
Materials and Methods

1 Notation

1.1 Phylogenies

A phylogeny is a rooted leaf-labeled tree T = (V,E, [n], r; δ) where V is the set of vertices,E is

the set of edges, L = [n] = {0, . . . , n−1} is the set of leaves, r is the root, and δ : E → (0,+∞)

is the branch length function. It is further assume that all internal nodes in T have degree 3

except for the root r which has degree 2. For two leaves a, b ∈ [n], the set of edges on the

unique path between a and b is denoted by Path(a, b). The tree metric corresponding to the

phylogeny T = (V,E, [n], r; δ) is denoted by (δ(a, b))a,b∈[n], that is,

δ(a, b) =
∑

e∈Path(a,b)

δ(e),

for all leaves a, b ∈ [n]. The quantity δ(u, v) is extended to all vertices u, v ∈ V in the obvious

way. Let Yn be the set of all such phylogenies on n leaves and denote Y = {Yn}n≥1. Finally,

the set of all phylogenies T = (V,E, [n], r; δ) where further δ is ultrametric, that is, for all

v ∈ V it holds that δ(v, x) = δ(v, y) ≡ δv, for all leaves x, y below v is denoted by UY. This

is the molecular clock case.

1.2 Model of molecular sequence evolution

A standard model of evolution for molecular sequences on a phylogeny T = (V,E, [n], r; δ) is

a Markov model on a tree (MMT). Let Φ = {A, G, C, T}. For each edge e ∈ E, a 4×4 stochastic

matrix M e = (M e
ij)i,j∈Φ is given, with fixed stationary distribution π = (πi)i∈Φ > 0. An MMT

associates a state sv to each vertex v in V as follows: pick a state for the root r according to

π; moving away from the root, choose a state for each vertex v independently according to the

distribution (M e
su,j

)j∈Φ, with e = (u, v) where u is the parent of v. A common MMT used in
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phylogenetics is the General Time-Reversible (GTR) model. Let Q be a 4× 4 rate matrix, that

is,Qij > 0 for all i 6= j and
∑

j∈ΦQij = 0, for all i ∈ Φ. AssumeQ is reversible with respect to

π, that is, πiQij = πjQji, for all i, j ∈ Φ. The GTR model with rate matrix Q is the MMT with

transition matrices M e = eδ(e)Q, for all e ∈ E. By the reversibility assumption, Q has 4 real

eigenvalues 0 = Λ1 > Λ2 ≥ · · · ≥ Λ4. The matrix Q is normalized by fixing Λ2 = −1. The

vector of states on the vertices W ⊆ V is denote by sW . In particular, s[n] are the states at the

leaves. GTR models include as special cases many standard models such as the Jukes-Cantor

(JC) where π = (1/4, . . . , 1/4) and Qij = 1
4

if i 6= j. The following more general model will

also be used.

Example 1 (Tamura-Nei Model). In the Tamura-Nei model (S1), the state space is

Φ = {A, G, C, T},

with stationary distribution π = (πA, πG, πC, πT). The rate matrix is given by

Q =


− αRπG/πR + βπG βπC βπT

αRπA/πR + βπA − βπC βπT
βπA βπG − αY πT/πY + βπT
βπA βπG αY πC/πY + βπC −


where πR = πA+πG, πT = πC+πT, β, αR, αY ≥ 0, and the diagonal is obtained by the condition

that the rows sum to 0. The rates of transitions and transversions are respectively (S2)

Ts = 2αRπAπG/πR + 2αY πCπT/πY + β(2πAπG + 2πCπT),

and

Tv = 2βπRπY .

The transition to transversion ratio is denoted byR = Ts/Tv. By checking by (πG,−πA, 0, 0) and

(0, 0, πT,−πC) are right eigenvectors and using the fact that the trace is the sum of eigenvalues,

it can be shown that the eigenvalues ofQ are 0,−β,−β−αR,−β−αY . Therefore, to normalize
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Q as above, one must divide the rate matrix by β. The Tamura-Nei model includes as special

cases (see e.g. (S2)): the Jukes-Cantor model (π = (1/4, 1/4, 1/4, 1/4), αR = αY = 0); the

Kimura two-parameter model (π = (1/4, 1/4, 1/4, 1/4), αR = αY ); the F84 model (αR = αY );

the HKY model (αR/αY = πR/πY ).

Remark 1 (Biological Convention). The normalization of Q above differs from standard bio-

logical convention where it is assumed that the total rate of change per unit time at stationarity

is 1, that is, ∑
i

πiQii = −1.

See e.g. (S2). Let −λQ denote the largest negative eigenvalue under this convention. Then, the

critical branch length (see main text) is given by the solution to

2e−2λQg
∗
Q = 1.

For instance, in the Tamura-Nei model, it can be shown that under the convention above (that

is, Ts + Tv = 1) it must be that

λQ = β =
1

2πRπY (1 +R)
,

and hence

g∗Q = πRπY (1 +R) ln 2.

In the special cases of the Jukes-Cantor and Kimura two-parameter models one has

g∗JC =
3

8
ln 2,

and

g∗K2P =
R + 1

4
ln 2.
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1.3 Phylogenetic reconstruction

A standard assumption in molecular evolution is that each site in a sequence evolves inde-

pendently according to a GTR model. Because of the reversibility assumption, the root of

the phylogeny cannot be identified and phylogenies are reconstructed up to their root. Let

Ỹ = {Ỹn}n≥1 be a subset of phylogenies and Q̃ be a subset of rate matrices on 4 states. Let

T = (V,E, [n], r; δ) ∈ Ỹ. If T = (V,E, [n], r) is the rooted tree underlying T , denote by

T−[T ] the tree T where the root is removed: that is, the two edges adjacent to the root are re-

placed by a single edge. Denote by Tn the set of all leaf-labeled trees on n leaves with internal

degrees 3 and let T = {Tn}n≥1. A phylogenetic reconstruction algorithm is a collection of

maps A = {An,k}n,k≥1 from sequences (si[n])
k
i=1 ∈ (Φ[n])k to leaf-labeled trees T ∈ Tn. Only

algorithms computable in time polynomial in n and k are considered. Let k(n) be an increas-

ing function of n. Say that A solves the phylogenetic reconstruction problem on Ỹ ⊗ Q̃ with

sequence length k = k(n) if for all ε > 0, there is n0 ≥ 1 such that for all n ≥ n0, T ∈ Ỹn,

Q ∈ Q̃,

P
[
An,k(n)

(
(si[n])

k(n)
i=1

)
= T−[T ]

]
≥ 1− ε,

where (si[n])
k(n)
i=1 are i.i.d. samples from the GTR model on T with rate matrix Q.

