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K-Means Clustering

Motivation

SLIDESHOW

Problem Setup

Input: n vectors x1, . . . ,xn ∈ Rd and number of clusters k
Output(?): partition of the points into k clusters

Definition 1 (Partition). A partition of [n] = {1, . . . , n} of size k is a collection of non-empty
subsets C1, . . . , Ck ⊆ [n] that:

• are pairwise disjoint: Ci ∩ Cj = ∅ for all i ̸= j

• cover all of [n]: ∪k
i=1Ci = [n]

Knowledge Check 1: Which of these is a valid partition of {1, 2, 3, 4} into k = 2 clusters?

A) {1, 2}, {3, 4}

B) {1, 2}, {2, 3, 4}

C) {1, 2}, {1, 3, 4}

D) {1, 2, 3}, {4, 5}

Example: Consider points in R2:

x1 =

(
1
2

)
,x2 =

(
2
1

)
,x3 =

(
−2
−1

)
,x4 =

(
−1
−2

)

x

y

x1

x2

x3

x4

For k = 2, a natural partition would be:

C1 = {1, 2}, C2 = {3, 4}
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The K-Means Objective

Goal(?): partition “with small within-cluster distances”

For a partition C1, . . . , Ck, define:

G(C1, . . . , Ck) = min
µ1,...,µk∈Rd

k∑
i=1

∑
j∈Ci

∥xj − µi∥
2

where µi is the representative (center) of cluster i. Our goal is to find a partition C1, . . . , Ck that
minimizes G(C1, . . . , Ck), i.e., solves the problem

min
C1,...,Ck

G(C1, . . . , Ck) = min
C1,...,Ck

min
µ1,...,µk∈Rd

k∑
i=1

∑
j∈Ci

∥xj − µi∥2

over all partitions of [n] of size k.

Remark 1 (Why squared distances?). While using distances ∥xj − µi∥ might seem more natural,
squared distances offer a key advantage: it decomposes into a sum over coordinates (as we will
see in proving Theorem 1). Each term in the sum depends on a single component of a single
representative. This property make the optimization problem more tractable.

Knowledge Check 2: What happens to the K-means objective value if we increase k from 2 to
3?

A) Always increases

B) Always decreases

C) Could increase or decrease

D) Stays the same

Theorem 1 (Optimal Representatives). Fix a partition C1, . . . , Ck. The optimal representatives
are the centroids:

µ∗
i =

1

|Ci|
∑
j∈Ci

xj

Proof. Let’s prove this in general while working through our example where k = 2, d = 2, C1 =
{1, 2}, C2 = {3, 4}.
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General case:
1. Write objective as sum over coordinates
m and clusters i:

k∑
i=1

∑
j∈Ci

∥xj − µi∥
2 =

k∑
i=1

d∑
m=1

∑
j∈Ci

(xjm − µim)2


2. For fixed i and m, get quadratic function:

qim(µim) =
∑
j∈Ci

x2jm−2µim

∑
j∈Ci

xjm+|Ci|µ2
im

3. Take derivative, set to zero:

d

dµim
qim = −2

∑
j∈Ci

xjm + 2|Ci|µim = 0

4. Solve:

µ∗
im =

1

|Ci|
∑
j∈Ci

xjm

Example: 1. Objective:

∥x1 − µ1∥
2 + ∥x2 − µ1∥

2

+ ∥x3 − µ2∥
2 + ∥x4 − µ2∥

2

2. For first cluster and first coordinate (i.e.,
i = 1, m = 1):

(1− µ11)
2 + (2− µ11)

2

Expand:

(12 + 22)− 2µ11(1 + 2) + 2µ2
11

= 5− 6µ11 + 2µ2
11

3. Take derivative:

−6 + 4µ11 = 0

4. Solve:

µ∗
11 =

6

4
= 1.5

This proves the centroids minimize the objective.

Example (continued): For partition C1 = {1, 2}, C2 = {3, 4}:

Optimal representatives:

µ∗
1 =

1

2

(
1
2

)
+

1

2

(
2
1

)
=

(
1.5
1.5

)
µ∗
2 =

1

2

(
−2
−1

)
+

1

2

(
−1
−2

)
=

(
−1.5
−1.5

)

x

y

x1

x2

x3

x4

µ∗
1

µ∗
2
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Knowledge Check 3: If a cluster contains points (0, 0), (2, 0), and (4, 0), what is its centroid?

A) (0, 0)

B) (2, 0)

C) (4, 0)

D) (3, 0)

Theorem 2 (Optimal Clustering). Fix representatives µ1, . . . ,µk. The optimal partition assigns
each point to its closest representative:

j ∈ Ci ⇐⇒ ∥xj − µi∥ = min
ℓ

∥xj − µℓ∥

Proof. Let’s prove this using our example where k = 2, d = 2, and we have representatives µ1 =
(1.5, 1.5), µ2 = (−1.5,−1.5).

