Modern Discrete Probability

IV - Branching processes Review

> Sébastien Roch UW-Madison Mathematics

November 15, 2014

Sébastien Roch, UW–Madison Modern Discrete Probability – Branching processes

イロト イポト イヨト イヨト

2 Extinction

- 3 Random-walk representation
- 4 Application: Bond percolation on Galton-Watson trees

ヘロア 人間 アメヨア 人口 ア

э

Galton-Watson branching processes I

Definition

A *Galton-Watson branching process* is a Markov chain of the following form:

- Let $Z_0 := 1$.
- Let X(i, t), $i \ge 1$, $t \ge 1$, be an array of i.i.d. \mathbb{Z}_+ -valued random variables with finite mean $m = \mathbb{E}[X(1, 1)] < +\infty$, and define inductively,

$$Z_t := \sum_{1 \leq i \leq Z_{t-1}} X(i, t).$$

ヘロン 人間 とくほ とくほ とう

1

Galton-Watson branching processes II

Further remarks:

- The random variable Z_t models the size of a population at time (or generation) t. The random variable X(i, t) corresponds to the number of offspring of the *i*-th individual (if there is one) in generation t 1. Generation t is formed of all offspring of the individuals in generation t 1.
- **2** We denote by $\{p_k\}_{k\geq 0}$ the law of X(1,1). We also let $f(s) := \mathbb{E}[s^{X(1,1)}]$ be the corresponding probability generating function.
- By tracking genealogical relationships, i.e. who is whose child, we obtain a tree *T* rooted at the single individual in generation 0 with a vertex for each individual in the progeny and an edge for each parent-child relationship. We refer to *T* as a *Galton-Watson tree*.

Exponential growth I

Lemma

Let $M_t := m^{-t}Z_t$. Then (M_t) is a nonnegative martingale with respect to the filtration $\mathcal{F}_t = \sigma(Z_0, \ldots, Z_t)$. In particular, $\mathbb{E}[Z_t] = m^t$.

Proof: Recall the following lemma:

Lemma: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. If $Y_1 = Y_2$ a.s. on $B \in \mathcal{F}$ then $\mathbb{E}[Y_1 | \mathcal{F}] = \mathbb{E}[Y_2 | \mathcal{F}]$ a.s. on B.

On $\{Z_{t-1} = k\}$,

$$\mathbb{E}[Z_t \mid \mathcal{F}_{t-1}] = \mathbb{E}\left[\sum_{1 \leq j \leq k} X(j, t) \mid \mathcal{F}_{t-1}\right] = mk = mZ_{t-1}.$$

This is true for all *k*. Rearranging shows that (M_t) is a martingale. For the second claim, note that $\mathbb{E}[M_t] = \mathbb{E}[M_0] = 1$.

- nac

Exponential growth II

Theorem

We have $M_t \to M_{\infty} < +\infty$ a.s. for some nonnegative random variable $M_{\infty} \in \sigma(\cup_t \mathcal{F}_t)$ with $\mathbb{E}[M_{\infty}] \leq 1$.

Proof: This follows immediately from the martingale convergence theorem for nonnegative martingales and Fatou's lemma.

イロト イポト イヨト イヨト 三日

- 3 Random-walk representation
- 4 Application: Bond percolation on Galton-Watson trees

ヘロア 人間 アメヨア 人口 ア

э

Extinction: some observations I

Observe that 0 is a fixed point of the process. The event

$$\{Z_t \to 0\} = \{\exists t : Z_t = 0\},\$$

is called *extinction*. Establishing when extinction occurs is a central question in branching process theory. We let η be the probability of extinction. *Throughout, we assume that* $p_0 > 0$ *and* $p_1 < 1$. Here is a first result:

Theorem

A.s. either $Z_t \rightarrow 0$ or $Z_t \rightarrow +\infty$.

Proof: The process (Z_t) is integer-valued and 0 is the only fixed point of the process under the assumption that $p_1 < 1$. From any state k, the probability of never coming back to k > 0 is at least $p_0^k > 0$, so every state k > 0 is transient. The claim follows.

Extinction: some observations II

Theorem (Critical branching process)

Assume m = 1. Then $Z_t \rightarrow 0$ a.s., i.e., $\eta = 1$.