1.4 Distance methods

Let (sia)
k
i=1, (s

i
b)
k
i=1 ∈ Φk be the sequences at a, b ∈ [n]. For υ1, υ2 ∈ Φ, define the correlation

matrix between a and b by

F̂ ab
υ1,υ2

=
1

k

k∑
i=1

1{sia = υ1, s
i
b = υ2},

that is, the proportion of sites at which a is υ1 and b is υ2. Let F̂ ab = (F̂ ab
υ1,υ2

)υ1,υ2∈Φ be

the corresponding matrix. A phylogenetic reconstruction algorithm is said distance-based if

it depends on the data (si[n])
k
i=1 ∈ (Φ[n])k only through the correlation matrices {F̂ ab}a,b∈[n].
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The previous definition takes a general view of distance-based methods: any method that uses

only pairwise sequence comparisons. In practice, most distance-based approaches actually use

a specific distance estimator, that is, a function of F̂ ab that converges to δ(a, b) in probability as

n→ +∞.

2 Molecular clock case

In the rest of this section, the rate matrix Q is the Jukes-Cantor matrix and a molecular clock is

assumed to hold.

2.1 Preliminaries

Under a molecular clock, it is known that it suffices to consider uncorrected distances (S3). An

uncorrected distance estimate between leaves a and b is obtained by letting

δ̂u(a, b) = proportion of transversions between a and b. (1)

Note that one can write δ̂u(a, b) = (1− Θ̂(a, b))/2, where

Θ̂(a, b) = ν>F̂ abν =
1

k

k∑
i=1

[1{sia ↔ sib is a transition} − 1{sia ↔ sib is a transversion}],

with ν = (1, 1,−1,−1), a right eigenvector of the rate matrix Q corresponding to the second

eigenvalue Λ2 = −1. Eq. (1) is indeed a legitimate distance estimator. Note that E[F̂ ab
ij ] =

πi
(
e−δ(a,b)Q

)
ij

. Hence,

Θ(a, b) = E[Θ̂(a, b)]

= E
[
ν>F̂ abν

]
=

∑
i∈Φ

νi
∑
j∈Φ

πi
(
e−δ(a,b)Q

)
ij
νj

=
∑
i∈Φ

νi(πie
−δ(a,b)νi)

= e−δ(a,b).
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Therefore,

δu(a, b) = E[δ̂u(a, b)] =
1− e−δ(a,b)

2
= expected proportion of transversions between a and b.

For the rest of this section, it will be convenient to work primarily with Θ̂ rather than δ̂u.

Note that Θ̂ can be written in a different, but equivalent, form. For a ∈ [n] and i = 1, . . . , k, let

σia = νsia . In words, purines are denoted by +1 and pyrimidines are denoted by −1. Then (1) is

equivalent to

Θ̂(a, b) =
1

k

k∑
i=1

σiaσ
i
b. (2)

For future reference, the variances and covariances of Θ̂ are also computed. Note that

Var[Θ̂(a, b)] =
1

k
Var[σ1

aσ
1
b ] =

1

k
(E[(σ1

aσ
1
b )

2]− E[σ1
aσ

1
b ]

2) =
1

k
(1− e−2δ(a,b)).

Similarly,

Cov[Θ̂(u, v), Θ̂(x, y)] = E[Θ̂(u, v)Θ̂(x, y)]−E[Θ̂(u, v)]E[Θ̂(x, y)]

=
1
k2

(
kE[σ1

uσ
1
vσ

1
xσ

1
y] + k(k − 1)E[σ1

uσ
1
v ]E[σ1

xσ
1
y]
)
−E[σ1

uσ
1
v ]E[σ1

xσ
1
y]

=
1
k

(
E[σ1

uσ
1
vσ

1
xσ

1
y]−E[σ1

uσ
1
v ]E[σ1

xσ
1
y]
)
,

where the last expression depends on how the tree splits the set of leaves {u, v, x, y}. Note that

E[σ1
uσ

1
vσ

1
xσ

1
y] is equal to E[σ1

uσ
1
v ]E[σ1

xσ
1
y] if uv|xy and similarly for the other splits. Hence one

gets

Cov[Θ̂(u, v), Θ̂(x, y)] =


0, if uv|xy,
1
k
(e−δ(u,x)−δ(v,y) − e−δ(u,v)−δ(x,y)), if ux|vy,

1
k
(e−δ(u,y)−δ(v,x) − e−δ(u,v)−δ(x,y)), if uy|vx.

Finally the variance-covariance matrix of the distance matrix in this case is obtained by noticing

Var[δ̂u(a, b)] =
1

4
Var[Θ̂(a, b)] Cov[δ̂u(u, v), δ̂u(x, y)] =

1

4
Cov[Θ̂(u, v), Θ̂(x, y)].

(3)

Let e = (x, y) ∈ E and assume that x is closest to r (in number of edges). Define

Rr(e) =
(
1− θ2

e

)
Θ(r, y)−2,
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where Θ(r, y) = e−δ(r,y) and θe = e−δ(e). The following ancestral state estimator was studied

by Mossel and Peres (S4). Let w be a convex combination over the leaves, that is, w(x) ≥ 0 for

all x ∈ [n] and
∑

x∈[n] w(x) = 1. Consider the root-state estimator

S =
∑
x∈[n]

w(x)σx
Θ(r, x)

.

