ADDITIONAL EXERCISES FOR FINAL

AE 1 Consider the set of symmetric $n \times n$ matrices

$$
\mathbf{S}^n = \left\{ X \in \mathbb{R}^{n \times n} \, : \, X = X^T \right\}.
$$

a) Show that \mathbf{S}^n is a linear subspace of the vector space of $n\times n$ matrices in the sense that for all $X_1, X_2 \in \mathbf{S}^n$ and $\alpha \in \mathbb{R}$

$$
X_1+X_2\in\mathbf{S}^n,
$$

and

$$
\alpha X_1\in\mathbf{S}^n.
$$

b) Show that there exists a basis of \mathbf{S}^n of size $d=\binom{n}{2}+n$, that is, a collection of \mathbf{x} ymmetric matrices $X_1,\ldots,X_d\in\mathbf{S}^n$ such that any matrix $Y\in\mathbf{S}^n$ can be written as a linear combination

$$
Y=\sum_{i=1}^d \alpha_i X_i,
$$

 $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$, and such that furthermore the matrices $X_1, \ldots, X_d \in \mathbf{S}^n$ are linearly independent in the sense that

$$
\sum_{i=1}^d \alpha_i X_i = \mathbf{0}_{n \times n} \quad \Longrightarrow \quad \alpha_1 = \cdots = \alpha_d = 0.
$$

AE 2 Let A , B and C be events. Use the product rule to show that

$$
\mathbb{P}[A \cap B|C] = \mathbb{P}[A|B \cap C] \mathbb{P}[B|C].
$$

In words, the conditional probabilities satisfy the product rule.

AE 3 Let A, B, C be events.

- a) Assume that $\mathbb{P}[C]>0$ and $A\perp\!\!\!\perp B|C.$ Show that $A\perp\!\!\!\perp B^c|C.$
- b) Assume that $\mathbb{P}[B\cap C], \mathbb{P}[A\cap C]>0.$ Show that $A\perp\!\!\!\perp B|C$ if and only if

$$
\mathbb{P}[A|B \cap C] = \mathbb{P}[A|C] \quad \text{and} \quad \mathbb{P}[B|A \cap C] = \mathbb{P}[B|C].
$$

AE 4 For $i=1,\ldots,K$, let p_i be a probability mass function over the finite set $\mathcal{S}_i\subseteq\mathbb{R}$ with m ean μ_i and variance $\sigma_i^2.$ Let $\bm{\pi} = (\pi_1, \ldots, \pi_K) \in \Delta_K.$ Suppose X is drawn from the mixture distribution

$$
p_X(x)=\sum_{i=1}^K\pi_i p_i(x).
$$

Establish the following formulas:

a)
$$
\mu := \mathbb{E}[X] = \sum_{i=1}^{K} \pi_i \mu_i
$$

b) $\sigma^2 := \text{Var}[X] = \sum_{i=1}^{K} \pi_i (\sigma_i^2 + \mu_i^2 - \mu^2).$

AE 5 Suppose that X, Y have joint probability density function

$$
f_{X,Y}(x,y) = c \exp \left[-\frac{x^2}{2} - \frac{(x-y)^2}{2} \right],
$$

for $x,y\in\mathbb{R}^2$, for some constant $c>0.$

a) Find the value of the constant c . [Hint: The order of integration matters. You can do this without doing complicated integrals.]

b) Find the marginal density functions of X and $Y.$ [*Hint:* You can do this without doing complicated integrals.]

c) Determine whether X and Y are independent. Justify your answer.

AE 6 Prove the *Inverting a Block Matrix* lemma by directly computing BB^{-1} and $B^{-1}B$ using the formula for the product of block matrices.

<code>AE 7</code> Let f be a real-valued function taking a matrix $A = (a_{i,j})_{i,j} \in \mathbb{R}^{n \times n}$ as an input. Assume f is continuously differentiable in each entry of $A.$ Consider the following matrix derivative

$$
\frac{\partial f(A)}{\partial A} = \begin{pmatrix} \frac{\partial f(A)}{\partial a_{1,1}} & \cdots & \frac{\partial f(A)}{\partial a_{1,n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial a_{n,1}} & \cdots & \frac{\partial f(A)}{\partial a_{n,n}} \end{pmatrix}.
$$

a) Show that, for any $B \in \mathbb{R}^{n \times n}$,

$$
\frac{\partial \operatorname{tr}(B^TA)}{\partial A}=B.
$$

b) Show that, for any $\mathbf{x} = (x_i)_i, \mathbf{y} = (y_i) \in \mathbb{R}^n$,

$$
\frac{\partial \mathbf{x}^T A \mathbf{y}}{\partial A} = \mathbf{x} \mathbf{y}^T.
$$

AE 8 Consider a square block matrix with the same partitioning of the rows and columns, that is,

$$
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}
$$

where $A\in \mathbb{R}^{n\times n}$, $A_{ij}\in \mathbb{R}^{n_i\times n_i}$ for $i=1,2$ with the condition $n_1+n_2=n.$ Show that the transpose can be written as

$$
A^T = \begin{pmatrix} A_{11}^T & A_{21}^T \\ A_{12}^T & A_{22}^T \end{pmatrix}
$$

by writing down the entries $(A^T)_{i,j}$ in terms of the blocks of A . Make sure to consider carefully all cases (e.g., $i\leq n_1$ and $j>n_1$, etc.).

 A E 9 Let $A=(a_{i,j})_{i\in [n],j\in [m]}\in\mathbb{R}^{n\times m}$ and $B=(b_{i,j})_{i\in [p],j\in [q]}\in\mathbb{R}^{p\times q}$ be arbitrary matrices. Their Kronecker product, denoted $A \otimes B \in \mathbb{R}^{np \times mq}$, is the following matrix in block form

$$
A\otimes B=\begin{pmatrix} a_{1,1}B&\cdots&a_{1,m}B\\ \vdots&\ddots&\vdots\\ a_{n,1}B&\cdots&a_{n,m}B\end{pmatrix}.
$$

The Kronecker product satisfies the following properties (which follow from block formulas, but which you do not have to prove): 1) if A,B,C,D are matrices of such size that one can form the matrix products AC and BD , then $(A \otimes B)\,(C \otimes D) = (AC) \otimes (BD);$ 2) the transpose of $A\otimes B$ is $(A\otimes B)^T = A^T\otimes B^T.$

a) Show that if D_1 and D_2 are square diagonal matrices, then so is $D_1\otimes D_2.$

b) Show that if Q_1 and Q_2 have orthonormal columns, so does $Q_1\otimes Q_2.$

c) Let $A_1=U_1\Sigma_1V_1^T$ and $A_2=U_2\Sigma_2V_2^T$ be full SVDs of $A_1,A_2\in\mathbb{R}^{n\times n}$ respectively. Compute a full SVD of $A_1\otimes A_2.$

d) Let A_1 and A_2 be as in c). Show that the rank of $A_1\otimes A_2$ is $\mathrm{rk}(A_1)\,\mathrm{rk}(A_2).$

 ${\sf AE}$ 10 Let $\sum_{j=1}^r \sigma_j {\bf u}_j {\bf v}_j^T$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ be an SVD of $A \in \mathbb{R}^{n \times m}.$

a) How can one obtain the spectral decompositions of A^TA and AA^T from $\sigma_j, \mathbf{u}_j, \mathbf{v}_j,$ $j=1,\ldots,r$?

b) How many zero eigenvalues do A^TA and AA^T have?

c) What are the ranks of A^TA and AA^T ?