PRACTICE MIDTERM 1

1 Give formal definitions of the following terms.

- a) Linear subspace of \mathbb{R}^n .
- b) Rank of a matrix $A \in \mathbb{R}^{n imes m}$.

2 Let

$$\mathbf{v} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \mathbf{w}_1 = rac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \mathbf{w}_2 = rac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}.$$

Compute the orthogonal projection of \mathbf{v} onto $W = \operatorname{span}(\mathbf{w}_1, \mathbf{w}_2)$. Make sure to justify your answer. [*Hint*: Are \mathbf{w}_1 and \mathbf{w}_2 orthonormal?]

- $m{3}$ Let $f:\mathbb{R}^d o\mathbb{R}$ be a convex function. Give a formal proof that the following sets are convex.
- a) The epigraph of f, i.e., the set $\mathbf{epi}f = \{(\mathbf{x},y) \,:\, \mathbf{x} \in \mathbb{R}^d, y \geq f(\mathbf{x})\}.$
- b) The set G of global minimizers of f.

4 Let $A \in \mathbb{R}^{n imes n}$ be positive definite. Show that the following quantities are strictly positive:

- a) all diagonal entries of A;
- b) the total sum of all entries of A.

Make sure to justify your answer.

5 Let $\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ be pairwise orthogonal, i.e., for all $i \neq j$ the vectors \mathbf{v}_i and \mathbf{v}_j are orthogonal. Assume that, for $i = 1, \ldots, m$, it holds that $\|\mathbf{v}_i\| = i$ (i.e., $\|\mathbf{v}_1\| = 1$, $\|\mathbf{v}_2\| = 2$, $\|\mathbf{v}_3\| = 3$, etc.).

a) Let V be the matrix with columns $\mathbf{v}_1, \ldots, \mathbf{v}_m$. Compute $V^T V$. Make sure to justify your answer.

b) Use Gram-Schmidt to compute an orthonormal basis of the subspace $\mathcal{V} = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_m)$. Make sure to justify your answer.