
MATH 535: Mathematical Methods in Data Science

Lecture Notes: Least Squares

Feb 3, 5, 7, 10, 2025

Motivation

SLIDESHOW

Orthogonal Projection

Geometric Intuition

Consider a vector v /∈ U where U is a linear subspace. We want to find the vector p in U that is
closest to v in Euclidean norm:

min
p∈U

∥p− v∥

Key geometric insight: The optimal solution p∗ has the property that v − p∗ is orthogonal to
U .

Definition and Main Theorem

Definition 1 (Orthogonal Projection on Orthonormal List). Let q1, . . . ,qm be an orthonormal
list. The orthogonal projection of v ∈ Rn on {qi}mi=1 is:

proj{qi}mi=1
v =

m∑
j=1

⟨v,qj⟩qj

Theorem 1 (Orthogonal Projection). Let U ⊆ Rn be a linear subspace and v ∈ Rn. Then:
a) There exists a unique solution projUv := p∗ ∈ U to

min
p∈U

∥p− v∥

https://raw.githack.com/MMiDS-textbook/MMiDS-textbook.github.io/main/just_the_code/roch_mmids_chap_ls_notebook_slides.slides.html

b) The solution p∗ ∈ U is characterized by

(∗) ⟨v − p∗,u⟩ = 0, ∀u ∈ U

c) For any orthonormal basis q1, . . . ,qm of U , proj{qi}mi=1
v = projUv

Proof: 1. For existence, we first show that any vector p∗ satisfying (∗) is a minimizer:
For any p ∈ U , let u = p− p∗. Note u ∈ U . By Pythagoras:

∥p− v∥2 = ∥p− p∗ + p∗ − v∥2

= ∥p− p∗∥2 + ∥p∗ − v∥2

≥ ∥p∗ − v∥2

where we used (∗) to get the second line. (The inequality is strict unless p = p∗. We’ll need this
later.)

Now we construct a vector satisfying (∗). Let q1, . . . ,qm be an orthonormal basis of U and
define:

p∗ =

m∑
j=1

⟨v,qj⟩qj

For any u ∈ U , write:

u =
m∑
i=1

αiqi where αi = ⟨u,qi⟩

Then:

⟨v − p∗,u⟩ =

〈
v −

m∑
j=1

⟨v,qj⟩qj ,
m∑
i=1

αiqi

〉

=
m∑
i=1

⟨v,qi⟩αi −
m∑
i=1

m∑
j=1

αi⟨v,qj⟩⟨qj ,qi⟩

=
m∑
i=1

⟨v,qi⟩αi −
m∑
j=1

αj⟨v,qj⟩ = 0

So p∗ satisfies (∗). This proves existence.
2. For uniqueness, suppose p1 and p2 both satisfy (∗). Then by step 1, they are both minimizers.

But we showed the inequality in step 1 is strict unless p = p∗, so we must have p1 = p2. Remains
to show that any minimizer must satisfy (∗). Let p∗ be a minimizer and suppose, for contradiction,
that (∗) doesn’t hold. Then there exists u ∈ U with ⟨v − p∗,u⟩ = c ̸= 0. Consider pt = p∗ + tu
for small t. Then:

∥pt − v∥2 = ∥(p∗ − v) + tu∥2

= ∥p∗ − v∥2 + 2t⟨v − p∗,u⟩+ t2∥u∥2

= ∥p∗ − v∥2 + 2tc+ t2∥u∥2

For small t with appropriate sign, this is smaller than ∥p∗ − v∥2, contradicting minimality.

2

Example

Consider U = span(w1,w2) where:

w1 =

1
0
1

 , w2 =

0
1
1



To find orthogonal projection of v =

0
0
2

:

1. First construct orthonormal basis of U using Gram-Schmidt:

a) Start with w1 =

1
0
1

. Normalize: q1 =
w1

∥w1∥ = 1√
2

1
0
1


b) Take w2 =

0
1
1

 and subtract projection onto q1: v2 = w2−⟨w2,q1⟩q1 =

0
1
1

− 1√
2

1
0
1

 =−1/
√
2

1

1/
√
2


c) Normalize: q2 =

v2
∥v2∥ = 1√

6

−1
2
1


2. Compute inner products:

⟨v,q1⟩ =
2√
2
, ⟨v,q2⟩ =

2√
6

3. The projection is:

projUv =
2√
2
q1 +

2√
6
q2 =

2/3
2/3
4/3



Knowledge Check 1: Is

0
0
2

 in the span of 1√
2

1
0
1

 and 1√
6

−1
2
1

 ?