General case:
1. Write objective as sum over points:

k∑
i=1

∑
j∈Ci

∥xj − µi∥
2 =

n∑
j=1

∥∥∥xj − µc(j)

∥∥∥2
where c(j) is cluster assignment of point j
(i.e., c(j) = i is same as j ∈ Ci).
2. Since sum is independent across points,
minimize each term separately:

min
c(j)

∥∥∥xj − µc(j)

∥∥∥2
3. Since square root is monotone:

argmin
i

∥xj − µi∥
2 = argmin

i
∥xj − µi∥

Therefore assign point j to closest represen-
tative.

Example for point x1 = (1, 2):
1. Need to minimize one of:

∥x1 − µ1∥
2 or ∥x1 − µ2∥

2

2. Compute both distances:

∥x1 − µ1∥ =
√
(1− 1.5)2 + (2− 1.5)2

=
√
0.5 ≈ 0.71

∥x1 − µ2∥ =
√

(1− (−1.5))2 + (2− (−1.5))2

=
√
20.5 ≈ 4.53

3. Since 0.71 < 4.53, assign to cluster 1

This proves point x1 should be assigned to cluster 1. Similar calculations for other points confirm
the clustering is optimal.

Example (continued): For point x2:

∥x2 − µ∗
1∥ =

√
(2− 1.5)2 + (1− 1.5)2 =

√
0.5

< ∥x2 − µ∗
2∥ =

√
(2− (−1.5))2 + (1− (−1.5))2 =

√
20.5

For point x3:

∥x3 − µ∗
1∥ =

√
(−2− 1.5)2 + (−1− 1.5)2 =

√
20.5

> ∥x3 − µ∗
2∥ =

√
(−2− (−1.5))2 + (−1− (−1.5))2 =

√
0.5

Similar calculations confirm optimality for the other point.
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Implementation

SLIDESHOW

Convergence Result

Theorem 3 (Convergence of k-means). The sequence of objective function values produced by the
k-means algorithm is non-increasing. That is, if we denote by G(t) the objective value at iteration
t, then

G(t+1) ≤ G(t)

Proof. Let’s see why each iteration cannot increase the objective value.

General case:
Let C ′

1, . . . , C
′
k be current clusters with rep-

resentatives µ′
1, . . . ,µ

′
k.

After Step 1, new representatives µ′′
1, . . . ,µ

′′
k

satisfy:

k∑
i=1

∑
j∈C′

i

∥∥xj − µ′′
i

∥∥2 ≤ k∑
i=1

∑
j∈C′

i

∥∥xj − µ′
i

∥∥2
by Theorem 1 (optimal representatives).
After Step 2, new clusters C ′′

1 , . . . , C
′′
k satisfy:

k∑
i=1

∑
j∈C′′

i

∥∥xj − µ′′
i

∥∥2 ≤ k∑
i=1

∑
j∈C′

i

∥∥xj − µ′′
i

∥∥2
by Theorem 2 (optimal clustering).

Example:
Start with C1 = {1, 2}, C2 = {3, 4} and rep-
resentatives:

µ′
1 =

(
1
2

)
,µ′

2 =

(
−2
−1

)
Step 1: New optimal representatives:

µ′′
1 =

(
1.5
1.5

)
,µ′′

2 =

(
−1.5
−1.5

)
reduce objective value from

02 + 22 + 22 + 02 = 8

to
0.5 + 0.5 + 0.5 + 0.5 = 2

Step 2: Check distances to µ′′
1, µ

′′
2 for each

point. Points stay in same clusters, no fur-
ther improvement.

Combining the inequalities shows objective cannot increase. Since it’s bounded below by 0, it
converges.

Matrix Representation

Stack data vectors into matrix:

X =


xT
1

xT
2
...
xT
n

 =


x11 x12 · · · x1d
x21 x22 · · · x2d
...

...
. . .

...
xn1 xn2 · · · xnd


Stack representatives similarly:

U =


µT
1

µT
2
...

µT
k

 =


µ11 µ12 · · · µ1d

µ21 µ22 · · · µ2d
...

...
. . .

...
µk1 µk2 · · · µkd


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Encode cluster assignments in matrix Z = [Zjℓ]j,ℓ where:

Zjℓ =

{
1 if point j assigned to cluster ℓ

0 otherwise

Representative of cluster assigned to point j:

µT
c(j) =

k∑
ℓ=1

Zjℓµ
T
ℓ = (ZU)j,·

K-means objective in matrix form:

G(C1, . . . , Ck;µ1, . . . ,µk) = ∥X − ZU∥2F

where ∥ · ∥F is the Frobenius norm:

∥A∥F =

√√√√ n∑
i=1

m∑
j=1

A2
ij

Key Insight: K-means finds a low-rank matrix factorization ZU approximating data matrix X.

Example (continued): For our simple example with partition C1 = {1, 2}, C2 = {3, 4}:
Assignment matrix:

Z =


1 0
1 0
0 1
0 1


With optimal representatives:

U =

[
1.5 1.5
−1.5 −1.5

]
Product ZU gives representative for each point:

ZU =


1.5 1.5
1.5 1.5
−1.5 −1.5
−1.5 −1.5


Back to the dataset

SLIDESHOW
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