Course: Math 535 - Mathematical Methods in Data Science (MMiDS) - Spring 2024

HWK 9

1 Let $X \sim \mathrm{Mult}(n, oldsymbol{\pi})$ with $n \geq 1$ and $oldsymbol{\pi} \in \Delta_K$. Establish the following formulas:

- a) $\mathbb{E}[X] = n oldsymbol{\pi}$
- b) $\operatorname{Var}[X] = n[\operatorname{Diag}({\boldsymbol{\pi}}) {\boldsymbol{\pi}}{\boldsymbol{\pi}}^T].$

2 Show that $H_{L_n}(\mathbf{w})$ is positive semidefinite, where L_n is the negative log-likelihood in the generalized linear model.

3 Let A, B, C be events such that $\mathbb{P}[B \cap C] > 0$.

a) First show that

$$\mathbb{P}[A|B\cap C] = rac{\mathbb{P}[C|A\cap B]\,\mathbb{P}[A|B]}{\mathbb{P}[C|A\cap B]\,\mathbb{P}[A|B] + \mathbb{P}[C|A^c\cap B]\,\mathbb{P}[A^c|B]}$$

b) Now suppose $B \perp\!\!\!\perp C | A$. Show that

$$\mathbb{P}[A|B\cap C] = rac{\mathbb{P}[C|A]\,\mathbb{P}[A|B]}{\mathbb{P}[C|A]\,\mathbb{P}[A|B] + \mathbb{P}[C|A^c]\,\mathbb{P}[A^c|B]}$$

4 Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{W}$ be discrete random vectors.

- a) Show that $\mathbf{X} \perp\!\!\!\perp (\mathbf{Y}, \mathbf{Z}) | \mathbf{W}$ implies that $\mathbf{X} \perp\!\!\!\perp \mathbf{Y} | \mathbf{W}$ and $\mathbf{X} \perp\!\!\!\perp \mathbf{Z} | \mathbf{W}$.
- b) Suppose that $\mathbf{X} \perp\!\!\!\perp \mathbf{Y} | \mathbf{Z}$ and $\mathbf{X} \perp\!\!\!\perp \mathbf{Z}$. Show that $\mathbf{X} \perp\!\!\!\perp (\mathbf{Y}, \mathbf{Z})$.

5 Let $\mathbf{X} \in \mathbb{R}^d$ be a random vector with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ and let $B \in \mathbb{R}^{\ell \times d}$ be a deterministic matrix. Define the random vector $\mathbf{Y} = B\mathbf{X}$.

- a) Compute $\mathbb{E}[\mathbf{Y}]$.
- b) Compute $Cov[\mathbf{X}, \mathbf{Y}]$.
- c) Compute $Cov[\mathbf{Y}, \mathbf{Y}]$.

6 Let the process $(\mathbf{X}_{0:T}, \mathbf{Y}_{1:T})$ have a joint density of the form

$$f_{\mathbf{X}_0}(\mathbf{x}_0) \prod_{t=1}^T f_{\mathbf{X}_t | \mathbf{X}_{t-1}}(\mathbf{x}_t | \mathbf{x}_{t-1}) f_{\mathbf{Y}_t | \mathbf{X}_t}(\mathbf{y}_t | \mathbf{x}_t).$$

Show that, for any t = 1, ..., T, \mathbf{Y}_t is conditionally independent of $\mathbf{Y}_{1:t-1}$ given \mathbf{X}_t . 7 Consider the vector-valued function $\mathbf{f} = (f_1, ..., f_d) : \mathbb{R}^d \to \mathbb{R}^d$ defined as

$$f_i(\mathbf{x}) = x_i^3,$$

for all $\mathbf{x} \in \mathbb{R}^d$ and all $i=1,\ldots,d.$

- a) Compute the Jacobian ${\bf J_f}({\bf x})$ for all ${\bf x}.$
- b) When is $\mathbf{J_f}(\mathbf{x})$ invertible?
- c) When is $\mathbf{J_f}(\mathbf{x})$ positive semidefinite?