MATH 535: Mathematical Methods in Data Science

Lecture Notes: Least Squares

Feb 3, 5, 7, 10, 2025

Motivation

SLIDESHOW

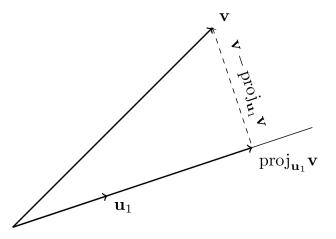
Orthogonal Projection

Geometric Intuition

Consider a vector $\mathbf{v} \notin U$ where U is a linear subspace. We want to find the vector \mathbf{p} in U that is closest to \mathbf{v} in Euclidean norm:

$$\min_{\mathbf{p}\in U} \|\mathbf{p} - \mathbf{v}\|$$

Key geometric insight: The optimal solution \mathbf{p}^* has the property that $\mathbf{v} - \mathbf{p}^*$ is orthogonal to U.



Definition and Main Theorem

Definition 1 (Orthogonal Projection on Orthonormal List). Let $\mathbf{q}_1, \ldots, \mathbf{q}_m$ be an orthonormal list. The orthogonal projection of $\mathbf{v} \in \mathbb{R}^n$ on $\{\mathbf{q}_i\}_{i=1}^m$ is:

$$\operatorname{proj}_{\{\mathbf{q}_i\}_{i=1}^m} \mathbf{v} = \sum_{j=1}^m \langle \mathbf{v}, \mathbf{q}_j \rangle \, \mathbf{q}_j$$

Theorem 1 (Orthogonal Projection). Let $U \subseteq \mathbb{R}^n$ be a linear subspace and $\mathbf{v} \in \mathbb{R}^n$. Then:

a) There exists a unique solution $\operatorname{proj}_U \mathbf{v} := \mathbf{p}^* \in U$ to

$$\min_{\mathbf{p}\in U} \|\mathbf{p} - \mathbf{v}\|$$

b) The solution $\mathbf{p}^* \in U$ is characterized by

(*)
$$\langle \mathbf{v} - \mathbf{p}^*, \mathbf{u} \rangle = 0, \quad \forall \mathbf{u} \in U$$

c) For any orthonormal basis $\mathbf{q}_1, \ldots, \mathbf{q}_m$ of U, $\operatorname{proj}_{\{\mathbf{q}_i\}_{i=1}^m} \mathbf{v} = \operatorname{proj}_U \mathbf{v}$

Proof: 1. For <u>existence</u>, we first show that any vector \mathbf{p}^* satisfying (*) is a minimizer: For any $\mathbf{p} \in U$, let $\mathbf{u} = \mathbf{p} - \mathbf{p}^*$. Note $\mathbf{u} \in U$. By Pythagoras:

$$\begin{split} |\mathbf{p} - \mathbf{v}||^2 &= \|\mathbf{p} - \mathbf{p}^* + \mathbf{p}^* - \mathbf{v}\|^2 \\ &= \|\mathbf{p} - \mathbf{p}^*\|^2 + \|\mathbf{p}^* - \mathbf{v}\|^2 \\ &\geq \|\mathbf{p}^* - \mathbf{v}\|^2 \end{split}$$

where we used (*) to get the second line. (The inequality is strict unless $\mathbf{p} = \mathbf{p}^*$. We'll need this later.)

Now we construct a vector satisfying (*). Let $\mathbf{q}_1, \ldots, \mathbf{q}_m$ be an orthonormal basis of U and define:

$$\mathbf{p}^* = \sum_{j=1}^m \langle \mathbf{v}, \mathbf{q}_j \rangle \, \mathbf{q}_j$$

For any $\mathbf{u} \in U$, write:

$$\mathbf{u} = \sum_{i=1}^{m} \alpha_i \mathbf{q}_i \quad \text{where } \alpha_i = \langle \mathbf{u}, \mathbf{q}_i \rangle$$

Then:

$$\langle \mathbf{v} - \mathbf{p}^*, \mathbf{u} \rangle = \left\langle \mathbf{v} - \sum_{j=1}^m \langle \mathbf{v}, \mathbf{q}_j \rangle \, \mathbf{q}_j, \sum_{i=1}^m \alpha_i \mathbf{q}_i \right\rangle$$

=
$$\sum_{i=1}^m \langle \mathbf{v}, \mathbf{q}_i \rangle \, \alpha_i - \sum_{i=1}^m \sum_{j=1}^m \alpha_i \langle \mathbf{v}, \mathbf{q}_j \rangle \langle \mathbf{q}_j, \mathbf{q}_i \rangle$$

=
$$\sum_{i=1}^m \langle \mathbf{v}, \mathbf{q}_i \rangle \, \alpha_i - \sum_{j=1}^m \alpha_j \langle \mathbf{v}, \mathbf{q}_j \rangle = 0$$

So \mathbf{p}^* satisfies (*). This proves existence.

