ADDITIONAL EXERCISES FOR FINAL

AE 1 Consider the set of symmetric n imes n matrices

$$\mathbf{S}^n = ig\{X \in \mathbb{R}^{n imes n} \, : \, X = X^Tig\}$$
 .

a) Show that \mathbf{S}^n is a linear subspace of the vector space of n imes n matrices in the sense that for all $X_1,X_2\in \mathbf{S}^n$ and $lpha\in\mathbb{R}$

$$X_1+X_2\in {f S}^n,$$

and

$$\alpha X_1 \in \mathbf{S}^n.$$

b) Show that there exists a basis of \mathbf{S}^n of size $d = \binom{n}{2} + n$, that is, a collection of symmetric matrices $X_1, \ldots, X_d \in \mathbf{S}^n$ such that any matrix $Y \in \mathbf{S}^n$ can be written as a linear combination

$$Y = \sum_{i=1}^d lpha_i X_i,$$

for some $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$, and such that furthermore the matrices $X_1, \ldots, X_d \in \mathbf{S}^n$ are linearly independent in the sense that

$$\sum_{i=1}^d lpha_i X_i = \mathbf{0}_{n imes n} \quad \Longrightarrow \quad lpha_1 = \cdots = lpha_d = 0.$$

AE 2 Let A, B and C be events. Use the product rule to show that

$$\mathbb{P}[A \cap B | C] = \mathbb{P}[A | B \cap C] \, \mathbb{P}[B | C].$$

In words, the conditional probabilities satisfy the product rule.

AE 3 Let A, B, C be events.

- a) Assume that $\mathbb{P}[C] > 0$ and $A \perp\!\!\!\perp B|C$. Show that $A \perp\!\!\!\perp B^c|C$.
- b) Assume that $\mathbb{P}[B\cap C], \mathbb{P}[A\cap C]>0$. Show that $A\perp\!\!\!\perp B|C$ if and only if

$$\mathbb{P}[A|B\cap C]=\mathbb{P}[A|C] \quad ext{and} \quad \mathbb{P}[B|A\cap C]=\mathbb{P}[B|C].$$

AE 4 For $i = 1, \ldots, K$, let p_i be a probability mass function over the finite set $S_i \subseteq \mathbb{R}$ with mean μ_i and variance σ_i^2 . Let $\pi = (\pi_1, \ldots, \pi_K) \in \Delta_K$. Suppose X is drawn from the mixture distribution

$$p_X(x) = \sum_{i=1}^K \pi_i p_i(x).$$

Establish the following formulas:

a) $\mu := \mathbb{E}[X] = \sum_{i=1}^{K} \pi_i \mu_i$ b) $\sigma^2 := \operatorname{Var}[X] = \sum_{i=1}^{K} \pi_i (\sigma_i^2 + \mu_i^2 - \mu^2).$

AE 5 Suppose that X, Y have joint probability density function

$$f_{X,Y}(x,y) = c \exp igg[-rac{x^2}{2} - rac{(x-y)^2}{2} igg],$$

for $x,y\in \mathbb{R}^2$, for some constant c>0.

a) Find the value of the constant c. [*Hint:* The order of integration matters. You can do this without doing complicated integrals.]

b) Find the marginal density functions of X and Y. [*Hint:* You can do this without doing complicated integrals.]

c) Determine whether X and Y are independent. Justify your answer.

AE 6 Prove the *Inverting a Block Matrix* lemma by directly computing BB^{-1} and $B^{-1}B$ using the formula for the product of block matrices.

AE 7 Let f be a real-valued function taking a matrix $A = (a_{i,j})_{i,j} \in \mathbb{R}^{n \times n}$ as an input. Assume f is continuously differentiable in each entry of A. Consider the following matrix derivative

$$rac{\partial f(A)}{\partial A} = egin{pmatrix} rac{\partial f(A)}{\partial a_{1,1}} & \cdots & rac{\partial f(A)}{\partial a_{1,n}} \ dots & \ddots & dots \ rac{\partial f(A)}{\partial a_{n,1}} & \cdots & rac{\partial f(A)}{\partial a_{n,n}} \end{pmatrix}.$$

a) Show that, for any $B \in \mathbb{R}^{n imes n}$,

$$rac{\partial \operatorname{tr}(B^T A)}{\partial A} = B.$$

b) Show that, for any $\mathbf{x}=(x_i)_i, \mathbf{y}=(y_i)\in\mathbb{R}^n$,

$$\frac{\partial \, \mathbf{x}^T A \mathbf{y}}{\partial A} = \mathbf{x} \mathbf{y}^T.$$

AE 8 Consider a square block matrix with the same partitioning of the rows and columns, that is,

$$A=egin{pmatrix} A_{11}&A_{12}\ A_{21}&A_{22} \end{pmatrix}$$

where $A\in\mathbb{R}^{n imes n}$, $A_{ij}\in\mathbb{R}^{n_i imes n_i}$ for i=1,2 with the condition $n_1+n_2=n$. Show that the transpose can be written as

$$A^T = egin{pmatrix} A^T_{11} & A^T_{21} \ A^T_{12} & A^T_{22} \end{pmatrix}$$

by writing down the entries $(A^T)_{i,j}$ in terms of the blocks of A. Make sure to consider carefully all cases (e.g., $i \leq n_1$ and $j > n_1$, etc.).

AE 9 Let $A = (a_{i,j})_{i \in [n], j \in [m]} \in \mathbb{R}^{n \times m}$ and $B = (b_{i,j})_{i \in [p], j \in [q]} \in \mathbb{R}^{p \times q}$ be arbitrary matrices. Their Kronecker product, denoted $A \otimes B \in \mathbb{R}^{np \times mq}$, is the following matrix in block form

$$A\otimes B=egin{pmatrix} a_{1,1}B&\cdots&a_{1,m}B\dots&\ddots&dots\ a_{n,1}B&\cdots&a_{n,m}B\end{pmatrix}$$

The Kronecker product satisfies the following properties (which follow from block formulas, but which you do not have to prove): 1) if A, B, C, D are matrices of such size that one can form the matrix products AC and BD, then $(A \otimes B) (C \otimes D) = (AC) \otimes (BD)$; 2) the transpose of $A \otimes B$ is $(A \otimes B)^T = A^T \otimes B^T$.

a) Show that if D_1 and D_2 are square diagonal matrices, then so is $D_1 \otimes D_2$.

b) Show that if Q_1 and Q_2 have orthonormal columns, so does $Q_1 \otimes Q_2$.

c) Let $A_1 = U_1 \Sigma_1 V_1^T$ and $A_2 = U_2 \Sigma_2 V_2^T$ be full SVDs of $A_1, A_2 \in \mathbb{R}^{n \times n}$ respectively. Compute a full SVD of $A_1 \otimes A_2$.

d) Let A_1 and A_2 be as in c). Show that the rank of $A_1 \otimes A_2$ is $\operatorname{rk}(A_1) \operatorname{rk}(A_2)$.

AE 10 Let $\sum_{j=1}^r \sigma_j \mathbf{u}_j \mathbf{v}_j^T$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ be an SVD of $A \in \mathbb{R}^{n imes m}$.

a) How can one obtain the spectral decompositions of A^TA and AA^T from $\sigma_j, \mathbf{u}_j, \mathbf{v}_j,$ $j=1,\ldots,r$?

b) How many zero eigenvalues do $A^T A$ and $A A^T$ have?

c) What are the ranks of $A^T A$ and $A A^T$?