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1. Find the orthogonal projection of the vector  onto the line spanned by

 in .

2. Let  be a projection matrix. Show that:

a) 

b) 

c) Check the above two claims for the projection onto the span of  in .

3. Let  be a linear subspace of  and let .

a) Show that .

b) Show that . [Hint: Write down the geometric

characterization of  in terms of the vector , and vice versa.]

4. Show that a matrix  with linearly independent columns can be factored into

, where  is lower triangular. [Hint: Modify our procedure to obtain the QR

decomposition.]

5. Suppose we consider  as an  matrix. Write out its QR decomposition explicitly.

6. Let , with , be upper triangular with non-zero entries on the diagonal. Show

that the columns of  are linearly independent.
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