2. For <u>uniqueness</u>, suppose \mathbf{p}_1 and \mathbf{p}_2 both satisfy (*). Then by step 1, they are both minimizers. But we showed the inequality in step 1 is strict unless $\mathbf{p} = \mathbf{p}^*$, so we must have $\mathbf{p}_1 = \mathbf{p}_2$. Remains to show that any minimizer must satisfy (*). Let \mathbf{p}^* be a minimizer and suppose, for contradiction, that (*) doesn't hold. Then there exists $\mathbf{u} \in U$ with $\langle \mathbf{v} - \mathbf{p}^*, \mathbf{u} \rangle = c \neq 0$. Consider $\mathbf{p}_t = \mathbf{p}^* + t\mathbf{u}$ for small t. Then:

$$\|\mathbf{p}_{t} - \mathbf{v}\|^{2} = \|(\mathbf{p}^{*} - \mathbf{v}) + t\mathbf{u}\|^{2}$$

= $\|\mathbf{p}^{*} - \mathbf{v}\|^{2} + 2t\langle \mathbf{v} - \mathbf{p}^{*}, \mathbf{u} \rangle + t^{2} \|\mathbf{u}\|^{2}$
= $\|\mathbf{p}^{*} - \mathbf{v}\|^{2} + 2tc + t^{2} \|\mathbf{u}\|^{2}$

For small t with appropriate sign, this is smaller than $\|\mathbf{p}^* - \mathbf{v}\|^2$, contradicting minimality. \Box

Example

Consider $U = \operatorname{span}(\mathbf{w}_1, \mathbf{w}_2)$ where:

$$\mathbf{w}_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

To find orthogonal projection of $\mathbf{v} = \begin{pmatrix} 0\\0\\2 \end{pmatrix}$:

- 1. First construct orthonormal basis of U using Gram-Schmidt:
- a) Start with $\mathbf{w}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Normalize: $\mathbf{q}_1 = \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ b) Take $\mathbf{w}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and subtract projection onto \mathbf{q}_1 : $\mathbf{v}_2 = \mathbf{w}_2 - \langle \mathbf{w}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/\sqrt{2} \\ 1 \\ 1/\sqrt{2} \end{pmatrix}$ c) Normalize: $\mathbf{q}_2 = \frac{\mathbf{v}_2}{2} = \frac{1}{2} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$
 - c) Normalize: $\mathbf{q}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\ 2\\ 1 \end{pmatrix}$
 - 2. Compute inner products:

$$\langle \mathbf{v}, \mathbf{q}_1 \rangle = \frac{2}{\sqrt{2}}, \quad \langle \mathbf{v}, \mathbf{q}_2 \rangle = \frac{2}{\sqrt{6}}$$

3. The projection is:

$$\operatorname{proj}_{U} \mathbf{v} = \frac{2}{\sqrt{2}} \mathbf{q}_{1} + \frac{2}{\sqrt{6}} \mathbf{q}_{2} = \begin{pmatrix} 2/3 \\ 2/3 \\ 4/3 \end{pmatrix}$$

Knowledge Check 1: Is
$$\begin{pmatrix} 0\\0\\2 \end{pmatrix}$$
 in the span of $\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}$ and $\frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\1 \end{pmatrix}$?
A) Yes

B) No

Matrix Representation of Orthogonal Projection

The orthogonal projection map proj_U is linear:

Theorem 2 (Linearity of Projection). Let $U \subseteq \mathbb{R}^n$ be a subspace. For all $\alpha \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$\operatorname{proj}_U(\alpha \mathbf{x} + \mathbf{y}) = \alpha \operatorname{proj}_U \mathbf{x} + \operatorname{proj}_U \mathbf{y}$$

Proof: Let $\mathbf{q}_1, \ldots, \mathbf{q}_m$ be an orthonormal basis of U. Then:

$$\operatorname{proj}_{U}(\alpha \mathbf{x} + \mathbf{y}) = \sum_{j=1}^{m} \langle \alpha \mathbf{x} + \mathbf{y}, \mathbf{q}_{j} \rangle \mathbf{q}_{j}$$
$$= \sum_{j=1}^{m} \{ \alpha \langle \mathbf{x}, \mathbf{q}_{j} \rangle + \langle \mathbf{y}, \mathbf{q}_{j} \rangle \} \mathbf{q}_{j}$$
$$= \alpha \operatorname{proj}_{U} \mathbf{x} + \operatorname{proj}_{U} \mathbf{y}$$