Proof: When m = 1, (Z_t) itself is a martingale. Hence (Z_t) must converge to 0 by the corollaries above.

Main result I

Let $f_t(s) = \mathbb{E}[s^{Z_t}]$. Note that, by monotonicity,

$$\eta = \mathbb{P}[\exists t \ge 0 : Z_t = 0] = \lim_{t \to +\infty} \mathbb{P}[Z_t = 0] = \lim_{t \to +\infty} f_t(0),$$

Moreover, by the Markov property, f_t as a natural recursive form:

where $f^{(t)}$ is the *t*-th iterate of *f*.

Main result II

Theorem (Extinction probability)

The probability of extinction η is given by the smallest fixed point of f in [0, 1]. Moreover:

- (Subcritical regime) If m < 1 then $\eta = 1$.
- (Supercritical regime) If m > 1 then $\eta < 1$.

Proof: The case $p_0 + p_1 = 1$ is straightforward: the process dies almost surely after a geometrically distributed time.

So we assume $p_0 + p_1 < 1$ for the rest of the proof.

Main result: proof I

Lemma: On [0, 1], the function f satisfies:

(a) $f(0) = p_0, f(1) = 1;$

- (b) *f* is indefinitely differentiable on [0, 1);
- (c) f is strictly convex and increasing;

(d)
$$\lim_{s \uparrow 1} f'(s) = m < +\infty$$
.

Proof: (a) is clear by definition. The function *f* is a power series with radius of convergence $R \ge 1$. This implies (b). In particular,

$$f'(s) = \sum_{i\geq 1} ip_i s^{i-1} \geq 0$$
, and $f''(s) = \sum_{i\geq 2} i(i-1)p_i s^{i-2} > 0$,

because we must have $p_i > 0$ for some i > 1 by assumption. This proves (c). Since $m < +\infty$, f'(1) = m is well defined and f' is continuous on [0, 1], which implies (d).

(ロ) (同) (ヨ) (ヨ) (ヨ)

Main result: proof II

Lemma: We have:

- If m > 1 then f has a unique fixed point $\eta_0 \in [0, 1)$.
- If m < 1 then f(t) > t for $t \in [0, 1)$. (Let $\eta_0 := 1$ in that case.)

Proof: Assume m > 1. Since f'(1) = m > 1, there is $\delta > 0$ s.t. $f(1 - \delta) < 1 - \delta$. On the other hand $f(0) = p_0 > 0$ so by continuity of *f* there must be a fixed point in $(0, 1 - \delta)$. Moreover, by strict convexity and the fact that f(1) = 1, if $x \in (0, 1)$ is a fixed point then f(y) < y for $y \in (x, 1)$, proving uniqueness.

The second part follows by strict convexity and monotonicity.

イロト イポト イヨト イヨト 三日

Main result: proof III

э.

Main result: proof IV

Lemma: We have:

- If $x \in [0, \eta_0)$, then $f^{(t)}(x) \uparrow \eta_0$
- If $x \in (\eta_0, 1)$ then $f^{(t)}(x) \downarrow \eta_0$

Proof: By monotonicity, for $x \in [0, \eta_0)$, we have $x < f(x) < f(\eta_0) = \eta_0$. Iterating

$$x < f^{(1)}(x) < \cdots < f^{(t)}(x) < f^{(t)}(\eta_0) = \eta_0.$$

So $f^{(t)}(x) \uparrow L \leq \eta_0$. By continuity of *f* we can take the limit inside of

$$f^{(t)}(x) = f(f^{(t-1)}(x)),$$

to get L = f(L). So by definition of η_0 we must have $L = \eta_0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Main result: proof V

Sébastien Roch, UW–Madison Modern Discrete Probability – Branching processes

ъ

Example: Poisson branching process

Example

Consider the offspring distribution $X(1, 1) \sim \text{Poi}(\lambda)$ with $\lambda > 0$. We refer to this case as the *Poisson branching process*. Then

$$f(\boldsymbol{s}) = \mathbb{E}[\boldsymbol{s}^{X(1,1)}] = \sum_{i \ge 0} \boldsymbol{e}^{-\lambda} \frac{\lambda^i}{i!} \boldsymbol{s}^i = \boldsymbol{e}^{\lambda(\boldsymbol{s}-1)}.$$

So the process goes extinct with probability 1 when $\lambda \leq 1$. For $\lambda > 1$, the probability of extinction η_{λ} is the smallest solution in [0, 1] to the equation

$$e^{-\lambda(1-x)}=x.$$

The survival probability $\zeta_{\lambda} := 1 - \eta_{\lambda}$ satisfies $1 - e^{-\lambda \zeta_{\lambda}} = \zeta_{\lambda}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Extinction: back to exponential growth I

Conditioned on extinction, $M_{\infty} = 0$ a.s.