A) Yes

B) No

Matrix Representation of Orthogonal Projection

The orthogonal projection map projU is linear:

Theorem 2 (Linearity of Projection). Let U ⊆ Rn be a subspace. For all α ∈ R and x,y ∈ Rn:

projU (αx+ y) = αprojUx+ projUy

3

Proof: Let q1, . . . ,qm be an orthonormal basis of U . Then:

projU (αx+ y) =
m∑
j=1

⟨αx+ y,qj⟩qj

=
m∑
j=1

{α⟨x,qj⟩+ ⟨y,qj⟩}qj

= αprojUx+ projUy

Therefore, projU can be represented by a matrix P ∈ Rn×n. Let

Q =

 | |
q1 · · · qm

| |


Note that computing

QTv =

 ⟨v,q1⟩
...

⟨v,qm⟩


gives coefficients in basis expansion of projUv. Hence

P = QQT

Example: For U = span(q1,q2) where

q1 =
1√
2

1
0
1

 , q2 =
1√
6

−1
2
1


The projection matrix is:

P = QQT =

 2/3 −1/3 1/3
−1/3 2/3 1/3
1/3 1/3 2/3


Verify: For v = (0, 0, 2)T ,

Pv =

2/3
2/3
4/3

 = projUv

The matrix P = QQT is not to be confused with

QTQ =


⟨q1,q1⟩ · · · ⟨q1,qm⟩
⟨q2,q1⟩ · · · ⟨q2,qm⟩

...
. . .

...
⟨qm,q1⟩ · · · ⟨qm,qm⟩

 = Im×m

where Im×m denotes the m×m identity matrix.

4

The Gram-Schmidt Procedure

Review of Gram-Schmidt

Given linearly independent vectors a1, . . . ,am, we want to construct an orthonormal basis of their
span. The Gram-Schmidt process works by:

1. Taking each vector aj in turn

2. Subtracting its projection onto previously constructed orthonormal vectors

3. Normalizing the result

The key equations are:
Step 1: For first vector, just normalize:

q1 =
a1
∥a1∥

Step 2: For second vector, subtract projection onto q1:

v2 = a2 − ⟨a2,q1⟩q1

q2 =
v2

∥v2∥

Step j: For j-th vector, subtract projections onto all previous vectors:

vj = aj −
j−1∑
i=1

⟨aj ,qi⟩qi

qj =
vj

∥vj∥

Example: Consider:

a1 =

1
0
1

 , a2 =

0
1
1



5

Then:

q1 =
1√
2

1
0
1


v2 =

0
1
1

− 1

2

1
0
1


q2 =

1√
6

−1
2
1


This gives orthonormal basis {q1,q2} of span(a1,a2).

Implementation

SLIDESHOW

Matrix Form of Gram-Schmidt

Let a1, . . . ,am be linearly independent vectors. We can express the Gram-Schmidt process in
matrix form. Stack the input and output vectors into matrices:

A =

 | |
a1 · · · am
| |

 and Q =

 | |
q1 · · · qm

| |


From the Gram-Schmidt process, for all j:

aj =

j−1∑
i=1

⟨aj ,qi⟩qi + ∥vj∥qj

where we define rjj = ∥vj∥ and rij = ⟨aj ,qi⟩ for i < j.
Thus, there exists an upper triangular matrix R such that:

A = QR where R =


r11 r12 · · · r1m
0 r22 · · · r2m
...

...
. . .

...
0 0 · · · rmm


This is called a QR decomposition of A. Key properties:

• Q has orthonormal columns: QTQ = Im×m

• R is upper triangular with positive diagonal entries

• Column j of R contains coefficients expressing aj in basis {q1, . . . ,qj}
Example: For previous vectors:

A =

1 0
0 1
1 1

 , Q =


1√
2

− 1√
6

0 2√
6

1√
2

1√
6

 , R =

(√
2 1√

2

0
√

3
2

)

Verify: A = QR and QTQ = I2×2.

6

https://raw.githack.com/MMiDS-textbook/MMiDS-textbook.github.io/main/just_the_code/roch_mmids_chap_ls_notebook_slides.slides.html

Overdetermined Systems

Normal equations

Consider an n×m matrix A with linearly independent columns and vector b ∈ Rn. When n > m
(more equations than variables), the system Ax = b typically has no solution.

Instead, we seek the ”best approximate solution” by minimizing the distance to b:

min
x∈Rm

∥Ax− b∥

Writing A in terms of its columns:

A =

 | |
a1 · · · am
| |


The problem becomes: find coefficients x1, . . . , xm minimizing∥∥∥∥∥∥

m∑
j=1

xjaj − b

∥∥∥∥∥∥
2

=

n∑
i=1

 m∑
j=1

aijxj − bi

2

Theorem 3 (Normal Equations). A solution x∗ to the least squares problem satisfies:

ATAx∗ = ATb

If the columns of A are linearly independent, this solution is unique.