Therefore, proj_U can be represented by a matrix $P \in \mathbb{R}^{n \times n}$. Let

$$Q = \begin{pmatrix} | & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_m \\ | & | \end{pmatrix}$$

Note that computing

$$Q^T \mathbf{v} = \begin{pmatrix} \langle \mathbf{v}, \mathbf{q}_1 \rangle \\ \vdots \\ \langle \mathbf{v}, \mathbf{q}_m \rangle \end{pmatrix}$$

gives coefficients in basis expansion of $\mathrm{proj}_U \mathbf{v}.$ Hence

$$P = QQ^T$$

Example: For $U = \operatorname{span}(\mathbf{q}_1, \mathbf{q}_2)$ where

$$\mathbf{q}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \mathbf{q}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\1 \end{pmatrix}$$

The projection matrix is:

$$P = QQ^{T} = \begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix}$$

Verify: For $\mathbf{v} = (0, 0, 2)^T$,

$$P\mathbf{v} = \begin{pmatrix} 2/3\\2/3\\4/3 \end{pmatrix} = \operatorname{proj}_U \mathbf{v}$$

The matrix $\boldsymbol{P}=\boldsymbol{Q}\boldsymbol{Q}^T$ is not to be confused with

$$Q^{T}Q = \begin{pmatrix} \langle \mathbf{q}_{1}, \mathbf{q}_{1} \rangle & \cdots & \langle \mathbf{q}_{1}, \mathbf{q}_{m} \rangle \\ \langle \mathbf{q}_{2}, \mathbf{q}_{1} \rangle & \cdots & \langle \mathbf{q}_{2}, \mathbf{q}_{m} \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{q}_{m}, \mathbf{q}_{1} \rangle & \cdots & \langle \mathbf{q}_{m}, \mathbf{q}_{m} \rangle \end{pmatrix} = I_{m \times m}$$

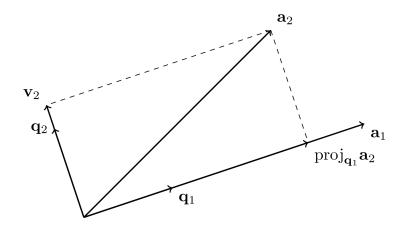
where $I_{m \times m}$ denotes the $m \times m$ identity matrix.

The Gram-Schmidt Procedure

Review of Gram-Schmidt

Given linearly independent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$, we want to construct an orthonormal basis of their span. The Gram-Schmidt process works by:

- 1. Taking each vector \mathbf{a}_i in turn
- 2. Subtracting its projection onto previously constructed orthonormal vectors
- 3. Normalizing the result



The key equations are: **Step 1:** For first vector, just normalize:

$$\mathbf{q}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|}$$

Step 2: For second vector, subtract projection onto \mathbf{q}_1 :

$$\mathbf{v}_2 = \mathbf{a}_2 - \langle \mathbf{a}_2, \mathbf{q}_1
angle \mathbf{q}_1 \ \mathbf{q}_2 = rac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$$

Step j: For *j*-th vector, subtract projections onto all previous vectors:

$$\mathbf{v}_j = \mathbf{a}_j - \sum_{i=1}^{j-1} \langle \mathbf{a}_j, \mathbf{q}_i
angle \mathbf{q}_i$$
 $\mathbf{q}_j = rac{\mathbf{v}_j}{\|\mathbf{v}_j\|}$

Example: Consider:

$$\mathbf{a}_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

Then:

$$\mathbf{q}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
$$\mathbf{v}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
$$\mathbf{q}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\1 \end{pmatrix}$$

1-1

This gives orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2\}$ of span $(\mathbf{a}_1, \mathbf{a}_2)$.

Implementation

SLIDESHOW

Matrix Form of Gram-Schmidt

Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be linearly independent vectors. We can express the Gram-Schmidt process in matrix form. Stack the input and output vectors into matrices:

$$A = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & & | \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_m \\ | & & | \end{pmatrix}$$

From the Gram-Schmidt process, for all j:

$$\mathbf{a}_j = \sum_{i=1}^{j-1} \langle \mathbf{a}_j, \mathbf{q}_i
angle \mathbf{q}_i + \| \mathbf{v}_j \| \mathbf{q}_j$$

where we define $r_{jj} = ||\mathbf{v}_j||$ and $r_{ij} = \langle \mathbf{a}_j, \mathbf{q}_i \rangle$ for i < j. Thus, there exists an upper triangular matrix R such that:

$$A = QR \quad \text{where} \quad R = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ 0 & r_{22} & \cdots & r_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{mm} \end{pmatrix}$$