Theorem

Conditioned on nonextinction, either $M_{\infty} = 0$ a.s. or $M_{\infty} > 0$ a.s. In particular, $\mathbb{P}[M_{\infty} = 0] \in \{\eta, 1\}$.

Proof: A property of rooted trees is said to be *inherited* if all finite trees satisfy this property and whenever a tree satisfies the property then so do all the descendant trees of the children of the root. The property $\{M_{\infty} = 0\}$ is inherited. The result then follows from the following 0-1 law.

Lemma: For a Galton-Watson tree T, an inherited property A has, conditioned on nonextinction, probability 0 or 1.

Proof of lemma: Let $T^{(1)}, \ldots, T^{(Z_1)}$ be the descendant subtrees of the children of the root. Then, by independence,

 $\mathbb{P}[A] = \mathbb{E}[\mathbb{P}[T \in A \mid Z_1]] \le \mathbb{E}[\mathbb{P}[T^{(i)} \in A, \forall i \le Z_1 \mid Z_1]] = \mathbb{E}[\mathbb{P}[A]^{Z_1}] = f(\mathbb{P}[A]),$

so $\mathbb{P}[A] \in [0, \eta] \cup \{1\}$. Also $\mathbb{P}[A] \ge \eta$ because A holds for finite trees.

Extinction: back to exponential growth II

Theorem

Let (Z_t) be a branching process with $m = \mathbb{E}[X(1,1)] > 1$ and $\sigma^2 = \operatorname{Var}[X(1,1)] < +\infty$. Then, (M_t) converges in L^2 and, in particular, $\mathbb{E}[M_{\infty}] = 1$.

Proof: From the orthogonality of increments

$$\mathbb{E}[M_{t}^{2}] = \mathbb{E}[M_{t-1}^{2}] + \mathbb{E}[(M_{t} - M_{t-1})^{2}].$$
On $\{Z_{t-1} = k\}$

$$\mathbb{E}[(M_{t} - M_{t-1})^{2} | \mathcal{F}_{t-1}] = m^{-2t}\mathbb{E}[(Z_{t} - mZ_{t-1})^{2} | \mathcal{F}_{t-1}]$$

$$= m^{-2t}\mathbb{E}\left[\left(\sum_{i=1}^{k} X(i, t) - mk\right)^{2} \middle| \mathcal{F}_{t-1}\right]$$

$$= m^{-2t}k\sigma^{2}$$

$$= m^{-2t}Z_{t-1}\sigma^{2}.$$

~

イロン 不良 とくほう 不良 とうほ

Extinction: back to exponential growth III

Hence

$$\mathbb{E}[M_t^2] = \mathbb{E}[M_{t-1}^2] + m^{-t-1}\sigma^2.$$

Since $\mathbb{E}[M_0^2] = 1$,

$$\mathbb{E}[M_t^2] = 1 + \sigma^2 \sum_{i=2}^{t+1} m^{-i},$$

which is uniformly bounded when m > 1. So (M_t) converges in L^2 . Finally by Fatou's lemma

$$\mathbb{E}|M_{\infty}| \leq \sup \|M_t\|_1 \leq \sup \|M_t\|_2 < +\infty$$

and

$$|\mathbb{E}[M_t] - \mathbb{E}[M_{\infty}]| \leq \|M_t - M_{\infty}\|_1 \leq \|M_t - M_{\infty}\|_2,$$

implies the convergence of expectations.