Then, one has E[S] = 0. Moreover, S is a conditionally unbiased estimator of the state σr at

the root, that is, the expectation of S given that the root has state σr is itself σr. There exists an

elegant formula for the variance of S, namely,

Var[S] = 1 +Kr,w,

where

Kr,w =
∑
e∈E

Rr(e)w(e)2,

and w(e) is the sum of all w(x)s over leaves below edge e.

2.2 Two Predictions

In this section, the best distance estimator between two clades is computed under two stochas-

tic models of error for the distances. In the full Markov model, the distribution of the dis-

tance estimates is derived from the distribution described in the previous section. In particular,

the full variance-covariance matrix of the distance matrix is used. On the other hand, in the

independent-error model, it is assumed that the distance estimates are independent with vari-

ance as computed in (3).

2.2.1 Independent-error model

Consider first the independent-error model. Let A,B be subsets of leaves corresponding to two

disjoint subtrees of T with respective most recent common ancestor (MRCA) a∗, b∗. One seeks
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the choice of leaf weights w(a), a ∈ A, and w(b), b ∈ B, that minimizes the variance of the

estimator

δ̄u(A,B) =
∑
a∈A

∑
b∈B

w(a)w(b)δ̂u(a, b),

where
∑

a∈Aw(a) = 1, and w(a) ≥ 0, ∀a ∈ A, and similarly for B. This implies

E[δ̄u(A,B)] = E

[∑
a∈A

∑
b∈B

w(a)w(b)δ̂u(a, b)

]
= δu(A,B),

where, using the molecular clock assumption, δu(A,B) = δu(a, b), ∀a ∈ A, b ∈ B. Similarly

let δ(A,B) = δ(a, b), ∀a ∈ A, b ∈ B.

Using independence, (3), and the molecular clock assumption, one has

Var[δ̄u(A,B)] = Var

[∑
a∈A

∑
b∈B

w(a)w(b)δ̂u(a, b)

]
=

∑
a∈A

∑
b∈B

w(a)2w(b)2Var
[
δ̂u(a, b)

]
=

1

4k
(1− e−2δ(A,B))

∑
a∈A

w(a)2
∑
b∈B

w(b)2.

By standard optimization techniques, the minimum of the above expression is attained for

w(a) = 1/|A|, ∀a ∈ A, and w(b) = 1/|B|, ∀b ∈ B.

2.2.2 Full Markov model

Consider now the full Markov model. Let TA = (VA, EA) be the subtree corresponding to A

and similarly for B. For a ∈ A, let |a|A = |a|a∗ and ΘA = Θ(a∗, a), where |a|a∗ is the number

of branches between a and the most recent common ancestor (MRCA) a∗ of A, and similarly

for B. Again, consider the inter-clade distance estimator

δ̄u(A,B) =
∑
a∈A

∑
b∈B

w(a)w(b)δ̂u(a, b).
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In particular, one has E[δ̄u(A,B)] = δu(a, b) as in the independent-error model. It will be

convenient to work with Θu(A,B) rather than δ̄u(A,B). Let

Θu(A,B) =
∑
a∈A

∑
b∈B

w(a)w(b)Θ̂(a, b).

Note that Var[δ̄u(A,B)] = 1
4
Var[Θu(A,B)] so it suffices to compute the latter. Note the fol-

lowing observation:

Θu(A,B) = ΘAΘB

∑
a∈A

∑
b∈B

w(a)w(b)Θ−1
A Θ−1

B Θ̂(a, b)

= ΘAΘB
1

k

k∑
i=1

(∑
a∈A

w(a)σia
ΘA

)(∑
b∈B

w(b)σib
ΘB

)

= ΘAΘB
1

k

k∑
i=1

SiAS
i
B,

where

SiA =
∑
a∈A

w(a)σia
ΘA

,

is a linear ancestral estimator at a∗, and similarly for B.

Using the expression for the variance of SA, SB given in the previous section one gets

Var[Θu(A,B)] =
Θ2
AΘ2

B

k
Var[S1

AS
1
B]

=
Θ2
AΘ2

B

k

[
E[(S1

A)2(S1
B)2]− E[S1

AS
1
B]2
]

=
Θ2
AΘ2

B

k

[
E[E[(S1

A)2(S1
B)2 |σa∗ , σb∗ ]]− e−2δ(a∗,b∗)

]
=

Θ2
AΘ2

B

k
[(1 +Ka∗,w)(1 +Kb∗,w)− e−2δ(a∗,b∗)],

(where E[(S1
A)2(S1

B)2 |σa∗ , σb∗ ] is the conditional expectation of (S1
A)2(S1

B)2 given that the

states at a∗ and b∗ are σa∗ and σb∗). This expression depends on w only through Ka∗,w and

Kb∗,w. Hence to minimize the variance of δ̄u(A,B) it suffices to solve the following convex
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quadratic programs
minw

∑
e∈EA Ra∗(e)w(e)2

s.t.
{ ∑

a∈Aw(a) = 1,
w(a) ≥ 0, ∀a ∈ A,

and similarly for B.

