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K-Means Clustering

Motivation

SLIDESHOW

Problem Setup

Input: n vectors x1,...,X, € R and number of clusters k
Output(?): partition of the points into k clusters

Definition 1 (Partition). A partition of [n] = {1,...,n} of size k is a collection of non-empty
subsets C1,...,Cy C [n] that:

e are pairwise disjoint: C; NC; = () for all ¢ # j

e cover all of [n]: UE_,C; = [n]

Knowledge Check 1: Which of these is a valid partition of {1,2,3,4} into k = 2 clusters?
A) {1,2},{3,4}
B) {1,2},{2,3,4}
C) {1,2},{1,3,4}
)

D) {1,2,3},{4,5}

1 2 s A2 1 s &3 1 s A4 2

X1

X3

For k£ = 2, a natural partition would be:

Cy ={1,2}, Cy={3,4}


https://raw.githack.com/MMiDS-textbook/MMiDS-textbook.github.io/main/just_the_code/roch_mmids_chap_intro_notebook_slides.slides.html

The K-Means Objective

Goal(?): partition “with small within-cluster distances”

For a partition C1, ..., C}, define:

G(Cy,...,Cr) = min ZZHXJ will®

Rd
Hoyseens g €RE ST 1jeC;

where p; is the representative (center) of cluster . Our goal is to find a partition C1, ..., Cy that
minimizes G(Ch,...,Cy), i.e., solves the problem

k
. . . 2
min G(Cy,...,C;) = min min_ E E x5 — p;]

Ch,..,C, Ch,...,C,
1 k 1 k Hpse i ERT ST e

over all partitions of [n] of size k.

Remark 1 (Why squared distances?). While using distances ||x; — ;|| might seem more natural,
squared distances offer a key advantage: it decomposes into a sum over coordinates (as we will
see in proving Theorem 1). Each term in the sum depends on a single component of a single
representative. This property make the optimization problem more tractable.

Knowledge Check 2: What happens to the K-means objective value if we increase k from 2 to
37
A) Always increases

B) Always decreases

)
)

C) Could increase or decrease
)

D) Stays the same

Theorem 1 (Optimal Representatives). Fix a partition C1,...,Ck. The optimal representatives

are the centroids:
"= |c G 2%
jeC;

Proof. Let’s prove this in general while working through our example where k£ = 2, d = 2, (1 =

{1,2}, Cy = {3,4}.



General case: Example: 1. Objective:
1. Write objective as sum over coordinates
m and clusters i: 1 = g ||” + llx2 = |12

2 2
k ko d + %3 = po]|” + [[x4 — po]
2 2
i — ul? = T — 1L
Z Z I = hil Z Z Z( jm = Him) 2. For first cluster and first coordinate (i.e.,

i=1,m=1):

2. For fixed ¢ and m, get quadratic function: 9 5
(1= p11)” + (2 = p1)

icc, icc Expand:
3. Take derivative, set to zero: (1% +2%) — 2u11 (1 + 2) + 2uf,
d =5— 61y + 243
TQim = -2 Z Zjm + 2|Ci| ttim = 0 H11 !
Him JEC; 3. Take derivative:
4. Solve: —6+4+4p11 =0
. 1
Him = W Z Tjm 4. Solve: 6
This proves the centroids minimize the objective. O

Example (continued): For partition C, = {1,2},Cy = {3,4}:
1), 1(2) _ (15
2 2\1) \15
L_L(=2), 1 (-1 _ (15
Ha=5\-1) T2 \-2) 7 \-15

Optimal representatives:

=%

X3




Knowledge Check 3: If a cluster contains points (0,0), (2,0), and (4,0), what is its centroid?

Theorem 2 (Optimal Clustering). Fix representatives g, ..., ;. The optimal partition assigns

each point to its closest representative:

jECr = Iy — pull = minlbx; — g

Proof. Let’s prove this using our example where k¥ = 2, d = 2, and we have representatives p; =

(1.5,1.5), py = (—1.5,—1.5).