ヘロン 人間 とくほ とくほ とう

3

- 3 Random-walk representation
- 4 Application: Bond percolation on Galton-Watson trees

ヘロア 人間 アメヨア 人口 ア

э

Exploration process I

We consider an exploration process of the Galton-Watson tree T. The exploration process, started at the root 0, has 3 types of vertices:

- \mathcal{A}_t : active, \mathcal{E}_t : explored, \mathcal{N}_t : neutral. We start with $\mathcal{A}_0 := \{0\}, \mathcal{E}_0 := \emptyset$, and \mathcal{N}_0 contains all other vertices in *T*. At time *t*, if $\mathcal{A}_{t-1} = \emptyset$ we let $(\mathcal{A}_t, \mathcal{E}_t, \mathcal{N}_t) := (\mathcal{A}_{t-1}, \mathcal{E}_{t-1}, \mathcal{N}_{t-1})$. Otherwise, we pick an element, a_t , from \mathcal{A}_{t-1} and set:

$$-\mathcal{A}_t := \mathcal{A}_{t-1} \cup \{ x \in \mathcal{N}_{t-1} : \{ x, a_t \} \in T \} \setminus \{ a_t \},$$

$$- \mathcal{E}_t := \mathcal{E}_{t-1} \cup \{\mathbf{a}_t\},$$

$$-\mathcal{N}_t := \mathcal{N}_{t-1} \setminus \{ x \in \mathcal{N}_{t-1} : \{ x, a_t \} \in T \}.$$

To be concrete, we choose a_t in breadth-first search (or first-come-first-serve) manner: we exhaust all vertices in generation t before considering vertices in generation t + 1.

Exploration process II

We imagine revealing the edges of T as they are encountered in the exploration process and we let (\mathcal{F}_t) be the corresponding filtration. In words, starting with 0, the Galton-Watson tree T is progressively grown by adding to it at each time a child of one of the previously explored vertices and uncovering its children in T. In this process, \mathcal{E}_t is the set of previously explored vertices and \mathcal{A}_t is the set of vertices who are known to belong to T but whose full neighborhood is waiting to be uncovered. The rest of the vertices form the set \mathcal{N}_t .

Exploration process III

Let $A_t := |A_t|$, $E_t := |\mathcal{E}_t|$, and $N_t := |\mathcal{N}_t|$. Note that (E_t) is non-decreasing while (N_t) is non-increasing. Let

$$au_{0} := \inf\{t \ge 0 \ : \ A_{t} = 0\},$$

(which by convention is $+\infty$ if there is no such *t*). The process is fixed for all $t > \tau_0$. Notice that $E_t = t$ for all $t \le \tau_0$, as exactly one vertex is explored at each time until the set of active vertices is empty.

Lemma

Let W be the total progeny. Then

$$W = \tau_0.$$

イロト イポト イヨト イヨト

Random walk representation I

The process (A_t) admits a simple recursive form. Recall that $A_0 := 1$. Conditioning on \mathcal{F}_{t-1} :

- If $A_{t-1} = 0$, the exploration process has finished its course and $A_t = 0$. Otherwise, (a) one active vertex becomes an explored vertex and (b) its neutral neighbors become active vertices. That is,

$$A_t = \begin{cases} A_{t-1} + \left[\underbrace{-1}_{(a)} + \underbrace{X_t}_{(b)}\right], & t-1 < \tau_0, \\ 0, & \text{o.w.} \end{cases}$$

where X_t is distributed according to the offspring distribution.

・ロト ・ 理 ト ・ ヨ ト ・

Basic definitions Extinction Random-walk representation

Application: Bond percolation on Galton-Watson trees

Random walk representation II

We let $Y_t = X_t - 1 \ge -1$ and

$$S_t := 1 + \sum_{i=1}^t Y_i,$$

with $S_0 := 1$. Then

$$\begin{aligned} \tau_0 &= \inf\{t \ge 0 : S_t = 0\} \\ &= \inf\{t \ge 0 : 1 + [X_1 - 1] + \dots + [X_t - 1] = 0\} \\ &= \inf\{t \ge 0 : X_1 + \dots + X_t = t - 1\}, \end{aligned}$$

and (A_t) is a random walk started at 1 with steps (Y_t) stopped when it hits 0 for the first time:

$$A_t = (S_{t \wedge \tau_0}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Duality principle I

Theorem

Let (Z_t) be a branching process with offspring distribution $\{p_k\}_{k\geq 0}$ and extinction probability $\eta < 1$. Let (Z'_t) be a branching process with offspring distribution $\{p'_k\}_{k\geq 0}$ where

$$p_k' = \eta^{k-1} p_k$$

Then (Z_t) conditioned on extinction has the same distribution as (Z'_t) , which is referred to as the dual branching process.

