PRACTICE FINAL

1 Short questions.

a) Consider two matrices $A, B \in \mathbb{R}^{n \times m}$. Suppose that, for $j = 1, \ldots, m$, the *j*-th column of A is a linear combination of the first *j* columns of B. How do we express this as a matrix equation? Choose **one** of the matrix equations below and justify your choice.

(i) A = GB for some upper triangular matrix G.

- (ii) A = BH for some upper triangular matrix H.
- (iii) A = FB for some lower triangular matrix F.
- (iv) A = BJ for some lower triangular matrix J.
- b) Find a matrix \boldsymbol{A} such that the function

$$f(\mathbf{x})=\left(x_1,rac{x_1+x_2}{2},x_2,rac{x_2+x_3}{2},x_3,rac{x_3+x_4}{2},x_4,rac{x_4+x_5}{2},x_5
ight),$$

can be written as $f(\mathbf{x}) = A\mathbf{x}$ for any vector $\mathbf{x} = (x_1, \dots, x_5) \in \mathbb{R}^5$.

c) Complete the following sentence: if **v** is an eigenvector of $A^T A$ with eigenvalue $\lambda \neq 0$, then **BLANK1** is an eigenvector of AA^T with eigenvalue **BLANK2**.

2 a) Prove this key property of the spectral decomposition: if $A = Q\Lambda Q^T$ is a spectral decomposition of the symmetric matrix $A \in \mathbb{R}^{n \times n}$, then $A^k = Q\Lambda^k Q^T$ is a spectral decomposition of A^k . In particular, show that the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$ if the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$.

b) Use the matrix

$$B=egin{pmatrix} 1&-1\0&0 \end{pmatrix}$$

to show that this last property does not hold for singular values by computing an SVD of B and B^2 .

c) Suppose the singular values of C are $\sigma_1 \ge \cdots \ge \sigma_r > 0$. Show that the singular values of CC^TC are $\sigma_1^3, \ldots, \sigma_r^3$.

3 Consider the following n vectors in \mathbb{R}^n

$$\mathbf{a}_1 = egin{pmatrix} 1 \ 0 \ 0 \ dots \ 0 \ dots \ 0 \end{pmatrix}, \quad \mathbf{a}_2 = egin{pmatrix} 1 \ 1 \ 0 \ dots \ 0 \end{pmatrix}, \quad \mathbf{a}_3 = egin{pmatrix} 1 \ 1 \ 1 \ dots \ 0 \end{pmatrix}, \quad \cdots \quad \mathbf{a}_n = egin{pmatrix} 1 \ 1 \ 1 \ dots \ 0 \end{pmatrix}.$$

a) Show that $\mathbf{a}_1, \ldots, \mathbf{a}_n$ are linearly independent. What linear subspace are they a basis of?

b) Describe what happens when you run the Gram-Schmidt algorithm to this list of vectors, that is, what $\mathbf{q}_1, \ldots, \mathbf{q}_n$ are produced.

c) Give the matrices Q and R obtained from b).

4 Let $A \in \mathbb{R}^{n \times m}$ have full column rank. For $B \in \mathbb{R}^{m \times n}$, assume that $I_{n \times n} + AB$ is invertible (i.e., nonsingular).

a) Show that $I_{m \times m} + BA$ is invertible. [*Hint:* Try multiplying $I_{n \times n} + AB$ by $A\mathbf{x}$.]

b) Prove that

$$B(I_{n\times n}+AB)^{-1}=(I_{m\times m}+BA)^{-1}B.$$

[*Hint:* Try multiplying $I_{m \times m} + BA$ by B.]

5 Let $A \in \mathbb{R}^{n imes m}$ have linearly independent columns.

a) Let $X \in \mathbb{R}^{m \times k}$ be a matrix with columns $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathbb{R}^m$ and let $B \in \mathbb{R}^{n \times k}$ be a matrix with columns $\mathbf{b}_1, \ldots, \mathbf{b}_k \in \mathbb{R}^n$. Rewrite

$$||AX - B||_{F}^{2}$$

in terms of the columns of X and B.

b) Consider the problem of minimizing $||AX - B||_F^2$ over all matrices $X \in \mathbb{R}^{m \times k}$. Show that there is a unique solution X^* and express it in terms of A and B in matrix form.

6 Let $\mathbf{X} = (X_1, X_2, X_3)$ be distributed as $N_3(oldsymbol{\mu}, oldsymbol{\Sigma})$ where

$$m{\mu} = egin{pmatrix} 2 \ -1 \ 3 \end{pmatrix} \qquad m{\Sigma} = egin{pmatrix} 4 & 1 & 0 \ 1 & 2 & 1 \ 0 & 1 & 3 \end{pmatrix}.$$

a) Compute $f_{X_1,X_2|X_3}$, i.e., the conditional density of (X_1,X_2) given X_3 .

b) What is the correlation coefficient between X_1 and X_2 under the marginal density f_{X_1,X_2} ?