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the chromatic number in Erdős-Rényi model . . . . . . . . 158
3.2.4 . Random graphs: degree sequence of preferential attach-

ment graphs . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.2.5 . Data science: stochastic bandits and the slicing method 170
3.2.6 Coda: Talagrand’s inequality . . . . . . . . . . . . . . . . 178

3.3 Potential theory and electrical networks . . . . . . . . . . . . . . 180
3.3.1 Martingales, the Dirichlet problem and Lyapounov functions182
3.3.2 Basic electrical network theory . . . . . . . . . . . . . . . 192
3.3.3 Bounding the effective resistance via variational principles 202
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Preface

This book arose from a set of lecture notes prepared for a one-semester topics
course I taught at the University of Wisconsin–Madison in 2014, 2017, 2020 and
2023 which attracted a wide spectrum of students in mathematics, computer sci-
ences, engineering, and statistics.

What is it about?

The purpose of the book is to provide a graduate-level introduction to discrete prob-
ability. Topics covered are drawn primarily from stochastic processes on graphs:
percolation, random graphs, Markov random fields, random walks on graphs, etc.
No attempt is made at covering these broad areas in depth. Rather, the emphasis
is on illustrating important techniques used to analyze such processes. Along the
way, many standard results regarding discrete probability models are worked out.

The “modern” in the title refers to the (non-exclusive) focus on nonasymptotic
methods and results, reflecting the impact of the theoretical computer science liter-
ature on the trajectory of this field. In particular several applications in randomized
algorithms, probabilistic analysis of algorithms and theoretical machine learning
are used throughout to motivate the techniques described (although, again, these
areas are not covered exhaustively).

Of course the selection of topics is somewhat arbitrary and driven in part by
personal interests. But the choice was guided by a desire to introduce techniques
that are widely used across discrete probability and its applications. The material
discussed here is developed in much greater depth in the following (incomplete
list of) excellent textbooks and expository monographs, many of which influenced
various sections of this book:

- Agarwal, Jiang, Kakade, Sun. Reinforcement learning: Theory and algorithms.
[AJKS22]

- Aldous, Fill. Reversible Markov chains and random walks on graphs. [AF]
- Alon, Spencer. The Probabilistic Method. [AS11]
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- Béla Bollobás. Random graphs. [Bol01]
- Boucheron, Lugosi, Massart. Concentration Inequalities: A Nonasymptotic Theory

of Independence. [BLM13]
- Chung, Lu. Complex graphs and networks. [CL06]
- Durrett. Random Graph Dynamics. [Dur06]
- Frieze and Karoński. Introduction to random graphs. [FK16]
- Grimmett. Percolation. [Gri10b]
- Janson, Luczak, Rucinski. Random Graphs. [JLR11]
- Lattimore, Szepesvári. Bandit Algorithms. [LS20]
- Levin, Peres, Wilmer. Markov chains and mixing times. [LPW06]
- Lyons, Peres. Probability on trees and networks. [LP16]
- Mitzenmacher, Upfal. Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. [MU05]
- Motwani, Raghavan. Randomized algorithms. [MR95]
- Rassoul-Agha, Seppäläinen. A course on large deviations with an introduction to

Gibbs measures. [RAS15]
- S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From

Theory to Algorithms. [SSBD14]
- van Handel. Probability in high dimension. [vH16]
- van der Hofstad. Random graphs and complex networks. Vol. 1. [vdH17]
- Vershynin. High-Dimensional Probability: An Introduction with Applications in

Data Science. [Ver18]

In fact the book is meant as a first foray into the basic results and/or toolkits detailed
in these more specialized references. My hope is that, by the end, the reader will
have picked up sufficient fundamental background to learn advanced material on
their own with some ease. I should add that I used many additional helpful sources;
they are acknowledged in the “Bibliographic remarks” at the end of each chapter.
It is impossible to cover everything. Some notable omissions include, e.g., graph
limits [Lov12], influence [KS05], and group-theoretic methods [Dia88], among
others.

Much of the material covered here (and more) can also be found in [HMRAR98],
[Gri10a], and [Bre17] with a different emphasis and scope.

Prerequisites

It is assumed throughout that the reader is fluent in undergraduate linear algebra,
for example, at the level of [Axl15], and basic real analysis, for example, at the
level of [Mor05].
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In addition, it is recommended that the reader has taken at least one semester of
graduate probability at the level of [Dur10]. I am also particularly fond of [Wil91],
which heavily influenced the appendix where measure-theoretic background is re-
viewed. Some familiarity with countable Markov chain theory is necessary, as
covered for instance in [Dur10, Chapter 6]. An advanced undergraduate or Mas-
ters’ level treatment such as [Dur12], [Nor98], [GS20], [Law06] or [Bre20] will
suffice however.

Organization

The book is organized around five major “tools.” The reader will have likely en-
countered those tools in prior probability courses. The goal here is to develop them
further, specifically with their application to discrete random structures in mind,
and to illustrate them in this setting on a variety of major, classical results and
applications.

In the interest of keeping the book relatively self-contained and serving the
widest spectrum of readers, each chapter begins with a “background” section which
reviews the basic material on which the rest of the chapter builds. The remaining
sections then proceed to expand on two or three important specializations of the
tools. While the chapters are meant to be somewhat modular, results from previous
chapters do occasionally make an appearance.

The techniques are illustrated throughout with simple examples first, and then
with more substantial ones in separate sections marked with the symbol . . I have
attempted to provide applications from many areas of discrete probability and the-
oretical computer science, although some techniques are better suited for certain
types of models or questions. The examples and applications are important: many
of the tools are quite straightforward (or even elementary), and it is only when seen
in action that their full power can be appreciated. Moreover, the . sections serve as
an excuse to introduce the reader to classical results and important applications—
beyond their reliance on specific tools.