A particularly good solution is obtained by setting w(a) = 2−|a|A , ∀a ∈ A and w(b) =

2−|b|B , ∀b ∈ B. The power of this choice of weights becomes more apparent when one considers

a complete binary tree where for all edges e it holds that δ(e) = g < g∗∗ = ln
√

2. (The value

of g∗∗ is different than the value of g∗JC in the main text because of the normalization implied by

fixing Λ2 = −1. Up to this re-parametrization, the two values are equivalent.) Indeed, letting

hA = maxa∈A |a|A and summing over the levels starting at the root,

Ka∗,w =

hA−1∑
i=0

2hA−i
{

(1− e−2g)e2(hA−i)g(2−(hA−i))2
}

= (1− e−2g)

hA∑
j=1

e2jge−j(ln 2)

= (1− e−2g)

hA∑
j=1

e−2j(g∗∗−g)

= (1− e−2g)e−2(g∗∗−g) 1− e−2hA(g∗∗−g)

1− e−2(g∗∗−g)

≡ Υ(g, hA), (4)

which is bounded uniformly in hA (for fixed g), and similarly for B. (A similar bound holds

for general clock-like topologies as long as for all edges δ(e) ≤ g.) That is, the accuracy of the

estimator does not deteriorate as one reaches deeper and deeper into the phylogeny. To see the

significance of (4), note that it gives a signal-to-noise ratio for Θu(A,B) of

E[Θu(A,B)]√
Var[Θu(A,B)]

≥
√
k

1 + Υ(g, hA)
e−δ(a

∗,b∗).

In comparison, choosing arbitrary leaves a ∈ A and b ∈ B and estimating Θu(A,B) using
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Θ̂(a, b) one gets a signal-to-noise ratio of

E[Θ̂(a, b)]√
Var[Θ̂(a, b)]

=

√
k

1− e−2δ(a,b)
e−δ(a,b).

Note that for large trees, e−δ(a,b) is in general much smaller than e−δ(a∗,b∗).

2.3 Idealized Example

The example of Figure 2A of the main text is defined more formally as follows. The example is

made of three disjoint monophyletic subsets of leaves A, B, and C with corresponding subtrees

TA = (VA, EA), TB = (VB, EB), and TC = (VC , EC) rooted respectively at a∗, b∗, and c∗. The

triplet connecting the three subtrees is q∗ = a∗b∗|c∗ and has distance matrix

δ(a∗, b∗) = 2f0, δ(a
∗, c∗) = δ(b∗, c∗) = 4f0,

where f0 > 0. Refer to q∗ as the “deep triplet.” The subtrees TB and TC are complete binary

trees with H0 + h0 levels and branch lengths δ(e) = g0 for all e ∈ EB ∪ EC , with g0 > 0. The

subtree TA is a complete binary tree with H0 + h0 levels and branch lengths g0 modified in the

following way: replace the subtree below the first node at level H0 below a∗ with a complete

binary tree with h1 levels and branch lengths g1 < g0. Refer to the latter subtree as the “dense

subtree of TA” and denote it by T ∗d = (V ∗d , E
∗
d). Denote by a∗d the root of T ∗d . Under the

molecular clock assumption, h1g1 = h0g0. In the current section, the full tree obtained this way

is denoted by T .

The goal here is to infer the deep triplet, assuming that TA, TB, and TC are known. More

specifically, one seeks to analyze the performance of UPGMA and WPGMA on this example.

Essentially, this comes down to analyzing the performance of the test

δ̄u(A,C)− δ̄u(A,B) > 0?
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or, equivalently,

Θu(A,C)−Θu(A,B) < 0?

2.3.1 Variance formula

A general formula for the variance of the estimator

L̂ = Θ−1
A Θ−1

B (Θu(A,C)−Θu(A,B)),

is first derived. Note that Θu(A,C) and Θu(A,B) are not independent. One could derive

a formula for the variance of L̂ by using the full variance-covariance matrix of the distance

matrix as computed in Section 1. Instead a “conditioning trick” is used. Noting that ΘB = ΘC ,

L̂ = Θ−1
A Θ−1

B

(∑
a∈A

∑
c∈C

w(a)w(c)
1

k

k∑
i=1

σiaσ
i
c −
∑
a∈A

∑
b∈B

w(a)w(b)
1

k

k∑
i=1

σiaσ
i
b

)

=
1

k

k∑
i=1

(∑
a∈A

w(a)σia
ΘA

)(∑
c∈C

w(c)σic
ΘC

−
∑
b∈B

w(b)σib
ΘB

)

=
1

k

k∑
i=1

SiA(SiC − SiB).

Let L̂1 = S1
A(S1

C−S1
B). Let z∗ be the meeting point of the deep triplet. Because of reversibility

and the symmetries of the JC model, it suffices to perform the variance calculation conditioned

on σ1
z∗ = 1. In particular, this makes S1

A, S1
B, and S1

C independent. Denote the corresponding

expectation with a star. Using formulas from (S5)

E∗[L̂1] = E∗[S1
A](E∗[S1

C ]− E∗[S1
B])

= e−f0(e−3f0 − e−f0),
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and

E∗[L̂2
1] = E∗[(S1

A)2]E∗
[(
S1
C − S1

B

)2
]

= E∗[(S1
A)2]E∗

[
(S1

C)2 + (S1
B)2 − 2S1

CS
1
B

]
= Var[S1

A](Var[S1
C ] + Var[S1

B]− 2E∗[S1
C ]E∗[S1

B])

= 2(1 +Ka∗,w)(1 +Kb∗,w − e−4f0).

Hence, one has (by symmetry)

E[L̂] = e−4f0 − e−2f0 , (5)

and

Var[L̂] =
1

k

(
2(1 +Ka∗,w)(1 +Kb∗,w − e−4f0)− (e−4f0 − e−2f0)2

)
. (6)

2.3.2 Gaussian approximation

By the Central Limit Theorem, quantities such as δ̂u(a, b) and Θ̂(a, b) are well approximated by

a Normal distribution. One can therefore obtain approximate formulas for the success proba-

bility if it is assumed that the distance matrix (δ̂u(a, b))a,b∈[n] is jointly Gaussian with variance-

covariance matrix as computed in Section 1. In particular, the quantity L̂ is Gaussian, as a linear

combination of Gaussians, with expectation and variance as in Eqs. (5) and (6).

