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Motivation

SLIDESHOW

Orthogonal Projection

Geometric Intuition

Consider a vector v ¢ U where U is a linear subspace. We want to find the vector p in U that is
closest to v in Euclidean norm:

min -V
pelUHp |

*

Key geometric insight: The optimal solution p* has the property that v — p* is orthogonal to

U.

Definition and Main Theorem

Definition 1 (Orthogonal Projection on Orthonormal List). Let qi,...,q; be an orthonormal
list. The orthogonal projection of v € R™ on {q;}"; is:

m

Projiqym, v =Y (v,q;) q;
j=1

Theorem 1 (Orthogonal Projection). Let U C R™ be a linear subspace and v € R"™. Then:
a) There exists a unique solution proj;v := p* € U to

min [|p — v/
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b) The solution p* € U is characterized by
(%) (v—p"u) =0, YuelU
c¢) For any orthonormal basis qi,...,q, of U, proj{qi}";1V = projyv

Proof: 1. For existence, we first show that any vector p* satisfying (%) is a minimizer:
For any p € U, let u = p — p*. Note u € U. By Pythagoras:

lp—v|*=|p-p +p —v|?
=lp-p* P+ |p*—v|?
> |p* — v

where we used (x) to get the second line. (The inequality is strict unless p = p*. We’ll need this

later.)
Now we construct a vector satisfying (x). Let qi,...,q; be an orthonormal basis of U and
define: -
p = (v,q;)q,
j=1

For any u € U, write:

m
u= Zaiqi where a; = (u, q;)
i=1

Then:

(v—p"u) = <V - Z<V’ qj) qj, Zaich'>

j=1 i=1
m m m
= Z<V7 ql> a — Z Z OCZ‘<V, qj><q]7 qz>
i=1 i=1 j=1
m m
:Z<V>qz> a — Oéj<V,q]> =0
i=1 j=1

So p* satisfies (x). This proves existence.

2. For uniqueness, suppose p; and py both satisfy (x). Then by step 1, they are both minimizers.
But we showed the inequality in step 1 is strict unless p = p*, so we must have p; = p2. Remains
to show that any minimizer must satisfy (x). Let p* be a minimizer and suppose, for contradiction,
that (%) doesn’t hold. Then there exists u € U with (v — p*,u) = ¢ # 0. Consider p; = p* + tu
for small t. Then:

Ipe = vII* = (" = v) + tul?
= [Ip* = vII* +2t(v — p*, u) + £*|[u|?
=[lp* — v|[* + 2tc + £*]|u|?

For small ¢ with appropriate sign, this is smaller than ||p* — v||?, contradicting minimality. O



Example

Consider U = span(wy, wy) where:

1
W1 = 0 5 W9 — 1
1
0
To find orthogonal projection of v.= | 0
2
1. First construct orthonormal basis of U using Gram-Schmidt:
1 1
. _ f — wi _ 1
a) Start with w; = [ 0 |. Normalize: q; = Wil = 73 0
1 1
0 0 1
b) Take wy = [ 1 | and subtract projection onto q;: vo = wa—(wa,q1)q; = | 1 —% 0] =
1 1 1
—1/V2
1
1/v/2
-1
t . _ v __ 1
c¢) Normalize: qo = NV = 76 ?
2. Compute inner products:
2 2

3. The projection is:

9 2/3
projpv = —=q1 + —=qz2 = | 2/3
V2T Ve 4/3
0 1 -1
Knowledge Check 1: Is | 0 | in the span of % 0] and iﬁ 217
2 1 1
A) Yes
B) No

Matrix Representation of Orthogonal Projection

The orthogonal projection map proj; is linear:

Theorem 2 (Linearity of Projection). Let U C R™ be a subspace. For all « € R and x,y € R™

projy(ax +y) = aprojyx + projyy



Proof: Let q1,...,qm be an orthonormal basis of U. Then:

m
projy(ax +y) = Zax+y qj

m

= {olx, q;) + (v, q;) }ay
=
= aprojyX + projyy

Therefore, proj;; can be represented by a matrix P € R"*". Let

Q=|a -+ am
| |
Note that computing
<V7 q1>
Qv=1|
(v, am)

gives coeflicients in basis expansion of proj;;v. Hence
P=QQ"

Example: For U = span(qi, q2) where

q1 = q2 =

Sl
[N}
— O =
S
(@)
—_

The projection matrix is:
2/3 —-1/3 1/3
P=QQT=1-1/3 2/3 1/3
/3  1/3 2/3

Verify: For v = (0,0,2)7,
2/3
Pv=1{2/3| =projyv
4/3

The matrix P = QQT is not to be confused with

<011aQ1> T <Q1,Qm>
070 — <QQ,ZQ1> (Q2,:qm> o
<Qm,q1> T <QM7qm>

where I, xm denotes the m x m identity matrix.



The Gram-Schmidt Procedure

Review of Gram-Schmidt

Given linearly independent vectors ai,...,a,,, we want to construct an orthonormal basis of their
span. The Gram-Schmidt process works by:

1. Taking each vector a; in turn
2. Subtracting its projection onto previously constructed orthonormal vectors

3. Normalizing the result

The key equations are:
Step 1: For first vector, just normalize:

aj

q1 =
[[au |

Step 2: For second vector, subtract projection onto q:

vy =as — (az,q1)q1
V2

vl

q2

Step j: For j-th vector, subtract projections onto all previous vectors:

j—1
vi=a; - ) (ajq)q
i=1
Vi
q; =
T vl
Example: Consider:
1 0
a] = 0 s ay = 1
1 1



Then:

This gives orthonormal basis {q1,q2} of span(aj, as).