This is called a QR decomposition of A. Key properties:

- Q has orthonormal columns: $Q^T Q = I_{m \times m}$
- R is upper triangular with positive diagonal entries
- Column j of R contains coefficients expressing \mathbf{a}_j in basis $\{\mathbf{q}_1, \ldots, \mathbf{q}_j\}$

Example: For previous vectors:

$$A = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 1 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}}\\ 0 & \frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix}, \quad R = \begin{pmatrix} \sqrt{2} & \frac{1}{\sqrt{2}}\\ 0 & \sqrt{\frac{3}{2}} \end{pmatrix}$$

Verify: A = QR and $Q^TQ = I_{2\times 2}$.

Overdetermined Systems

Normal equations

Consider an $n \times m$ matrix A with linearly independent columns and vector $\mathbf{b} \in \mathbb{R}^n$. When n > m (more equations than variables), the system $A\mathbf{x} = \mathbf{b}$ typically has no solution.

Instead, we seek the "best approximate solution" by minimizing the distance to b:

$$\min_{\mathbf{x}\in\mathbb{R}^m}\|A\mathbf{x}-\mathbf{b}\|$$

Writing A in terms of its columns:

$$A = \begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_m \\ | & & | \end{pmatrix}$$

The problem becomes: find coefficients x_1, \ldots, x_m minimizing

$$\left\|\sum_{j=1}^{m} x_j \mathbf{a}_j - \mathbf{b}\right\|^2 = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} x_j - b_i\right)^2$$

Theorem 3 (Normal Equations). A solution \mathbf{x}^* to the least squares problem satisfies:

$$A^T A \mathbf{x}^* = A^T \mathbf{b}$$

If the columns of A are linearly independent, this solution is unique.

Proof idea: Let U = col(A). By the Orthogonal Projection Theorem:

- $A\mathbf{x}^*$ must be the orthogonal projection of **b** onto U
- This gives $\langle \mathbf{b} A\mathbf{x}^*, \mathbf{a}_i \rangle = 0$ for all i
- Stacking these equations gives $A^T(\mathbf{b} A\mathbf{x}^*) = \mathbf{0}$
- When columns are independent, $A^T A$ is invertible, giving uniqueness (see below)

Claim: When A has linearly independent columns, $A^T A$ is invertible. **Proof:** Let **x** be such that $A^T A \mathbf{x} = \mathbf{0}$. Then:

$$A^{T}A\mathbf{x} = \mathbf{0} \implies \mathbf{x}^{T}(A^{T}A\mathbf{x}) = 0$$
$$\implies (A\mathbf{x})^{T}(A\mathbf{x}) = 0$$
$$\implies \|A\mathbf{x}\|^{2} = 0$$
$$\implies A\mathbf{x} = \mathbf{0}$$
$$\implies \mathbf{x} = \mathbf{0}$$

where the last step uses linear independence of columns. Therefore $A^T A$ is invertible. Example: Consider fitting a line $y \approx \beta_0 + \beta_1 x$ through three points:

$$(x_1, y_1) = (0, 0), \quad (x_2, y_2) = (1, 0), \quad (x_3, y_3) = (1, 2)$$

The least squares problem minimizes:

$$\sum_{i=1}^{3} (y_i - \{\beta_0 + \beta_1 x_i\})^2$$

Writing in matrix form with a column of ones for the intercept:

$$A = \begin{pmatrix} 1 & 0\\ 1 & 1\\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 0\\ 0\\ 2 \end{pmatrix}$$

Then:

$$A^T A = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$$
 and $A^T \mathbf{y} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

Solving $A^T A \boldsymbol{\beta} = A^T \mathbf{y}$ gives the system:

$$\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

This is equivalent to:

$$3\beta_0 + 2\beta_1 = 2$$
$$2\beta_0 + 2\beta_1 = 2$$

Subtracting the second equation from the first:

 $\beta_0 = 0$

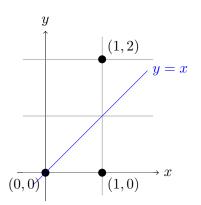
Substituting back:

$$2\beta_1 = 2 \implies \beta_1 = 1$$

Therefore:

$$\boldsymbol{\beta}^* = \begin{pmatrix} 0\\1 \end{pmatrix}$$

This corresponds to the line y = x, which fits the points (0,0), (1,0), and (1,2) in a least squares sense.



