \mathbb{Z}_+ -valued random variables with finite mean $m = \mathbb{E}[X(1, 1)] < +\infty$, and define inductively,

$$
Z_t := \sum_{1 \leq i \leq Z_{t-1}} X(i,t).
$$

イロト イ押 トイヨ トイヨト

ă

Galton-Watson branching processes II

Further remarks:

- \bullet The random variable Z_t models the size of a population at time (or generation) *t*. The random variable *X*(*i*, *t*) corresponds to the number of offspring of the *i*-th individual (if there is one) in generation $t - 1$. Generation t is formed of all offspring of the individuals in generation *t* − 1.
- 2 We denote by $\{p_k\}_{k>0}$ the law of $X(1, 1)$. We also let $f(\boldsymbol{s}) := \mathbb{E}[\boldsymbol{s}^{X(1,1)}]$ be the corresponding probability generating function.
- ³ By tracking genealogical relationships, i.e. who is whose child, we obtain a tree *T* rooted at the single individual in generation 0 with a vertex for each individual in the progeny and an edge for each parent-child relationship. We refer to *T* as a *Galton-Watson tree*[.](#page-2-0)

Exponential growth I

Lemma

Let M^t := *m*−*tZ^t . Then* (*Mt*) *is a nonnegative martingale with respect to the filtration* $\mathcal{F}_t = \sigma(Z_0, \ldots, Z_t)$ *. In particular,* $\mathbb{E}[Z_t] = m^t$.

Proof: Recall the following lemma:

Lemma: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. If $Y_1 = Y_2$ a.s. on $B \in \mathcal{F}$ then $\mathbb{E}[Y_1 | \mathcal{F}] = \mathbb{E}[Y_2 | \mathcal{F}]$ a.s. on *B*.

On ${Z_{t-1} = k}$,

$$
\mathbb{E}[Z_t | \mathcal{F}_{t-1}] = \mathbb{E}\left[\sum_{1 \leq j \leq k} X(j,t) \middle| \mathcal{F}_{t-1}\right] = mk = mZ_{t-1}.
$$

This is true for all *k*. Rearranging shows that (*Mt*) is a martingale. For the second claim, note that $\mathbb{E}[M_t] = \mathbb{E}[M_0] = 1$. **K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶**

 $= 200$

Exponential growth II

Theorem

We have $M_t \rightarrow M_\infty < +\infty$ *a.s. for some nonnegative random variable* $M_{\infty} \in \sigma(\cup_t \mathcal{F}_t)$ *with* $\mathbb{E}[M_{\infty}] \leq 1$.

Proof: This follows immediately from the martingale convergence theorem for nonnegative martingales and Fatou's lemma.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

B

- [Random-walk representation](#page-20-0)
- 4 [Application: Bond percolation on Galton-Watson trees](#page-37-0)

Sébastien Roch, UW–Madison [Modern Discrete Probability – Branching processes](#page-0-0)

4 ロ) (何) (日) (日)

 2990

B

Extinction: some observations I

Observe that 0 is a fixed point of the process. The event

$$
\{Z_t \to 0\} = \{\exists t\,:\, Z_t = 0\},
$$

is called *extinction*. Establishing when extinction occurs is a central question in branching process theory. We let η be the probability of extinction. *Throughout, we assume that* $p_0 > 0$ *and* $p_1 < 1$ *. Here is a first result:*

Theorem

A.s. either $Z_t \rightarrow 0$ *or* $Z_t \rightarrow +\infty$ *.*

Proof: The process (*Zt*) is integer-valued and 0 is the only fixed point of the process under the assumption that $p_1 < 1$. From any state k , the probability of never coming back to $k>0$ is at least $\rho_0^k>0,$ so every state $k>0$ is transient. The claim follows. **K ロ ト K 伺 ト K ヨ ト K ヨ ト**

Extinction: some observations II

Theorem (Critical branching process)

Assume m = 1. Then $Z_t \rightarrow 0$ *a.s., i.e.,* $\eta = 1$.