For instance, use the WPGMA weighting scheme in the case where T is such that h1 =

h0 = 0, that is, there is no dense subtree. In that case, it was already computed Ka∗,w = Kb∗,w

in Eq. (4). One gets that for the test to fail with probability less than 1%, the sample complexity

required is given by solving

E[L̂] ≈ (2.3)

√
Var[L̂],

that is,

k ≈ (2.3)2

(
2(1 + Υ(g0, H0))(1 + Υ(g0, H0)− e−4f0)

(e−4f0 − e−2f0)2
− 1

)
. (7)
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As f0 → 0 and H0 → +∞, one can check that this expression is roughly

k ≈


2(2.3)2

4
·
(

(1−e−2g0 )e−2(g∗∗−g0)

1−e−2(g∗∗−g0)

)2

· 1
f2
0

if g0 < g∗∗

2(2.3)2

4
·
(

1−e−2g0

e2(g0−g
∗∗)−1

)2

· 1
f2
0
· e4(g0−g∗∗)H0 if g0 ≥ g∗∗,

consistent with Eq. (3) in the main text. In fact, this rough behavior holds for general topologies

under the full Markov model, as shown in the attached paper. In Figure 2B of the main text,

Eq. (7) is plotted as a function of g0 for various values of H0.

2.3.3 Lower bound for UPGMA

Although the use of UPGMA was justified through the independent-error model in Section 2.2,

here the full Markov model is used to analyze the behavior of UPGMA. Let h1 > 0 and h0 > 0.

A lower bound on Ka∗,w under the UPGMA weighting is given as follows. Recall that

Ka∗,w =
∑
e∈EA

Ra∗(e)w(e)2,

with

Ra∗(e) =
(
1− θ2

e

)
Θ(a∗, y)−2,

where e = (x, y) (x is assumed closer to a∗). Let K∗∗ be the contribution of the edge immedi-

ately above the dense subtree, which is denote by e∗∗. That is,

K∗∗ = Ra∗(e
∗∗)w(e∗∗)2.

Clearly Ka∗,w ≥ K∗∗. The fraction of leaves in the dense subtree is

γ =
2h1

2H0+h0 − 2h0 + 2h1
=

1

2H0+h0−h1 − 2h0−h1 + 1
.

and one gets

K∗∗ = (1− e−2g0)e2H0g0γ2.
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The signal-to-noise ratio of L̂ is given by

|E[L̂]|√
Var[L̂]

=
e−2f0 − e−4f0√

1
k

(2(1 +Ka∗,w)(1 +Kb∗,w − e−4f0)− (e−4f0 − e−2f0)2)

≤

√
k

2e2H0g0γ2 − 1
.

If one chooses values of h0, h1 and H0 such that H0 ≥ h0 and such that the fraction of leaves

in the dense subtree is comparable to the number of leaves in TA, then γ is strictly positive

(independently of H0) and the signal-to-noise ratio goes to 0 unless k is exponential in H0g0

(roughly proportional to the depth). This exponential growth, which holds for any value of g0,

can be seen in Figure 3 of the main text where simulation results under the Jukes-Cantor model

with the choice of parameters h0 = H0 and h1 = 1 (giving γ ≥ 1/3) are given. This particular

example is somewhat extreme in that g1 = g0/H0 is very small. Another example is given by

h1 = H0 and h0 = 2H0 in which case γ ≥ 1/2 and g1 = g0/2.

2.4 Probabilistic Analysis of WPGMA

Let 0 < f < g < +∞ and denote by UYf,g the set of all phylogenies T = (V,E, [n], r; δ) ∈

Yf,g where it holds further that δ is ultrametric, that is, for all v ∈ V it holds that δ(v, x) =

δ(v, y) ≡ δ(v), for all leaves x, y below v. Recall the WPGMA algorithm in Figure 1. WPGMA

is run with the uncorrected distance estimates

δ̂u(a, b) =
1

2
(1− Θ̂(a, b)),

where

Θ̂(a, b) = ν>F̂ abν =
1

k

k∑
i=1

σiaσ
i
b,

for a, b ∈ [n]. Call a subset of leaves A a clade if it corresponds to all leaf descendants of

an internal node a∗ called the MRCA. For a clade A with MRCA a∗ and a leaf a ∈ A, let
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|a|A = |a|a∗ and ΘA = Θ(a∗, a), where |a|a∗ is the number of branches between a and the

MRCA a∗ of A. For disjoint clades A and B, let

δ̄u(A,B) =
∑
a∈A

∑
b∈B

w(a)w(b)δ̂u(a, b) =
1

2
(1−Θu(A,B)),

where

Θu(A,B) =
∑
a∈A

∑
b∈B

w(a)w(b)Θ̂(a, b),

and

w(a) = 2−|a|A .

Define

Θ(a, b) = e−δ(a,b),

and similarly for Θu(A,B).

The following theorem is proved in the Appendix.

Theorem 1 (Analysis of WPGMA). For all 0 < f < g < g∗∗, WPGMA solves the phylogenetic

reconstruction problem on UYf,g ⊗ {Q} with k = O(log n).

3 General case

In this section, the molecular clock assumption is dropped and a general time-reversible matrix

Q with stationary distribution π > 0 is considered. The following result is proved.

Definition 1 (∆-Branch Model). Let 0 < ∆ ≤ f ≤ g < +∞ and denote by Yf,g
∆ the set of all

phylogenies T = (V,E, [n], r; δ) satisfying f ≤ δ(e) ≤ g where δ(e) is an integer multiple of

∆, for all e ∈ E. Call Yf,g
∆ ⊗ {Q} the ∆-Branch Model (∆-BM).

Let g∗∗ = ln
√

2.
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Theorem 2 (Main Result). For all 0 < ∆ ≤ f ≤ g < g∗∗, there is a distance-based method

solving the phylogenetic reconstruction problem on Yf,g
∆ ⊗ {Q} with k = κ log n for some

constant κ > 0. As ∆→ 0 (for fixed g), the constant κ scales as O(∆−2).

A weaker version of the result stated here was first reported without proof in (S6). Note that

in (S6) the result was stated without the discretization assumption which is in fact needed for

the final step of the proof. This is further explained in Section 7.3 of (S7).