イロト イポト イヨト イヨト 一日

Duality principle II

Some remarks:

Note that

$$\sum_{k\geq 0} p'_k = \sum_{k\geq 0} \eta^{k-1} p_k = \eta^{-1} f(\eta) = 1,$$

because η is a fixed point of *f*. So $\{p'_k\}_{k\geq 0}$ is indeed a probability distribution.

Note further that

$$\sum_{k\geq 0} k p'_k = \sum_{k\geq 0} k \eta^{k-1} p_k = f'(\eta) < 1,$$

since f' is strictly increasing, $f(\eta) = \eta < 1$ and f(1) = 1. So the dual branching process is subcritical.

Duality principle III

Proof: We use the random walk representation. Let $H = (X_1, ..., X_{\tau_0})$ and $H' = (X'_1, ..., X'_{\tau'_0})$ be the *histories* of the processes (Z_t) and (Z'_t) respectively. (Under breadth-first search, the process (Z_t) can be reconstructed from *H*.) In the case of extinction, the history of (Z_t) has finite length. We call $(x_1, ..., x_t)$ a *valid history* if $x_1 + \cdots + x_i - (i - 1) > 0$ for all i < t and $x_1 + \cdots + x_t - (t - 1) = 0$. By definition of the conditional probability, for a valid history $(x_1, ..., x_t)$ with a finite *t*,

$$\mathbb{P}[H = (x_1, \ldots, x_t) | \tau_0 < +\infty] = \frac{\mathbb{P}[H = (x_1, \ldots, x_t)]}{\mathbb{P}[\tau_0 < +\infty]} = \eta^{-1} \prod_{i=1}^t p_{x_i}.$$

Because $x_1 + \cdots + x_t = t - 1$,

$$\eta^{-1}\prod_{i=1}^{t} p_{x_i} = \eta^{-1}\prod_{i=1}^{t} \eta^{1-x_i} p'_{x_i} = \prod_{i=1}^{t} p'_{x_i} = \mathbb{P}[H' = (x_1, \ldots, x_t)].$$

・ロット 御マ キョット キョン

Duality principle: example

Example (Poisson branching process)

Let (Z_t) be a Galton-Watson branching process with offspring distribution $Poi(\lambda)$ where $\lambda > 1$. Then the dual probability distribution is given by

$$\boldsymbol{p}_{k}^{\prime} = \eta^{k-1} \boldsymbol{p}_{k} = \eta^{k-1} \boldsymbol{e}^{-\lambda} \frac{\lambda^{k}}{k!} = \eta^{-1} \boldsymbol{e}^{-\lambda} \frac{(\lambda \eta)^{k}}{k!},$$

where recall that $e^{-\lambda(1-\eta)} = \eta$, so

$$oldsymbol{p}_k' = oldsymbol{e}^{\lambda(1-\eta)}oldsymbol{e}^{-\lambda}rac{(\lambda\eta)^k}{k!} = oldsymbol{e}^{-\lambda\eta}rac{(\lambda\eta)^k}{k!}.$$

That is, the dual branching process has offspring distribution $Poi(\lambda \eta)$.

200

Hitting-time theorem

Theorem

Let (Z_t) be a Galton-Watson branching process with total progeny W. In the random walk representation of (Z_t) ,

$$\mathbb{P}[W=t]=\frac{1}{t}\mathbb{P}[X_1+\cdots+X_t=t-1],$$

for all $t \ge 1$.

Note that this formula is rather remarkable as the probability on the l.h.s. is $\mathbb{P}[S_i > 0, \forall i < t \text{ and } S_t = 0]$ while the probability on the r.h.s. is $\mathbb{P}[S_t = 0]$.