Proof: When $m = 1$, (Z_t) itself is a martingale. Hence (Z_t) must converge to 0 by the corollaries above.

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

Main result I

Let $f_t(s) = \mathbb{E}[s^{Z_t}]$. Note that, by monotonicity,

$$
\eta = \mathbb{P}[\exists t \geq 0 \, : \, Z_t = 0] = \lim_{t \to +\infty} \mathbb{P}[Z_t = 0] = \lim_{t \to +\infty} f_t(0),
$$

Moreover, by the Markov property, *f^t* as a natural recursive form:

$$
f_t(s) = \mathbb{E}[s^{Z_t}]
$$

\n
$$
= \mathbb{E}[\mathbb{E}[s^{Z_t} | \mathcal{F}_{t-1}]]
$$

\n
$$
= \mathbb{E}[f(s)^{Z_{t-1}}]
$$

\n
$$
= f_{t-1}(f(s)) = \cdots = f^{(t)}(s),
$$

where $f^{(t)}$ is the *t*-th iterate of *f*.

イロト イ押 トイヨ トイヨ トー

÷.

Main result II

Theorem (Extinction probability)

The probability of extinction η *is given by the smallest fixed point of f in* [0, 1]*. Moreover:*

- (Subcritical regime) *If m* < 1 *then* $n = 1$.
- (Supercritical regime) *If m* > 1 *then* $n < 1$.

Proof: The case $p_0 + p_1 = 1$ is straightforward: the process dies almost surely after a geometrically distributed time.

So we assume $p_0 + p_1 < 1$ for the rest of the proof.

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

 QQ

Main result: proof I

Lemma: On [0, 1], the function *f* satisfies:

(a) $f(0) = p_0, f(1) = 1;$

- (b) *f* is indefinitely differentiable on [0, 1);
- (c) *f* is strictly convex and increasing;

(d)
$$
\lim_{s \uparrow 1} f'(s) = m < +\infty
$$
.

Proof: (a) is clear by definition. The function *f* is a power series with radius of convergence $R > 1$. This implies (b). In particular,

$$
f'(s) = \sum_{i \geq 1} i p_i s^{i-1} \geq 0, \text{ and } f''(s) = \sum_{i \geq 2} i(i-1) p_i s^{i-2} > 0,
$$

because we must have $p_i > 0$ for some $i > 1$ by assumption. This proves (c). Since $m < +\infty$, $f'(1) = m$ is well defined and f' is continuous on [0, 1], which implies (d).

モニー・モン イミン イヨン エミ

Main result: proof II

Lemma: We have:

- **If** $m > 1$ then *f* has a unique fixed point $\eta_0 \in [0, 1)$.
- **■** If $m < 1$ then $f(t) > t$ for $t \in [0, 1)$. (Let $\eta_0 := 1$ in that case.)

Proof: Assume $m > 1$. Since $f'(1) = m > 1$, there is $\delta > 0$ s.t. *f*(1 − δ) < 1 − δ . On the other hand *f*(0) = $p_0 > 0$ so by continuity of *f* there must be a fixed point in (0, 1 – δ). Moreover, by strict convexity and the fact that $f(1) = 1$, if $x \in (0, 1)$ is a fixed point then $f(y) < y$ for $y \in (x, 1)$, proving uniqueness.

The second part follows by strict convexity and monotonicity.

イロト イ押 トイヨ トイヨト

Main result: proof III

重 299

Main result: proof IV

Lemma: We have:

- If $x \in [0, \eta_0)$, then $f^{(t)}(x) \uparrow \eta_0$
- If $x \in (\eta_0, 1)$ then $f^{(t)}(x) \downarrow \eta_0$

Proof: By monotonicity, for $x \in [0, \eta_0)$, we have $x < f(x) < f(\eta_0) = \eta_0$. Iterating

$$
x < f^{(1)}(x) < \cdots < f^{(t)}(x) < f^{(t)}(\eta_0) = \eta_0.
$$

So $f^{(t)}(x) \uparrow L \leq \eta_0$. By continuity of f we can take the limit inside of

$$
f^{(t)}(x) = f(f^{(t-1)}(x)),
$$

to get $L = f(L)$. So by definition of η_0 we must have $L = \eta_0$.

