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1 Recall that the trace) of a square matrix , denoted , is the sum of its diagonal entries.

a) Show that, for any  and , it holds that .

b) Use a) to show that more generally  for any matrices

 for which ,  and  are well-defined.

c) Show that, for any , .

d) For a matrix , the vectorization of  is the following vector

that is, it is obtained by stacking the columns of the matrix on top of one another. Show that, for

any , it holds that .

2 Let  be an SVD of  with .

Define

Show that

3 Let  be a square matrix with full SVD .

a) Justify the following formula

b) Let

Show that  is orthogonal and that  is positive semidefinite. A factorization of the form

 is called a polar decomposition.

4 Assume that, for each ,  is a univariate Gaussian with mean  and known variance

. Show that the maximum likelihood estimator of  solves the weighted least squares

problem, as defined in a previous assignment.
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5 a) Show that the exponential family form of the Poisson distribution with mean  has sufficient

statistic  and natural parameter .

b) In Poisson regression, we assume that  is Poisson with . Compute the gradient

and Hessian of the minus log-likelihood in this case.
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