Chapter 1 introduces some of the main models from probability on graphs that
we come back to repeatedly throughout the book. It begins with a brief review of
graph theory and Markov chain theory.

Chapter 2 starts out with the probabilistic method, including the first moment
principle and second moment method, and then it moves on to concentration in-
equalities for sums of independent random variables, mostly sub-Gaussian and
sub-exponential variables. It also discusses techniques to analyze the suprema of
random processes.

Chapter 3 turns to martingales. The first main topic there is the Azuma-
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Hoeffding inequality and the method of bounded differences with applications to
random graphs and stochastic bandit problems. The second main topic is electrical
network theory for random walks on graphs.

Chapter 4 introduces coupling. It covers stochastic domination and correlation
inequalities as well as couplings of Markov chains with applications to mixing. It
also discusses the Chen-Stein method for Poisson approximation.

Chapter 5 is concerned with spectral methods. A major topic there is the use
of the spectral theorem and geometric bounds on the spectral gap to control the
mixing time of a reversible Markov chain. The chapter also introduces spectral
methods for community recovery in network analysis.

Chapter 6 ends the book with applications of branching processes. Among
other applications, an introduction to the reconstruction problem on trees is pro-
vided. The final section gives a detailed analysis of the phase transition of the
Erdös-Rényi graph, where techniques from all chapters of the book are brought to
bear.
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Notation

Throughout the book, we will use the following notation.

• The real numbers are denoted by R, the nonnegative reals are denoted by
R+, the integers are denoted by Z, the nonnegative integers are denoted by
Z+, the natural numbers (i.e., positive integers) are denoted by N and the
rational numbers are denoted by Q. We will also use the notation Z+ :=
{0, 1, . . . ,+1}.

• For two reals a, b 2 R,

a ^ b := min{a, b}, a _ b := max{a, b},

and
a+ = 0 _ a, a� = 0 _ (�a).

• For a real a, bac is the largest integer that is smaller than or equal to a and
dae is the smallest integer that is larger than or equal to a.

• For x 2 R, the natural (i.e., base e) logarithm of x is denoted by log x. We
natural
logarithm

also let exp(x) = ex.

• For a positive integer n 2 N, we let

[n] := {1, . . . , n}.

• Let A be a set. The cardinality of A is denoted by |A|. The power set of A,
i.e., the collection of all of its subsets, is denoted by 2A.

• For two sets A,B, their cartesian product is denoted by A⇥B.

• We will use the following notation for standard vectors: 0 is the all-zero
vector, 1 is the all-one vector, and ei is the standard basis vector with a one
in coordinate i and a zero elsewhere. In each case, the dimension is implicit,
as well as whether it is a row or column vector.
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• For a vector u = (u1, . . . , un) 2 Rn and real p > 0, its p-norm (or `p-norm) p-norm
is

kukp :=

 
nX

i=1

|ui|
p

!
1/p

.

When p = +1, we have

kuk1 := max
i

|ui|.

We also use the notation kuk0 to denote the number of nonzero coordinates
of u (although it is not a norm; see Exercise 1.1). For two vectors u =
(u1, . . . , un),v = (v1, . . . , vn) 2 Rn, their inner product is

inner
product

hu,vi :=
nX

i=1

uivi.

The same notations apply to row vectors.

• For a matrix A, we denote the entries of A by A(i, j), Ai,j , or Aij . The i-th
row of A is denoted by A(i, ·) or Ai,·. The j-th column of A is denoted by
A(·, j) or A·,j . The transpose of A is AT .

• For a vector z = (z1, . . . , zd), we let diag(z) be the diagonal matrix with
diagonal entries z1, . . . , zd.

• The binomial coefficients are defined as
binomial
coefficients

✓
n

k

◆
=

n!

k!(n� k)!
,

where k, n 2 N with k  n and n! = 1 ⇥ 2 ⇥ · · · ⇥ n is the factorial of n.
Some standard approximations for

�
n

k

�
and n! are listed in Appendix A. See

also Exercises 1.2, 1.3, and 1.4.

• We use the abbreviation a.s. for “almost surely,” that is, with probability 1.
We use “w.p.” for “with probability.”

• Convergence in probability is denoted as !p. Convergence in distribution is
denoted as d

!.

• For a random variable X and a probability distribution µ, we write X ⇠ µ to
indicate that X has distribution µ. We write X

d
= Y if the random variables

X and Y have the same distribution.
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• For an event A, the random variable 1A is the indicator of A, that is, it is 1
if A occurs and 0 otherwise. We also use 1{A}.

• For probability measures µ, ⌫ on a countable set S, their total variation dis-
tance is

total
variation
distance

kµ� ⌫kTV := sup
A✓S

|µ(A)� ⌫(A)|.

• For nonnegative functions f(n), g(n) of n 2 Z+ we write f(n) = O(g(n))
if there exists a positive constant C > 0 such that f(n)  Cg(n) for all
n large enough. Similarly, f(n) = ⌦(g(n)) means that f(n) � cg(n) for
some constant c > 0 for all n large enough. The notation f(n) = ⇥(g(n))
indicates that both f(n) = O(g(n)) and f(n) = ⌦(g(n)) hold. We also
write f(n) = o(g(n)) or g(n) = !(f(n)) or f(n) ⌧ g(n) or g(n) � f(n)
if f(n)/g(n) ! 0 as n ! +1. If f(n)/g(n) ! 1 we write f(n) ⇠ g(n).
The same notations are used for functions of a real variable x as x ! +1.

xi