イロン イ押ン イミン イヨン・ヨー

Main result: proof V

 299

B

Example: Poisson branching process

Example

Consider the offspring distribution $X(1, 1) \sim \mathrm{Poi}(\lambda)$ with $\lambda > 0$. We refer to this case as the *Poisson branching process*. Then

$$
f(\boldsymbol{s}) = \mathbb{E}[\boldsymbol{s}^{X(1,1)}] = \sum_{i\geq 0} e^{-\lambda} \frac{\lambda^i}{i!} \boldsymbol{s}^i = e^{\lambda(\boldsymbol{s}-1)}.
$$

So the process goes extinct with probability 1 when λ < 1. For $\lambda > 1$, the probability of extinction η_{λ} is the smallest solution in [0, 1] to the equation

$$
e^{-\lambda(1-x)}=x.
$$

The survival probability $\zeta_\lambda:=1-\eta_\lambda$ satisfies $1-e^{-\lambda\zeta_\lambda}=\zeta_\lambda.$

イロメ イ押 メイヨメ イヨメ

Extinction: back to exponential growth I

Conditioned on extinction, $M_{\infty} = 0$ a.s.

Theorem

Conditioned on nonextinction, either $M_{\infty} = 0$ *a.s. or* $M_{\infty} > 0$ *a.s. In particular,* $\mathbb{P}[M_{\infty} = 0] \in \{\eta, 1\}$ *.*

Proof: A property of rooted trees is said to be *inherited* if all finite trees satisfy this property and whenever a tree satisfies the property then so do all the descendant trees of the children of the root. The property ${M_{\infty} = 0}$ is inherited. The result then follows from the following 0-1 law.

Lemma: For a Galton-Watson tree *T*, an inherited property *A* has, conditioned on nonextinction, probability 0 or 1.

Proof of lemma: Let $T^{(1)}, \ldots, T^{(Z_1)}$ be the descendant subtrees of the children of the root. Then, by independence,

 $\mathbb{P}[A]=\mathbb{E}[\mathbb{P}[T\in A\,|\,Z_1]]\leq \mathbb{E}[\mathbb{P}[T^{(i)}\in A,\forall i\leq Z_1\,|\,Z_1]] = \mathbb{E}[\mathbb{P}[A]^{Z_1}]=f(\mathbb{P}[A]),$

[s](#page-20-0)o P[*A*] \in [0, η η η] \cup {1}[.](#page-5-0) Also P[*A*] \geq η because *A* hol[ds](#page-16-0) f[or](#page-18-0) [fi](#page-16-0)[nit](#page-17-0)e [tr](#page-5-0)ees.

Extinction: back to exponential growth II

Theorem

Let (Z_t) *be a branching process with* $m = \mathbb{E}[X(1,1)] > 1$ *and* $\sigma^2 = \text{Var}[X(1,1)] < +\infty$. Then, (M_t) converges in L² and, in *particular,* $\mathbb{E}[M_\infty] = 1$.

Proof: From the orthogonality of increments

$$
\mathbb{E}[M_t^2] = \mathbb{E}[M_{t-1}^2] + \mathbb{E}[(M_t - M_{t-1})^2].
$$

On ${Z_{t-1} = k}$

$$
\mathbb{E}[(M_t - M_{t-1})^2 | \mathcal{F}_{t-1}] = m^{-2t} \mathbb{E}[(Z_t - mZ_{t-1})^2 | \mathcal{F}_{t-1}]
$$

\n
$$
= m^{-2t} \mathbb{E}\left[\left(\sum_{i=1}^k X(i,t) - mk\right)^2 | \mathcal{F}_{t-1}\right]
$$