イロト イポト イヨト イヨト 一日

Spitzer's combinatorial lemma I

We start with a lemma of independent interest. Let $u_1, \ldots, u_t \in \mathbb{R}$ and define $r_0 := 0$ and $r_i := u_1 + \cdots + u_i$ for $1 \le i \le t$. We say that *j* is a *ladder index* if $r_i > r_0 \lor \cdots \lor r_{i-1}$. Consider the cyclic permutations of $\boldsymbol{u} = (u_1, \ldots, u_t)$: $\boldsymbol{u}^{(0)} = \boldsymbol{u}$. $u^{(1)} = (u_2, \ldots, u_t, u_1), \ldots, u^{(t-1)} = (u_t, u_1, \ldots, u_{t-1}).$ Define the corresponding partial sums $r_i^{(\beta)} := u_1^{(\beta)} + \cdots + u_i^{(\beta)}$ for $j = 1, \ldots, t$ and $\beta = 0, \ldots, t - 1$. Observe that $(r_1^{(\beta)}, \ldots, r_t^{(\beta)})$ $=(r_{\beta+1}-r_{\beta},r_{\beta+2}-r_{\beta},\ldots,r_t-r_{\beta},$ $[r_t - r_{\beta}] + r_1, [r_t - r_{\beta}] + r_2, \dots, [r_t - r_{\beta}] + r_{\beta}$ $=(r_{\beta+1}-r_{\beta},r_{\beta+2}-r_{\beta},\ldots,r_t-r_{\beta})$ $r_t - [r_\beta - r_1], r_t - [r_\beta - r_2], \dots, r_t - [r_\beta - r_{\beta-1}], r_t$ (1) • • • • • •

Spitzer's combinatorial lemma II

Lemma

Assume $r_t > 0$. Let ℓ be the number of cyclic permutations such that t is a ladder index. Then $\ell \ge 1$. Moreover, each such cyclic permutation has exactly ℓ ladder indices.

Proof: We first show that $\ell \ge 1$, i.e., there is at least one cyclic permutation where *t* is a ladder index. Let β be the smallest index achieving the maximum of r_1, \ldots, r_t , i.e.,

$$r_{\beta} > r_1 \lor \cdots \lor r_{\beta-1}$$
 and $r_{\beta} \ge r_{\beta+1} \lor \cdots \lor r_t$.

From (1),

$$r_{\beta+i} - r_{\beta} \leq 0 < r_t, \qquad \forall i = 1, \ldots, t - \beta,$$

and

$$r_t - [r_\beta - r_j] < r_t, \qquad \forall j = 1, \dots, \beta - 1.$$

Moreover, $r_t > 0 = r_0$ by assumption. So, in $u^{(\beta)}$, *t* is a ladder index.

Spitzer's combinatorial lemma III

Since $\ell \ge 1$, we can assume w.l.o.g. that \boldsymbol{u} is such that t is a ladder index. Then β is a ladder index in \boldsymbol{u} if and only if

$$r_{\beta} > r_0 \vee \cdots \vee r_{\beta-1},$$

if and only if

$$r_t > r_t - r_\beta$$
 and $r_t - [r_\beta - r_j] < r_t, \ \forall j = 1, \ldots, \beta - 1.$

Moreover, because $r_t > r_j$ for all j, we have $r_t - [r_{\beta+i} - r_{\beta}] = (r_t - r_{\beta+i}) + r_{\beta}$ and the last equation is equivalent to

$$r_t > r_t - [r_{\beta+i} - r_{\beta}], \ \forall i = 1, \dots, t - \beta \text{ and } r_t - [r_{\beta} - r_j] < r_t, \ \forall j = 1, \dots, \beta - 1.$$

That is, *t* is a ladder index in the β -th cyclic permutation.

Back to the hitting-time theorem: proof I

Proof: Let $R_i := 1 - S_i$ and $U_i := 1 - X_i$ for all $i = 1, \ldots, t$ and let $R_0 := 0$. Then

$$\{X_1 + \dots + X_t = t - 1\} = \{R_t = 1\},\$$

and

 $\{W = t\} = \{t \text{ is the first ladder index in } R_1, \ldots, R_t\}.$

By symmetry, for all β

 $\mathbb{P}[t \text{ is the first ladder index in } R_1, \dots, R_t] \\ = \mathbb{P}[t \text{ is the first ladder index in } R_1^{(\beta)}, \dots, R_t^{(\beta)}].$

Let \mathcal{E}_{β} be the event on the last line. Hence

$$\mathbb{P}[\boldsymbol{W}=t] = \mathbb{E}[\mathbb{1}_{\mathcal{E}_1}] = \frac{1}{t} \mathbb{E}\left[\sum_{\beta=1}^t \mathbb{1}_{\mathcal{E}_\beta}\right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Back to the hitting-time theorem: proof II