General case:
1. Write objective as sum over points:

k n
S b wl = 0 s |
i=1 jeC; j=1

where ¢(j) is cluster assignment of point j
(i.e., ¢(j) =i is same as j € C;).

2. Since sum is independent across points,
minimize each term separately:

2
i |
o) 117 c(7)
3. Since square root is monotone:
. 2 .
argmin ||x; — p;[|” = arg min ||x; — p|
1 (2

Therefore assign point j to closest represen-
tative.

Example for point x; = (1,2):

1. Need to minimize one of:

e = pall* or [lx1 = pao

2. Compute both distances:

1 — gl = V(1 = 1.5)2 + (2 - 1.5)?

=v0.5~x0.71

11 — poll = /(1 = (=1.5))2 + (2 — (- 1.5))2
— V205 ~ 4.53

3. Since 0.71 < 4.53, assign to cluster 1

This proves point x; should be assigned to cluster 1. Similar calculations for other points confirm

the clustering is optimal.

Example (continued): For point xs:

O]

Iz — il = /@ = 15)° + (1 - L5)? = V05

<2 — g3l = V(2= (=1.5))2 + (1 — (~1.5))2 = V20.5

For point x3:

x5 — pil| = V(=2 = 1.5)2 + (-1 — 1.5)2 = v/20.5

> [lxs — g3l = V(=2 = (-1.5)2 + (-1 - (-1.5))2 = V0.5

Similar calculations confirm optimality for the other point.



Implementation

SLIDESHOW

Convergence Result

Theorem 3 (Convergence of k-means). The sequence of objective function values produced by the
k-means algorithm is non-increasing. That is, if we denote by G) the objective value at iteration

t, then

g(t+1) < g(t)

Proof. Let’s see why each iteration cannot increase the objective value.

General case:

Let Cf,...,C}, be current clusters with rep-
resentatives pf, ..., Q).
After Step 1, new representatives pf, ..., pj
satisfy:
i 2 2
" /
Do w303 I — wll
i=1 jeC! i=1 jeC;

by Theorem 1 (optimal representatives).
After Step 2, new clusters C7, ..., C} satisfy:

k k
Do = wlF <D0 - w?
i=1 jeC! i=1 jeC!

by Theorem 2 (optimal clustering).

Example:
Start with C; = {1,2}, C2 = {3,4} and rep-
resentatives:

= (3) = ()

Step 1: New optimal representatives:

= (15) = (013)
reduce objective value from
0°+2°4+2°+0° =8
to
0.5+05+05+05=2

Step 2: Check distances to pf, p§ for each
point. Points stay in same clusters, no fur-
ther improvement.

Combining the inequalities shows objective cannot increase. Since it’s bounded below by 0, it

converges.

Matrix Representation

Stack data vectors into matrix:

Stack representatives similarly:

T11
Z21

Tnl

M1t
21

| M1

O]

x12 T1d
x22 Tad
Tn2 Tnd
H12 Hid
22 H2d
HE2 Hkd |



https://raw.githack.com/MMiDS-textbook/MMiDS-textbook.github.io/main/just_the_code/roch_mmids_chap_intro_notebook_slides.slides.html

Encode cluster assignments in matrix Z = [Zj¢];, where:

Zj

~J 1 if point j assigned to cluster £
£ 0 otherwise

Representative of cluster assigned to point j:
k
T T
uloy = Zuni = (ZU);,
(=1

K-means objective in matrix form:
G(Cr,..,Crs sy ) = || X = ZU|3

where || - |7 is the Frobenius norm:

[AllF =

Key Insight: K-means finds a low-rank matrix factorization ZU approximating data matrix X.

Example (continued): For our simple example with partition C1 = {1,2},Cy = {3,4}:
Assignment matrix:

SO = =
_ -0 O

With optimal representatives:

1.5 15
U= [—1.5 —1.5}

Product ZU gives representative for each point:

1.5 1.5
1.5 1.5
2V = -15 —-1.5
-1.5 —-1.5

Back to the dataset
SLIDESHOW
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