\n
$$
= m^{-2t} k \sigma^2
$$

\n
$$
= m^{-2t} Z_{t-1} \sigma^2.
$$

 $2Q$

€

Extinction: back to exponential growth III

Hence

$$
\mathbb{E}[M_t^2] = \mathbb{E}[M_{t-1}^2] + m^{-t-1}\sigma^2.
$$

Since $\mathbb{E}[M_0^2]=1$,

$$
\mathbb{E}[M_t^2] = 1 + \sigma^2 \sum_{i=2}^{t+1} m^{-i},
$$

which is uniformly bounded when m $>$ 1. So (M_t) converges in $\mathsf{L}^2.$ Finally by Fatou's lemma

$$
\mathbb{E}|M_\infty| \leq \sup \|M_t\|_1 \leq \sup \|M_t\|_2 < +\infty
$$

and

$$
|\mathbb{E}[M_t]-\mathbb{E}[M_\infty]|\leq \|M_t-M_\infty\|_1\leq \|M_t-M_\infty\|_2,
$$

implies the convergence of expectations.

イロト イ団ト イヨト イヨト

B

4 [Application: Bond percolation on Galton-Watson trees](#page-37-0)

Sébastien Roch, UW–Madison [Modern Discrete Probability – Branching processes](#page-0-0)

4 ロ) (何) (日) (日)

 2990

B

Exploration process I

We consider an exploration process of the Galton-Watson tree *T*. The exploration process, started at the root 0, has 3 types of vertices:

- A*^t* : *active*, E*^t* : *explored*, N*^t* : *neutral*. We start with $A_0 := \{0\}$, $\mathcal{E}_0 := \emptyset$, and \mathcal{N}_0 contains all other vertices in *T*. At time *t*, if $A_{t-1} = \emptyset$ we let $(\mathcal{A}_t, \mathcal{E}_t, \mathcal{N}_t) := (\mathcal{A}_{t-1}, \mathcal{E}_{t-1}, \mathcal{N}_{t-1}).$ Otherwise, we pick an element, a_t , from \mathcal{A}_{t-1} and set:

$$
-A_t:=\mathcal{A}_{t-1}\cup\{x\in\mathcal{N}_{t-1}\,:\,\{x,a_t\}\in\mathcal{T}\}\setminus\{a_t\},
$$

$$
- \mathcal{E}_t := \mathcal{E}_{t-1} \cup \{a_t\},\
$$

$$
- \mathcal{N}_t := \mathcal{N}_{t-1} \setminus \{x \in \mathcal{N}_{t-1} \,:\, \{x, a_t\} \in \mathcal{T}\}.
$$

To be concrete, we choose a_t in breadth-first search (or first-come-first-serve) manner: we exhaust all vertices in ge[n](#page-20-0)[er](#page-20-0)[at](#page-21-0)[i](#page-22-0)[o](#page-19-0)n *[t](#page-36-0)* before considering vertices in [ge](#page-20-0)neration $t + 1$ $t + 1$ $t + 1$ $t + 1$ [.](#page-37-0) Ω

Exploration process II

We imagine revealing the edges of *T* as they are encountered in the exploration process and we let (\mathcal{F}_t) be the corresponding filtration. In words, starting with 0, the Galton-Watson tree *T* is progressively grown by adding to it at each time a child of one of the previously explored vertices and uncovering its children in $\mathcal T.$ In this process, $\mathcal E_t$ is the set of previously explored vertices and \mathcal{A}_t is the set of vertices who are known to belong to *T* but whose full neighborhood is waiting to be uncovered. The rest of the vertices form the set $\mathcal{N}_t.$

イロメ イ押 メイヨメ イヨメ

Exploration process III

Let $A_t:=|\mathcal{A}_t|, \, E_t:=|\mathcal{E}_t|,$ and $\mathcal{N}_t:=|\mathcal{N}_t|.$ Note that (E_t) is non-decreasing while (*Nt*) is non-increasing. Let

$$
\tau_0 := \inf\{t \geq 0 \,:\, A_t = 0\},\
$$

(which by convention is $+\infty$ if there is no such *t*). The process is fixed for all $t > \tau_0$. Notice that $E_t = t$ for all $t \leq \tau_0$, as exactly one vertex is explored at each time until the set of active vertices is empty.