Proof: By Spitzer's combinatorial lemma, there is at most one cyclic permutation where *t* is the first ladder index. In particular, $\sum_{\beta=1}^{t} \mathbb{1}_{\mathcal{E}_{\beta}} \in \{0, 1\}$. So

$$\mathbb{P}[W=t] = \frac{1}{t} \mathbb{P}\left[\cup_{\beta=1}^{t} \mathcal{E}_{\beta}\right].$$

Finally observe that, because $R_0 = 0$ and $U_i \le 1$ for all *i*, the partial sum at the *j*-th ladder index must take value *j*. So the event $\{\bigcup_{\beta=1}^{t} \mathcal{E}_{\beta}\}$ implies that $\{R_t = 1\}$ because the last partial sum of all cyclic permutations is R_t . Similarly, because there is at least one cyclic permutation such that *t* is a ladder index, the event $\{R_t = 1\}$ implies $\{\bigcup_{\beta=1}^{t} \mathcal{E}_{\beta}\}$. Therefore,

$$\mathbb{P}[W=t]=\frac{1}{t}\mathbb{P}[R_t=1],$$

which concludes the proof.

ヘロト 人間 ト ヘヨト ヘヨト

Hitting-time theorem: example

Example (Poisson branching process)

Let (Z_t) be a Galton-Watson branching process with offspring distribution $Poi(\lambda)$ where $\lambda > 0$. Let *W* be its total progeny. By the hitting-time theorem, for $t \ge 1$,

$$\mathbb{P}[W=t] = \frac{1}{t} \mathbb{P}[X_1 + \dots + X_t = t-1]$$
$$= \frac{1}{t} e^{-\lambda t} \frac{(\lambda t)^{t-1}}{(t-1)!}$$
$$= e^{-\lambda t} \frac{(\lambda t)^{t-1}}{t!},$$

where we used that a sum of independent Poisson is Poisson.

ヘロト ヘアト ヘヨト ヘヨト

3 Random-walk representation

Application: Bond percolation on Galton-Watson trees

ヘロン ヘアン ヘビン ヘビン

ъ

Bond percolation on Galton-Watson trees I

Let *T* be a Galton-Watson tree for an offspring distribution with mean m > 1. Perform bond percolation on *T* with density *p*.

Theorem

Conditioned on nonextinction,

$$p_{\rm c}(T)=rac{1}{m}$$
 a.s.

Proof: Let C_0 be the cluster of the root in T with density p. We can think of C_0 as being generated by a Galton-Watson branching process where the offspring distribution is the law of $\sum_{i=1}^{X(1,1)} I_i$ where the I_i s are i.i.d. Ber(p) and X(1,1) is distributed according to the offspring distribution of T. In particular, by conditioning on X(1,1), the offspring mean under C_0 is mp. If $mp \leq 1$ then

$$1 = \mathbb{P}_{\rho}[|\mathcal{C}_0| < +\infty] = \mathbb{E}[\mathbb{P}_{\rho}[|\mathcal{C}_0| < +\infty \mid T]],$$

and we must have $\mathbb{P}_{\rho}[|\mathcal{C}_0| < +\infty \mid T] = 1$ a.s. In other words, $p_c(T) \ge \frac{1}{m}$ a.s.

Bond percolation on Galton-Watson trees II

On the other hand, the property of trees $\{\mathbb{P}_{\rho}[|\mathcal{C}_0| < +\infty | T] = 1\}$ is inherited. So by our previous lemma, conditioned on nonextinction, it has probability 0 or 1. That probability is of course 1 on extinction. So by

$$\mathbb{P}_{\rho}[|\mathcal{C}_0| < +\infty] = \mathbb{E}[\mathbb{P}_{\rho}[|\mathcal{C}_0| < +\infty \mid T]],$$

if the probability is 1 conditioned on nonextinction then it must be that $mp \leq 1$. In other words, for any fixed p such that mp > 1, conditioned on nonextinction $\mathbb{P}_p[|\mathcal{C}_0| < +\infty \mid T] = 0$ a.s. By monotonicity of $\mathbb{P}_p[|\mathcal{C}_0| < +\infty \mid T]$ in p, taking a limit $p_n \to 1/m$ proves the result.

イロト 不得 とくほ とくほ とう