All proofs can be found in the Appendix.

3.1 Ancestral Reconstruction and Distance Averaging

Note that, without loss of generality, one can consider performing ancestral state reconstruction

on a homogeneous tree as it is always possible to “complete” a general tree with zero-length

edges.

Example 2 (Homogeneous Tree). For an integer h ≥ 0, denote by

T (h) = (V (h), E(h), L(h), r(h); δ),

a rooted phylogeny where T (h) is the h-level complete binary tree with arbitrary edge weight

function δ and L(h) = [2h]. For 0 ≤ h′ ≤ h, let L(h)
h′ be the vertices on level h − h′ (from the

root). In particular, L(h)
0 = L(h) and L(h)

h = {r(h)}.

In this section the discussion is hence restricted to the homogeneous case

T = T (h) = (V,E, [n], r; δ),

where h = log2 n, f ≤ δ(e) ≤ g and δ(e) is an integer multiple of ∆, ∀e ∈ E. Throughout this

section, a sequence length k > κ log(n) is used where κ is a constant to be determined later.

Generate k i.i.d. samples (siV )ki=1 from the GTR model (T , Q) with state space Φ = {A, G, C, T}.
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3.2 Distance Estimator

Let the right eigenvector ν correspond to the second eigenvalue Λ2 ofQ. For a, b ∈ [n], consider

the estimator

Θ̂(a, b) = ν>F̂ abν, (8)

where F̂ ab is the correlation matrix . For a ∈ [n] and i = 1, . . . , k, let

σia = νsia .

Then (8) is equivalent to

Θ̂(a, b) =
1

k

k∑
i=1

σiaσ
i
b. (9)

The next lemma indicates that this is indeed a legitimate distance estimator. In fact, Θ̂ is a

similarity estimator rather than a distance estimator. Similarity is used here for technical rea-

sons. For more on connections between eigenvalues of the rate matrix and distance estimation,

see e.g. (S8, S9).

Lemma 1 (Distance Estimator). For all a, b ∈ [n],

E[Θ̂(a, b)] = Θ(a, b),

where Θ(a, b) = e−δ(a,b).

3.2.1 Ancestral Sequence Reconstruction

Let e = (x, y) ∈ E and assume that x is closest to r (in topological distance). Define

Path(r, e) = Path(r, y), |e|r = |Path(r, e)|, and

Rr(e) =
(
1− θ2

e

)
Θ(r, y)−2,

where Θ(r, y) = e−δ(r,y) and θe = e−δ(e).

Proposition 1 below is a variant of Lemma 5.3 in (S4). For completeness, a proof is given.
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Proposition 1 (Weighted Majority: GTR Version). Let s[n] be a sample from the GTR model

on (T , Q) with corresponding σ[n]. For a unit flow w from r to [n], consider the estimator

S =
∑
x∈[n]

w(x)σx
Θ(r, x)

.

Then,

E[S] = 0,

E[S |σr] = σr,

and

Var[S] = 1 +Kw,

where

Kw =
∑
e∈E

Rr(e)w(e)2.

Let w be a unit flow from r to [n]. The following multiplicative decomposition of w will be

used: If w(x) > 0, let

ψ(e) =
w(y)

w(x)
,

and, if instead w(x) = 0, let ψ(y) = 0. Denoting x↑ the immediate ancestor of x ∈ V and

letting θx = e−δ((x↑,x)), it will be useful to re-write

Kw =
h−1∑
h′=0

∑
x∈L(h)

h′

(1− θ2
x)

∏
e∈Path(r,x)

ψ(e)2

θ2
e

, (10)

and to define the following recursion from the leaves. For x ∈ [n],

Kx,w = 0.

Then, let u ∈ V − [n] with children v1, v2 with corresponding edges e1, e2 and define

Ku,w =
∑
α=1,2

((1− θ2
vα) +Kvα,w)

(
ψ(eα)2

θ2
eα

)
.
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Note that, from (10), Kr,w = Kw.

Because short sequences are used, bounds on the variance are not enough: exponential

concentration is needed. To obtain such concentration, the exponential moment of S is bounded.

The proof generalizes a recent argument of Peres and Roch (arxiv.org/abs/0908.2056).

Proposition 2 (Weighted Majority: Exponential Bound). For ζ ∈ R, let

Γi(ζ) = ln E[exp(ζS) |σr = νi].

Then, there exists c > 0 depending only on Q and f such that for all ζ ∈ R,

Γi(ζ) ≤ νiζ +
1

2
cζ2Kw.

3.2.2 Distance Averaging

The input to the tree reconstruction algorithm is the matrix of all estimated similarities between

pairs of leaves {Θ̂(a, b)}a,b,∈[n]. For short sequences, these estimated similarities are known to

be accurate for leaves that are close enough. It is now shown how to compute distances between

internal nodes in a way that involves only {Θ̂(a, b)}a,b,∈[n] (and previously computed internal

weights) using Proposition 2.

Let 0 ≤ h′ < h. For v ∈ L(h)
h′ , let Tv = (Vv, Ev) be the subtree of T = T (h) rooted at v with

leaf set denoted Lv. Let a, b ∈ L(h)
h′ . For x ∈ {a, b}, denote by X the leaves of T = T (h) below

x. Assume that θe is given, for all e below a, b. Estimate δ(a, b) as follows

δ̄c(a, b) ≡ − ln

(∑
a′∈A

∑
b′∈B

w(a′)w(b′)Θ(a, a′)−1Θ(b, b′)−1Θ̂(a′, b′)

)
,

where

w(a′) =
1

|A|
.

20



This choice of estimator is suggested by the following observation

δ̄c(a, b) ≡ − ln

(
1

k

k∑
i=1

(∑
a′∈A

w(a′)Θ(a, a′)−1σia′

)(∑
b′∈B

w(b′)Θ(b, b′)−1σib′

))

= − ln

(
1

k

k∑
i=1

(∑
a′∈A

2−h
′
σia′

Θ(a, a′)

)(∑
b′∈B

2−h
′
σib′

Θ(b, b′)

))
.