Lemma

Let W be the total progeny. Then

$$
W=\tau_0.
$$

Sébastien Roch, UW-Madison [Modern Discrete Probability – Branching processes](#page-0-0)

ă

 $2Q$

イロメ イ押 メイヨメ イヨメ

Random walk representation I

The process (*At*) admits a simple recursive form. Recall that $A_0 := 1$. Conditioning on \mathcal{F}_{t-1} :

- If *At*−¹ = 0, the exploration process has finished its course and $A_t = 0$. Otherwise, (a) one active vertex becomes an explored vertex and (b) its neutral neighbors become active vertices. That is,

$$
A_t = \begin{cases} A_{t-1} + \left[\underbrace{-1}_{(a)} + \underbrace{X_t}_{(b)} \right], & t-1 < \tau_0, \\ 0, & \text{o.w.} \end{cases}
$$

where X_t is distributed according to the offspring distribution.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

重

Random walk representation II

We let $Y_t = X_t - 1 > -1$ and

$$
S_t := 1 + \sum_{i=1}^t Y_i,
$$

with $S_0 := 1$. Then

$$
\tau_0 = \inf\{t \ge 0 : S_t = 0\}
$$

= $\inf\{t \ge 0 : 1 + [X_1 - 1] + \cdots + [X_t - 1] = 0\}$
= $\inf\{t \ge 0 : X_1 + \cdots + X_t = t - 1\},$

and (*At*) is a random walk started at 1 with steps (*Yt*) stopped when it hits 0 for the first time:

$$
A_t=(S_{t\wedge \tau_0}).
$$

イロン イ押ン イヨン イヨン 一重

 QQ

Duality principle I

Theorem

Let (*Zt*) *be a branching process with offspring distribution* $\{p_k\}_{k\geq 0}$ and extinction probability $\eta < 1$. Let (Z'_t) be a *branching process with offspring distribution* {*p* 0 *k* }*k*≥⁰ *where*

$$
p'_{k}=\eta^{k-1}p_{k}.
$$

Then (*Zt*) *conditioned on extinction has the same distribution as* (*Z* 0 *t*)*, which is referred to as the* dual branching process*.*

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

 QQ

Duality principle II

Some remarks:

Note that

$$
\sum_{k\geq 0} \rho'_k = \sum_{k\geq 0} \eta^{k-1} \rho_k = \eta^{-1} f(\eta) = 1,
$$

because η is a fixed point of *f*. So $\{\boldsymbol{\rho}'_k\}_{k\geq 0}$ is indeed a probability distribution.

• Note further that

$$
\sum_{k\geq 0} k p'_k = \sum_{k\geq 0} k \eta^{k-1} p_k = f'(\eta) < 1,
$$

since *f'* is strictly increasing, $f(\eta) = \eta < 1$ and $f(1) = 1$. So the dual branching process is subcriti[cal](#page-26-0).

Duality principle III

Proof: We use the random walk representation. Let $H = (X_1, \ldots, X_{\tau_0})$ and $H' = (X'_1, \ldots, X'_{\tau'_0})$ be the *histories* of the processes (Z_t) and (Z'_t) respectively. (Under breadth-first search, the process (Z_t) can be reconstructed from H .) In the case of extinction, the history of (Z_t) has finite length. We call (x_1, \ldots, x_t) a *valid history* if $x_1 + \cdots + x_i - (i - 1) > 0$ for all $i < t$ and $x_1 + \cdots + x_t - (t-1) = 0$. By definition of the conditional probability, for a valid history (x_1, \ldots, x_t) with a finite *t*,

$$
\mathbb{P}[H=(x_1,\ldots,x_t) \,|\, \tau_0 < +\infty] = \frac{\mathbb{P}[H=(x_1,\ldots,x_t)]}{\mathbb{P}[\tau_0 < +\infty]} = \eta^{-1} \prod_{i=1}^t p_{x_i}.
$$

Because $x_1 + \cdots + x_t = t - 1$.

