ADDITIONAL EXERCISES FOR MIDTERM

AE 1 If **a** is a vector, then $\mathbf{a}_{r:s}$ is the vector of size s - r + 1, with entries a_r, \ldots, a_s , i.e., $\mathbf{a}_{r:s} = (a_r, \ldots, a_s)^T$. The vector $\mathbf{a}_{r:s}$ is called a slice. As a more concrete example, if **z** is the 4-vector $(1, -1, 2, 0)^T$, the slice $\mathbf{z}_{2:3} = (-1, 2)^T$. Suppose the *T*-vector **x** represents a time series or signal. The quantity

$$\mathcal{D}(\mathbf{x}) = (x_1 - x_2)^2 + (x_2 - x_3)^2 + \dots + (x_{T-1} - x_T)^2,$$

the sum of the differences of adjacent values of the signal, is called the Dirichlet energy of the signal. The Dirichlet energy is a measure of the roughness or wiggliness of the time series.

a) Express $\mathcal{D}(\mathbf{x})$ in vector notation using slicing.

b) How small can $\mathcal{D}(\mathbf{x})$ be? What signals \mathbf{x} have this minimum value of the Dirichlet energy?

c) Find a signal **x** with entries no more than one in absolute value that has the largest possible value of $\mathcal{D}(x)$. Give the value of the Dirichlet energy achieved.

AE 2 A vector of length n can represent the number of times each word in a dictionary of n words appears in a document. For example, $(25, 2, 0)^T$ means that the first dictionary word appears 25 times, the second one twice, and the third one not at all. Suppose the n-vector \mathbf{w} is the word count vector associated with a document and a dictionary of n words. For simplicity we will assume that all words in the document appear in the dictionary.

a) What is $\mathbf{1}^T \mathbf{w}$? Here $\mathbf{1}$ is an all-one vector of the appropriate size.

b) What does $w_{282}=0$ mean?

c) Let \mathbf{h} be the *n*-vector that gives the histogram of the word counts, i.e., h_i is the fraction of the words in the document that are word *i*. Use vector notation to express \mathbf{h} in terms of \mathbf{w} . (You can assume that the document contains at least one word.)

AE 3 Show that, if $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{m \times p}$, then $(BC)^T = C^T B^T$. [Hint: Check that the entries match.]

AE 4 Prove that $\operatorname{null}(B)$ is a linear subspace.

AE 5 Suppose that U_1 and U_2 are linear subspaces of vector space V. Show that $U_1 \cap U_2$ is a linear subspace of V. Is $U_1 \cup U_2$ always a subspace of V?

AE 6 Prove that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is linearly independent, then so is the list

$$\{\mathbf{v}_1-\mathbf{v}_2,\mathbf{v}_2-\mathbf{v}_3,\ldots,\mathbf{v}_{n-1}-\mathbf{v}_n,\mathbf{v}_n\},$$

obtained by subtracting from each vector (except the last one) the following vector.

AE 7 Suppose $A, B \in \mathbb{R}^{n \times n}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$. Find a (nontrivial) linear system of equations satisfied by any \mathbf{x} minimizing $||A\mathbf{x} - \mathbf{a}||^2 + ||B\mathbf{x} - \mathbf{b}||^2$.

AE 8 Let $g: D \to \mathbb{R}^d$ for some open set $D \subseteq \mathbb{R}$. Assume that g is continuously differentiable everywhere on D and that further

$$\|\mathbf{g}(t)\|^2 = 1, \qquad \forall t \in D.$$

Show that $\mathbf{g}'(t)^T \mathbf{g}(t) = 0$ for all $t \in D$. [Hint: Use composition.]

AE 9 Prove the Quadratic Bound for Strongly Convex Functions. [Hint: Adapt the proof of the Quadratic Bound for Smooth Functions.]

AE 10 Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix. Show that $A \preceq MI_{d \times d}$ if and only if the eigenvalues of A are at most M. Similarly, $mI_{d \times d} \preceq A$ if and only if the eigenvalues of A are at least m. [Hint: Observe that the eigenvectors of A are also eigenvectors of the identity matrix $I_{d \times d}$.]