Least Squares via QR

Let $A \in \mathbb{R}^{n \times m}$ be a matrix with linearly independent columns and $\mathbf{b} \in \mathbb{R}^n$. Consider solving

$$\min_{\mathbf{x}\in\mathbb{R}^m} \|A\mathbf{x}-\mathbf{b}\|$$

Strategy using QR decomposition:

- 1. Compute QR decomposition: A = QR
- 2. Then $A\mathbf{x} = QR\mathbf{x}$ and $QQ^T\mathbf{b}$ is projection of \mathbf{b} onto col(A)
- 3. By normal equations: $A\mathbf{x}^* = QQ^T\mathbf{b}$
- 4. Substitute A = QR:

$$QR\mathbf{x}^* = QQ^T\mathbf{b}$$

5. Multiply both sides by Q^T and use $Q^T Q = I_{m \times m}$:

$$R\mathbf{x}^* = Q^T \mathbf{b}$$

6. Solve this triangular system using back substitution. Example: Consider again fitting a line $y \approx \beta_0 + \beta_1 x$ through three points:

$$(x_1, y_1) = (0, 0), \quad (x_2, y_2) = (1, 0), \quad (x_3, y_3) = (1, 2)$$

Using previous matrix form:

$$A = \begin{pmatrix} 1 & 0\\ 1 & 1\\ 1 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} 0\\ 0\\ 2 \end{pmatrix}$$

Let's compute the QR decomposition using Gram-Schmidt. Start with the columns of A:

$$\mathbf{a}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

Step 1: Normalize \mathbf{a}_1 to get first column of Q:

$$\|\mathbf{a}_1\| = \sqrt{3} \implies \mathbf{q}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

Step 2: Compute \mathbf{v}_2 by removing projection of \mathbf{a}_2 onto \mathbf{q}_1 :

$$\langle \mathbf{a}_2, \mathbf{q}_1 \rangle = \frac{2}{\sqrt{3}}$$

$$\mathbf{v}_2 = \mathbf{a}_2 - \langle \mathbf{a}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix} - \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} -2/3\\1/3\\1/3 \end{pmatrix}$$

Normalize \mathbf{v}_2 to get second column of Q:

$$\|\mathbf{v}_2\| = \sqrt{\frac{2}{3}} \implies \mathbf{q}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \begin{pmatrix} -\sqrt{2/3} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}$$

Therefore:

$$Q = \begin{pmatrix} 1/\sqrt{3} & -\sqrt{2/3} \\ 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix}, \quad R = \begin{pmatrix} \sqrt{3} & 2/\sqrt{3} \\ 0 & \sqrt{2/3} \end{pmatrix},$$

where the matrix R comes from writing each column of A in terms of the orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2\}$. For the first column:

$$\mathbf{a}_1 = \|\mathbf{a}_1\|\mathbf{q}_1 = \sqrt{3}\mathbf{q}_1$$

So $r_{11} = \sqrt{3}$ and $r_{21} = 0$. For the second column:

$$\mathbf{a}_2 = \langle \mathbf{a}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 + \| \mathbf{v}_2 \| \mathbf{q}_2 = rac{2}{\sqrt{3}} \mathbf{q}_1 + \sqrt{rac{2}{3}} \mathbf{q}_2$$

So $r_{12} = \frac{2}{\sqrt{3}}$ and $r_{22} = \sqrt{\frac{2}{3}}$. Then solve:

$$Q^{T}\mathbf{y} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -\sqrt{2/3} & 1/\sqrt{6} & 1/\sqrt{6} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2/\sqrt{3} \\ 2/\sqrt{6} \end{pmatrix}$$

$$R\boldsymbol{\beta}^* = Q^T \mathbf{y}$$

This gives the system:

$$\sqrt{3}\beta_0 + \frac{2}{\sqrt{3}}\beta_1 = \frac{2}{\sqrt{3}}$$
$$\sqrt{\frac{2}{3}}\beta_1 = \frac{2}{\sqrt{6}}$$

From the second equation:

$$\beta_1 = \frac{2/\sqrt{6}}{\sqrt{2/3}} = 1$$

Substituting into the first equation:

$$\sqrt{3}\beta_0 + \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \implies \beta_0 = 0$$

Therefore:

$$\boldsymbol{\beta}^* = \begin{pmatrix} 0\\1 \end{pmatrix}$$

This gives the same line y = x that we found using normal equations, but without explicitly forming $A^T A$.

Key advantages:

- No explicit computation of $A^T A$ needed
- More numerically stable than normal equations

Implementation SLIDESHOW

Back to the dataset SLIDESHOW