$$
\eta^{-1}\prod_{i=1}^t p_{x_i} = \eta^{-1}\prod_{i=1}^t \eta^{1-x_i}p'_{x_i} = \prod_{i=1}^t p'_{x_i} = \mathbb{P}[H' = (x_1,\ldots,x_t)].
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト

 Ω

Duality principle: example

Example (Poisson branching process)

Let (*Zt*) be a Galton-Watson branching process with offspring distribution Poi(λ) where $\lambda > 1$. Then the dual probability distribution is given by

$$
p'_{k} = \eta^{k-1} p_{k} = \eta^{k-1} e^{-\lambda} \frac{\lambda^{k}}{k!} = \eta^{-1} e^{-\lambda} \frac{(\lambda \eta)^{k}}{k!},
$$

where recall that $e^{-\lambda(1-\eta)}=\eta,$ so

$$
p'_{k} = e^{\lambda(1-\eta)}e^{-\lambda}\frac{(\lambda\eta)^{k}}{k!} = e^{-\lambda\eta}\frac{(\lambda\eta)^{k}}{k!}.
$$

That is, the dual branching process has offspring distribution Poi(λ η).

Hitting-time theorem

Theorem

Let (*Zt*) *be a Galton-Watson branching process with total progeny W. In the random walk representation of* (*Zt*)*,*

$$
\mathbb{P}[W=t] = \frac{1}{t}\mathbb{P}[X_1 + \cdots + X_t = t-1],
$$

for all t > 1 *.*

Note that this formula is rather remarkable as the probability on the l.h.s. is $\mathbb{P}[S_i > 0, \forall i < t \text{ and } S_t = 0]$ while the probability on the r.h.s. is $P[S_t = 0]$.

イロト イ押 トイヨ トイヨ トー

÷. QQ

Spitzer's combinatorial lemma I

We start with a lemma of independent interest. Let $u_1, \ldots, u_t \in \mathbb{R}$ and define $r_0 := 0$ and $r_i := u_1 + \cdots + u_i$ for 1 ≤ *i* ≤ *t*. We say that *j* is a *ladder index* if $r_i > r_0 \vee \cdots \vee r_{i-1}$. Consider the cyclic permutations of $\boldsymbol{u} = (u_1, \ldots, u_t)$: $\boldsymbol{u}^{(0)} = \boldsymbol{u}$, ${\bf u}^{(1)} = (u_2, \ldots, u_t, u_1), \ldots, {\bf u}^{(t-1)} = (u_t, u_1, \ldots, u_{t-1}).$ Define the corresponding partial sums $r^{(\beta)}_i$ $y_j^{(\beta)} := u_1^{(\beta)} + \cdots + u_j^{(\beta)}$ *j* for $j = 1, \ldots, t$ and $\beta = 0, \ldots, t - 1$. Observe that $(r_1^{(\beta)}$ $r_1^{(\beta)}, \ldots, r_t^{(\beta)}$ *t*) $= (r_{\beta+1} - r_{\beta}, r_{\beta+2} - r_{\beta}, \ldots, r_t - r_{\beta},$ $[r_f - r_\beta] + r_1$, $[r_f - r_\beta] + r_2$, ..., $[r_f - r_\beta] + r_\beta$ $= (r_{\beta+1} - r_{\beta}, r_{\beta+2} - r_{\beta}, \ldots, r_t - r_{\beta},$ $r_t - [r_\beta - r_1], r_t - [r_\beta - r_2], \ldots, r_t - [r_\beta - r_{\beta-1}], r_t)$ (1) 医单位 医单位 4 D.K. 4 @

 Ω

Spitzer's combinatorial lemma II

Lemma

Assume $r_t > 0$ *. Let* ℓ *be the number of cyclic permutations such that t is a ladder index. Then* $\ell > 1$. Moreover, each such cyclic *permutation has exactly* ` *ladder indices.*

Proof: We first show that $\ell > 1$, i.e., there is at least one cyclic permutation where *t* is a ladder index. Let β be the smallest index achieving the maximum of *r*1, . . . , *r^t* , i.e.,

$$
r_{\beta} > r_1 \vee \cdots \vee r_{\beta-1}
$$
 and $r_{\beta} \ge r_{\beta+1} \vee \cdots \vee r_t$.

