HWK 4

1. a) Let $f, g: D \to \mathbb{R}$ for some $D \subseteq \mathbb{R}^d$ and let \mathbf{x}_0 be an interior point of D. Assume f and g are continuously differentiable at \mathbf{x}_0 . Let $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ for all \mathbf{x} in D. Compute $\nabla h(\mathbf{x}_0)$. [*Hint:* You can make use of the corresponding single variable result.]

b) Let $f: D \to \mathbb{R}$ for some $D \subseteq \mathbb{R}^d$ and let \mathbf{x}_0 be an interior point of D where $f(\mathbf{x}_0) \neq 0$. Assume f is continuously differentiable at \mathbf{x}_0 . Compute $\nabla(1/f)$. [*Hint:* You can make use of the corresponding single variable result.]

c) Let $f, g: D \to \mathbb{R}$ for some $D \subseteq \mathbb{R}^d$ and let \mathbf{x}_0 be an interior point of D. Assume f and g are twice continuously differentiable at \mathbf{x}_0 . Let $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ for all \mathbf{x} in D. Compute $\mathbf{H}_h(\mathbf{x}_0)$.

2. State Taylor's Theorem for the function

$$f(x_1,x_2)=\cos(x_1x_2)$$

at $(x_1, x_2) = (0, 0)$. In particular, give explicit expressions for the gradient and Hessian terms. [*Hint:* You can use standard formulas for the derivatives of single-variable functions without proof.] \triangleleft

3. Fix a partition C_1, \ldots, C_k of [n]. Under the k-means objective, its cost is

$$\mathcal{G}(C_1,\ldots,C_k) = \min_{oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_k\in\mathbb{R}^d} G(C_1,\ldots,C_k;oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_k)$$

where

$$G(C_1,\ldots,C_k;oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_k) = \sum_{i=1}^k \sum_{j\in C_i} \|\mathbf{x}_j - oldsymbol{\mu}_i\|^2 = \sum_{j=1}^n \|\mathbf{x}_j - oldsymbol{\mu}_{c(j)}\|^2,$$

with $oldsymbol{\mu}_i \in \mathbb{R}^d$, the center of cluster $C_i.$

a) Suppose $oldsymbol{\mu}_i^*$ is a global minimizer of

$$F_i(oldsymbol{\mu}_i) = \sum_{j \in C_i} \| \mathbf{x}_j - oldsymbol{\mu}_i \|^2,$$

for each i. Show that μ_1^*,\ldots,μ_k^* is a global minimizer of $G(C_1,\ldots,C_k;\mu_1,\ldots,\mu_k).$

- b) Compute the gradient of $F_i(\mu_i)$.
- c) Find the stationary points of $F_i(\mu_i)$.
- d) Compute the Hessian of $F_i(\mu_i)$.
- 4. Consider the function

$$f(x_1, x_2) = (x_2 - x_1^2)(x_2 - 2x_1^2).$$

a) Compute the gradient and Hessian of f at (0,0).

b) Show that (0,0) is not a strict local minimizer of f. [*Hint:* Consider a parametric curve of the form $x_1 = t^{\alpha}$ and $x_2 = t^{\beta}$.]

c) Let $\mathbf{g}(t) = \mathbf{a}t$ for some nonzero vector $\mathbf{a} = (a_1, a_2)^T \in \mathbb{R}^2$. Show that t = 0 is a strict local minimizer of $h(t) = f(\mathbf{g}(t))$.