Proof idea: Let U = col(A). By the Orthogonal Projection Theorem:

• Ax∗ must be the orthogonal projection of b onto U

• This gives ⟨b−Ax∗,ai⟩ = 0 for all i

• Stacking these equations gives AT (b−Ax∗) = 0

• When columns are independent, ATA is invertible, giving uniqueness (see below)

Claim: When A has linearly independent columns, ATA is invertible.
Proof: Let x be such that ATAx = 0. Then:

ATAx = 0 =⇒ xT (ATAx) = 0

=⇒ (Ax)T (Ax) = 0

=⇒ ∥Ax∥2 = 0

=⇒ Ax = 0

=⇒ x = 0

where the last step uses linear independence of columns. Therefore ATA is invertible.
Example: Consider fitting a line y ≈ β0 + β1x through three points:

(x1, y1) = (0, 0), (x2, y2) = (1, 0), (x3, y3) = (1, 2)

7

The least squares problem minimizes:

3∑
i=1

(yi − {β0 + β1xi})2

Writing in matrix form with a column of ones for the intercept:

A =

1 0
1 1
1 1

 and y =

0
0
2


Then:

ATA =

(
3 2
2 2

)
and ATy =

(
2
2

)
Solving ATAβ = ATy gives the system:(

3 2
2 2

)(
β0
β1

)
=

(
2
2

)
This is equivalent to:

3β0 + 2β1 = 2

2β0 + 2β1 = 2

Subtracting the second equation from the first:

β0 = 0

Substituting back:
2β1 = 2 =⇒ β1 = 1

Therefore:

β∗ =

(
0
1

)
This corresponds to the line y = x, which fits the points (0, 0), (1, 0), and (1, 2) in a least squares
sense.

x

y

(0, 0) (1, 0)

(1, 2)

y = x

8

Least Squares via QR

Let A ∈ Rn×m be a matrix with linearly independent columns and b ∈ Rn. Consider solving

min
x∈Rm

∥Ax− b∥

Strategy using QR decomposition:
1. Compute QR decomposition: A = QR
2. Then Ax = QRx and QQTb is projection of b onto col(A)
3. By normal equations: Ax∗ = QQTb
4. Substitute A = QR:

QRx∗ = QQTb

5. Multiply both sides by QT and use QTQ = Im×m:

Rx∗ = QTb

6. Solve this triangular system using back substitution.
Example: Consider again fitting a line y ≈ β0 + β1x through three points:

(x1, y1) = (0, 0), (x2, y2) = (1, 0), (x3, y3) = (1, 2)

Using previous matrix form:

A =

1 0
1 1
1 1

 and y =

0
0
2


Let’s compute the QR decomposition using Gram-Schmidt. Start with the columns of A:

a1 =

1
1
1

 , a2 =

0
1
1


Step 1: Normalize a1 to get first column of Q:

∥a1∥ =
√
3 =⇒ q1 =

1√
3

1
1
1


Step 2: Compute v2 by removing projection of a2 onto q1:

⟨a2,q1⟩ =
2√
3

v2 = a2 − ⟨a2,q1⟩q1 =

0
1
1

− 2√
3
· 1√

3

1
1
1

 =

−2/3
1/3
1/3


Normalize v2 to get second column of Q:

∥v2∥ =

√
2

3
=⇒ q2 =

v2

∥v2∥
=

−
√
2/3

1/
√
6

1/
√
6


9

Therefore:

Q =

1/
√
3 −

√
2/3

1/
√
3 1/

√
6

1/
√
3 1/

√
6

 , R =

(√
3 2/

√
3

0
√

2/3

)
,

where the matrix R comes from writing each column of A in terms of the orthonormal basis {q1,q2}.
For the first column:

a1 = ∥a1∥q1 =
√
3q1

So r11 =
√
3 and r21 = 0. For the second column:

a2 = ⟨a2,q1⟩q1 + ∥v2∥q2 =
2√
3
q1 +

√
2

3
q2

So r12 =
2√
3
and r22 =

√
2
3 .

Then solve:

QTy =

(
1/
√
3 1/

√
3 1/

√
3

−
√

2/3 1/
√
6 1/

√
6

)0
0
2

 =

(
2/
√
3

2/
√
6

)

Rβ∗ = QTy

This gives the system:

√
3β0 +

2√
3
β1 =

2√
3√

2

3
β1 =

2√
6

From the second equation:

β1 =
2/
√
6√

2/3
= 1

Substituting into the first equation:

√
3β0 +

2√
3
=

2√
3

=⇒ β0 = 0

Therefore:

β∗ =

(
0
1

)
This gives the same line y = x that we found using normal equations, but without explicitly

forming ATA.
Key advantages:

• No explicit computation of ATA needed

• More numerically stable than normal equations

10

Implementation

SLIDESHOW

Back to the dataset

SLIDESHOW

11

https://raw.githack.com/MMiDS-textbook/MMiDS-textbook.github.io/main/just_the_code/roch_mmids_chap_ls_notebook_slides.slides.html
https://raw.githack.com/MMiDS-textbook/MMiDS-textbook.github.io/main/just_the_code/roch_mmids_chap_ls_notebook_slides.slides.html