From [\(1\)](#page-31-1),

$$
r_{\beta+i}-r_{\beta}\leq 0
$$

and

$$
r_t-[r_\beta-r_j]
$$

Moreov[er](#page-32-0), $r_t > 0 = r_0$ by assumption. So, [i](#page-33-0)[n](#page-19-0) $\boldsymbol{u}^{(\beta)}$ $\boldsymbol{u}^{(\beta)}$ $\boldsymbol{u}^{(\beta)}$ $\boldsymbol{u}^{(\beta)}$ $\boldsymbol{u}^{(\beta)}$, t i[s a](#page-31-0) [la](#page-33-0)[dd](#page-31-0)er inde[x.](#page-37-0)

Spitzer's combinatorial lemma III

Since $\ell > 1$, we can assume w.l.o.g. that **u** is such that t is a ladder index. Then β is a ladder index in $\boldsymbol{\mu}$ if and only if

$$
r_{\beta} > r_0 \vee \cdots \vee r_{\beta-1},
$$

if and only if

$$
r_t > r_t - r_\beta \quad \text{and} \quad r_t - [r_\beta - r_j] < r_t, \ \forall j = 1, \ldots, \beta - 1.
$$

Moreover, because $r_t > r_i$ for all *j*, we have $r_t - [r_{\beta+i} - r_\beta] = (r_t - r_{\beta+i}) + r_\beta$ and the last equation is equivalent to

 $r_t > r_t - [r_{\beta+i} - r_{\beta}], \forall i = 1, \ldots, t - \beta \text{ and } r_t - [r_{\beta} - r_i] < r_t, \forall j = 1, \ldots, \beta - 1.$

That is, t is a ladder index in the β -th cyclic permutation.

イロン イ押ン イミン イヨン・ヨー

Back to the hitting-time theorem: proof I

Proof: Let $R_i := 1 - S_i$ and $U_i := 1 - X_i$ for all $i = 1, \ldots, t$ and let $R_0 := 0$. Then

$$
\{X_1 + \cdots + X_t = t - 1\} = \{R_t = 1\},\
$$

and

 $\{W = t\} = \{t \text{ is the first ladder index in } R_1, \ldots, R_t\}.$

By symmetry, for all β

 $\mathbb{P}[t]$ is the first ladder index in R_1, \ldots, R_t $=\mathbb{P}[t \text{ is the first ladder index in } R_1^{(\beta)}, \ldots, R_t^{(\beta)}].$

Let \mathcal{E}_{β} be the event on the last line. Hence

$$
\mathbb{P}[W = t] = \mathbb{E}[\mathbb{1}_{\mathcal{E}_1}] = \frac{1}{t} \mathbb{E}\left[\sum_{\beta=1}^t \mathbb{1}_{\mathcal{E}_\beta}\right]
$$

イロト イ押 トイヨ トイヨ トー

÷.

Back to the hitting-time theorem: proof II

Proof: By Spitzer's combinatorial lemma, there is at most one cyclic permutation where t is the first ladder index. In particular, $\sum_{\beta=1}^t \mathbb{1}_{\mathcal{E}_{\beta}} \in \{0,1\}.$ So

$$
\mathbb{P}[W=t] = \frac{1}{t} \mathbb{P}\left[\cup_{\beta=1}^t \mathcal{E}_{\beta}\right].
$$

Finally observe that, because $R_0 = 0$ and $U_i \leq 1$ for all *i*, the partial sum at the *j-*th ladder index must take value *j*. So the event $\{\cup_{\beta=1}^t\mathcal{E}_{\beta}\}$ implies that ${R_t = 1}$ because the last partial sum of all cyclic permutations is R_t . Similarly, because there is at least one cyclic permutation such that *t* is a ladder index, the event $\{R_t=1\}$ implies $\{\cup_{\beta=1}^t\mathcal{E}_{\beta}\}.$ Therefore,

$$
\mathbb{P}[W=t] = \frac{1}{t}\mathbb{P}[R_t = 1],
$$

which concludes the proof.