Implementation

SLIDESHOW

Matrix Form of Gram-Schmidt

Let aj,...,a, be linearly independent vectors. We can express the Gram-Schmidt process in
matrix form. Stack the input and output vectors into matrices:

| | | |
A=la -+ ap]| and Q= |aq1 - anm
| | | |
From the Gram-Schmidt process, for all j:
j—1
aj =Y (aj,q)q + ||vjlla;
i=1
where we define 7;j; = ||v;|| and r;; = (a;,q;) for i < j.
Thus, there exists an upper triangular matrix R such that:

rin Tz s Tim
0 reg -+ rom

A=QR where R=
0 0 - Tmm

This is called a QR decomposition of A. Key properties:

e () has orthonormal columns: QTQ = L,xm
e R is upper triangular with positive diagonal entries

e Column j of R contains coefficients expressing a; in basis {qi,...,q;}

Example: For previous vectors:
1
10 Vi 6 V2 o
A={o 1), @=|0 X |, R—< @)
1 1 B 2
V2 o Ve

Verify: A = QR and Q7 Q = Iyys.
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Overdetermined Systems

Normal equations

Consider an n x m matrix A with linearly independent columns and vector b € R”. When n > m
(more equations than variables), the system Ax = b typically has no solution.
Instead, we seek the ”best approximate solution” by minimizing the distance to b:

min [[Ax — b|
xER™
Writing A in terms of its columns:
A=la --- a,
The problem becomes: find coefficients 1, ..., x;, minimizing
2 2
m n m
E Tja; — b = E Qi L5 — bi
j=1 i=1 \j=1

Theorem 3 (Normal Equations). A solution x* to the least squares problem satisfies:
ATAx* = ATb
If the columns of A are linearly independent, this solution is unique.
Proof idea: Let U = col(A). By the Orthogonal Projection Theorem:
e Ax* must be the orthogonal projection of b onto U
e This gives (b — Ax*,a;) =0 for all ¢
e Stacking these equations gives AT (b — Ax*) =0
e When columns are independent, AT A is invertible, giving uniqueness (see below)

Claim: When A has linearly independent columns, AT A is invertible.
Proof: Let x be such that A” Ax = 0. Then:

ATAx =0 = xT(ATAx) =0
— (Ax)T(Ax) =0
— || Ax|? =0
= Ax =0
= x=0

where the last step uses linear independence of columns. Therefore AT A is invertible.
Example: Consider fitting a line y ~ By + S1x through three points:

(z1,91) = (0,0), (w2,92) = (1,0), (3,y3) = (1,2)



The least squares problem minimizes:

3

> (i —{Bo + Przi})?

=1

Writing in matrix form with a column of ones for the intercept:

10 0
A=11 1 and y=1{0
11 2

Then:
T, (3 2 . (2
ATA = <2 2) and A'y= <2)

Solving AT AB = ATy gives the system:
3 2\ (Bo) (2
2 2)\5) " \2

380+ 281 =2
260 + 261 =2

This is equivalent to:

Subtracting the second equation from the first:
Bo=0

Substituting back:
251 =2 = 61 =1

()

This corresponds to the line y = x, which fits the points (0,0), (1,0), and (1,2) in a least squares
sense.

Therefore:




Least Squares via QR

Let A € R™™ be a matrix with linearly independent columns and b € R™. Consider solving
min [|[Ax — b|
xER™

Strategy using QR decomposition:
1. Compute QR decomposition: A = QR
2. Then Ax = QRx and QQTb is projection of b onto col(A)
3. By normal equations: Ax* = QQTb
4. Substitute A = QR:
QRx* =QQ"b

5. Multiply both sides by @7 and use QTQ = Inxm:
Rx* =Q™b

6. Solve this triangular system using back substitution.
Example: Consider again fitting a line y &~ 8y + f1z through three points:

(l’l,y1) = (070)7 ($27y2) = (170)7 («T3,y3) = (172)

Using previous matrix form:

10 0
A=11 1 and y=1[0
1 1 2

Let’s compute the QR decomposition using Gram-Schmidt. Start with the columns of A:

1 0
a] = 1 N ag = 1
1 1

Step 1: Normalize a; to get first column of Q:

1
al|=vV3 = aq1=—+ |1
[au | qi1 /3 .
Step 2: Compute vy by removing projection of as onto q:
2
(ag, q1) = %
0 1 -2/3
(a2, q1) I 1/3
V2 =az — (a2,q1)q1 = - == =
1 V3 V3 1 1/3

Normalize vy to get second column of Q:

—/2/3
Y R o
et = = o= e



Therefore:

VG T3
Q=[1v3 1v6 |. Rz(“og 2/£),

1/vV/3 1/V6

where the matrix R comes from writing each column of A in terms of the orthonormal basis {qi, q2}.
For the first column:

a; = |lailjar = V3a:

So 111 = v/3 and 797 = 0. For the second column:

2 2
az = (a2, q1)q1 + ||va|lq2 = ﬁfh + §Q2

So T12 = % and 92 = \/g

Then solve:
oy 1/V31/V3 1/¢§> o) (2%9)
—/2/3 1/v/6 1/V6 5 2/1/6
RB*=Q"y
This gives the system:
2 2
V3ot 2p = 2
Bo \/gﬁl 3
2 2
h=
From the second equation:
2/V6
B = 26 _ 1
2/3
Substituting into the first equation:
2 2
\/§50+7:7 = [y=0
V3 V3

Therefore:

()

This gives the same line y = x that we found using normal equations, but without explicitly
forming AT A.
Key advantages:

e No explicit computation of AT A needed

e More numerically stable than normal equations

10



Implementation
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Back to the dataset
SLIDESHOW
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