Note that the first line depends only on estimates (Θ̂(u, v))u,v∈[n] and {Θ(v, ·)}v∈Va∪Vb . The last

line is the empirical distance between the reconstructed states at a and bwhen the flow is chosen

to be homogeneous in Proposition 1.

Lemma 2 (Large Deviations). Let 0 ≤ h′ < h and let a, b ∈ L(h)
h′ . For x = a, b, let

Sx =
∑
x′∈X

2−h
′
σx′

Θ(x, x′)
.

It holds that

− ln

(
E

[∑
a′∈A

∑
b′∈B

w(a′)w(b′)Θ(a, a′)−1Θ(b, b′)−1Θ̂(a′, b′)

])
= Θ(a, b),

where Θ(a, b) = e−δ(a,b) and there exists ζ∗ > 0 small enough such that

E[exp(ζSaSb)] < +∞,

for all |ζ| < |ζ∗|. In particular, for all ε > 0 there exists 0 < χ < 1 such that

P
[∣∣∣e−δ̄c(a,b) − e−δ(a,b)

∣∣∣ > ε
]
≤ χk.

Moreover, χ is a constant independent of h′ and it scales as 1− Ω(ε2) as ε→ 0.

In the next section, the previous lemma is used in two situations: 1) to estimate the distance

between two close vertices; 2) to detect that two vertices are “far apart.” These specializations

of Lemma 2 are stated below.
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Proposition 3 (Deep Distance Computation: Small Diameter). Let D > 0, γ > 0, and ε > 0.

Let a, b ∈ L(h)
h′ as above. There exists κ > 0 such that if the following conditions hold:

• [Small Diameter] δ(a, b) < D,

• [Sequence Length] k > κ log(n),

then

|δ̄c(a, b)− δ(a, b)| < ε,

with probability at least 1−O(n−γ). As ε→ 0, κ scales as O(ε−2).

Proposition 4 (Deep Distance Computation: Diameter Test). Let D > 0, W > 5, and γ > 0.

Let a, b ∈ L(h)
h′ as above. There exists κ > 0 such that if the following conditions hold:

• [Large Diameter] δ(a, b) > D + lnW ,

• [Sequence Length] k > κ log(n),

then

δ̄c(a, b) > D + ln
W

2
,

with probability at least 1− n−γ . On the other hand, if the first condition above is replaced by

• [Small Diameter] δ(a, b) < D + ln W
5

,

then

δ̄c(a, b) ≤ D + ln
W

4
,

with probability at least 1− n−γ . The constant κ depends only on D and W .

3.3 Tree Reconstruction

In this section, the main result of this paper is proved. For ∆ > 0 and z ∈ R+, let [z]∆ be the

closest multiple of ∆ to z (breaking ties arbitrarily).
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3.3.1 Basic Definitions

An algorithm of (S7) called Blindfolded Cherry Picking is used. For reference, it is detailed

in Figure 8. The reader is referred to (S7) for a full explanation of the algorithm, which is

somewhat involved. The proof in (S7) is modular and relies on two main components: a

distance-based combinatorial argument which remains unchanged in the setting here; and a

statistical argument which is now adapted. The key to the latter is (S7, Proposition 4). Note

that (S7, Proposition 4) is not distance-based as it relies on a complex ancestral reconstruction

function—recursive majority. The main contribution in this section is to show how this result

can be obtained using the techniques of the previous sections—leading to a fully distance-based

reconstruction algorithm.

A few definitions from (S7) are needed. The interested reader is strongly advised to con-

sult (S7) for a full explanation and motivation of these definitions.

Fix 0 < ∆ ≤ f ≤ g < g∗∗ as in Theorem 2. Let T = (V,E, [n], r; δ) ∈ Yf,g
∆ be a

phylogeny with underlying tree T = (V,E). In this section, the edge set, vertex set and leaf set

of a tree T ′ are sometimes referred to as E(T ′), V(T ′), and L(T ′) respectively.

Definition 2 (Restricted Subtree). Let V ′ ⊆ V be a subset of the vertices of T . The subtree of

T restricted to V ′ is the tree T ′ obtained by 1) keeping only nodes and edges on paths between

vertices in V ′ and 2) by then contracting all paths composed of vertices of degree 2, except the

nodes in V ′. The notation T ′ = T |V ′ is sometimes used. See Figure 2 for an example.

Definition 3 (Edge Disjointness). Denote by PathT (x, y) the path (sequence of edges) connect-

ing x to y in T . Say that two restricted subtrees T1, T2 of T are edge disjoint if

PathT (x1, y1) ∩ PathT (x2, y2) = ∅,

for all x1, y1 ∈ L(T1) and x2, y2 ∈ L(T2). Say that T1, T2 are edge sharing if they are not edge

disjoint. See Figure 3 for an example.
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Definition 4 (Legal Subforest). Say that a tree is a rooted full binary tree if all its internal nodes

have degree 3 except the root which has degree 2. A restricted subtree T1 of T is a legal subtree

of T if it is also a rooted full binary tree. Say that a forest

F = {T1, T2, . . .},

is legal subforest of T if the Tι’s are edge-disjoint legal subtrees of T . Denote by ρ(F) the set

of roots of F .

Definition 5 (Dangling Subtrees). Say that two edge-disjoint legal subtrees T1, T2 of T are

dangling if there is a choice of root for T not in T1 or T2 that is consistent with the rooting of

both T1 and T2. See Figure 4 below for an example where two legal, edge-disjoint subtrees are

not dangling.

Definition 6 (Basic Disjoint Setup (General)). Let T1 = Tx1 and T2 = Tx2 be two restricted

subtrees of T rooted at x1 and x2 respectively. Assume further that T1 and T2 are edge-disjoint,

but not necessarily dangling. Denote by yι, zι the children of xι in Tι, ι = 1, 2. Let wι be the

node in T where the path between T1 and T2 meets Tι, ι = 1, 2. Note that wι may not be in Tι

since Tι is restricted, ι = 1, 2. If wι 6= xι, assume without loss of generality that wι is in the

subtree of T rooted at zι, ι = 1, 2. Call this configuration the Basic Disjoint Setup (General).