イロト イ押 トイヨ トイヨト

Hitting-time theorem: example

Example (Poisson branching process)

Let (*Zt*) be a Galton-Watson branching process with offspring distribution $\text{Poi}(\lambda)$ where $\lambda > 0$. Let W be its total progeny. By the hitting-time theorem, for $t > 1$,

$$
\mathbb{P}[W=t] = \frac{1}{t} \mathbb{P}[X_1 + \dots + X_t = t-1]
$$

$$
= \frac{1}{t} e^{-\lambda t} \frac{(\lambda t)^{t-1}}{(t-1)!}
$$

$$
= e^{-\lambda t} \frac{(\lambda t)^{t-1}}{t!},
$$

where we used that a sum of independent Poisson is Poisson.

イロン イ何 メイヨン イヨン

[Random-walk representation](#page-20-0)

4 [Application: Bond percolation on Galton-Watson trees](#page-37-0)

4 ロ) (何) (日) (日)

 2990

B

Bond percolation on Galton-Watson trees I

Let *T* be a Galton-Watson tree for an offspring distribution with mean *m* > 1. Perform bond percolation on *T* with density *p*.

Theorem

Conditioned on nonextinction,

$$
p_{\rm c}(\mathcal{T})=\frac{1}{m}\qquad a.s.
$$

Proof: Let C_0 be the cluster of the root in *T* with density *p*. We can think of C_0 as being generated by a Galton-Watson branching process where the offspring distribution is the law of $\sum_{i=1}^{X(1,1)} I_i$ where the *I_i*s are i.i.d. Ber(*p*) and *X*(1, 1) is distributed according to the offspring distribution of *T*. In particular, by conditioning on $X(1, 1)$, the offspring mean under C_0 is mp. If $mp < 1$ then

$$
1=\mathbb{P}_\rho[|\mathcal{C}_0|<+\infty]=\mathbb{E}[\mathbb{P}_\rho[|\mathcal{C}_0|<+\infty\mid\mathcal{T}]],
$$

and we [m](#page-39-0)ust h[a](#page-39-0)ve $\mathbb{P}_p[|\mathcal{C}_0|<+\infty \ | \ T]=1$ a.s. In oth[er](#page-37-0) [wo](#page-39-0)[rd](#page-37-0)[s,](#page-38-0) $p_{\text{c}}(\frac{T}{2})\geq \frac{1}{m}$ $p_{\text{c}}(\frac{T}{2})\geq \frac{1}{m}$ $p_{\text{c}}(\frac{T}{2})\geq \frac{1}{m}$ $p_{\text{c}}(\frac{T}{2})\geq \frac{1}{m}$ $p_{\text{c}}(\frac{T}{2})\geq \frac{1}{m}$ a[.s](#page-0-0)[.](#page-39-0)

Bond percolation on Galton-Watson trees II

On the other hand, the property of trees $\{P_p|[C_0]<+\infty | T]=1\}$ is inherited. So by our previous lemma, conditioned on nonextinction, it has probability 0 or 1. That probability is of course 1 on extinction. So by

$$
\mathbb{P}_{\rho} [|\mathcal{C}_0|<+\infty]=\mathbb{E}[\mathbb{P}_{\rho}[|\mathcal{C}_0|<+\infty\mid \mathcal{T}]],
$$

if the probability is 1 conditioned on nonextinction then it must be that $mp \leq 1$. In other words, for any fixed p such that $mp > 1$, conditioned on nonextinction $\mathbb{P}_{p}[|\mathcal{C}_{0}| < +\infty | T] = 0$ a.s. By monotonicity of $\mathbb{P}_p[|\mathcal{C}_0| < +\infty | \mathcal{T}]$ in p, taking a limit $p_n \to 1/m$ proves the result.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

D.