See Figure 4. Let δ(T1, T2) be the length of the path between w1 and w2 in the metric δ.

Example 3. Consider the example of Figure 5. The treeA is a complete binary tree withH0+h0

levels and branch lengths g0 with one subtree at height H0 replaced by a complete binary tree

with h1 levels (dark subtree) which is denser, that is, with branch lengths g1 < g0. Assume to

simplify that the molecular clock assumption is satisfied, that is, h1g1 = h0g0. Imagine that

the first h levels of A where h = h0 + 2 < h1 have been reconstructed. Then a rooted forest

composed of 2h1−h subtrees of the dense subtree and 2H0+h0−h subtrees of the sparse part of the
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tree is obtained. Denote by B and C the leftmost dense and sparse subtree respectively. The re-

lation between these two subtrees is illustrated in Figure 6. The configuration obtained satisfies

the conditions of the Basic Disjoint Setup (General) but is not dangling: the two subtrees are

disjoint but the path connecting them does not enter through their respective roots.

3.3.2 Deep Distorted Metric

The goal in this subsection is to compute the distance between the internal nodes x1 and x2 in

the Basic Disjoint Setup (General). It has already been shown how to perform this computation

when T1 and T2 are dangling, as this case is handled easily by Propositions 3 and 4. However, in

the general case depicted in Figure 4, there is a complication. When T1 and T2 are not dangling,

the reconstructed sequences at x1 and x2 are not conditionally independent. But it can be shown

that for the algorithm Blindfolded Cherry Picking to work properly, the following are needed:

1) to compute the distance between x1 and x2 correctly when the two subtrees are close and

dangling; 2) to detect when the two subtrees are far apart (but an accurate distance estimate is

not required in that case). This turns out to be enough because the algorithm Blindfolded Cherry

Picking ensures roughly that close reconstructed subtrees are always dangling. The reader is

referred to (S7) for details.

The key point is the following: if one computes the distance between y1 and y2 rather

than the distance between x1 and x2, then the dangling assumption is satisfied (re-root the tree

at any node along the path connecting w1 and w2). However, when the algorithm has only

reconstructed T1 and T2, one cannot tell which pair in {y1, z1} × {y2, z2} is the right one to use

for the distance estimation. Instead, compute the distance for all pairs in {y1, z1}×{y2, z2} and

the following then holds: in the dangling case, all these distances will agree (after subtracting

the length of the edges between x1, x2 and {y1, z1, y2, z2}); in the general case, at least one is

correct. This is the basic observation behind the routine DISTORTEDMETRIC in Figure 7 and
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the proof of Proposition 5 below.

Using the notation of Definition 6, fix (a, b) ∈ {y1, z1} × {y2, z2}. For x = a, b, denote

by X the leaves of Tx and let |`|x be the graph distance (that is, the number of edges) between

x and leaf ` ∈ X . Assume that θe is given for all e ∈ E(Ta) ∪ E(Tb). The quantity δ(a, b) is

estimated as follows

δ̄c(a, b) ≡ − ln

(∑
a′∈A

∑
b′∈B

w(a′)w(b′)Θ(a, a′)−1Θ(b, b′)−1Θ̂(a′, b′)

)
,

where

w(a′) = 2−|a
′|a .

Note that, because the tree is binary, it holds that∑
a′∈A

∑
b′∈B

2−|a
′|a−|b′|b =

∑
a′∈A

2−|a
′|a
∑
b′∈B

2−|b
′|b = 1,

and think of the weights on A (similarly for B) as resulting from a homogeneous flow wa from

a to A. Then, the bounds on the variance and the exponential moment of

Sa ≡
∑
a′∈A

2−|a
′|aΘ(a, a′)−1σa′ ,

in Propositions 1 and 2 still hold with

Ka,wa =
∑

e∈E(Ta)

Ra(e)w(e)2.

Moreover Ka,wa is uniformly bounded following an argument identical to (4) in the proof of

Lemma 2. In particular, the same large deviations result hold for δ̄c(a, b).

For D > 0, W > 5, define

SD(a, b) = 1

{
[δ̄c(a, b)]∆ ≤ D + ln

W

3

}
,

and let

d̄c(a, b) =

{
[δ̄c(a, b)]∆, if SD(a, b) = 1,
+∞, o.w.
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Proposition 5 (Accuracy of DISTORTEDMETRIC). Let D > 0, W > 5, γ > 0 and g < g∗∗.

Consider the Basic Disjoint Setup (General) with F = {T1, T2} and Q = {y1, z1, y2, z2}.

Assume θe is given for all e ∈ E(T1) ∪ E(T2). Let Υ denote the output of DISTORTEDMETRIC

in Figure 7. There exists κ > 0, such that if the following condition holds:

• [Edge Length] It holds that δ(e) ≤ g, ∀e ∈ E(Tx), x ∈ Q;

• [Sequence Length] The sequence length is k > κ log(n),

then, with probability at least 1−O(n−γ),

Υ = δ(x1, x2)

under either of the following two conditions:

1. [Dangling Case] T1 and T2 are dangling and δ(T1, T2) < D, or

2. [Finite Estimate] Υ < +∞.

As ∆→ 0 (for fixed D,W ), the constant κ scales as O(∆−2).

The rest of the Blindfolded Cherry Picking algorithm is unchanged. The full algorithm is

given in Figure 8. The algorithm is quite complex and a full explanation is provided in (S7).

The description of the algorithm uses the following notation. Let ε > 0 be the error tol-

erance. Each application of Proposition 5 has an error of O(n−γ). Note that O(n3) distance

estimations are performed so that, by the union bound, one requires O(n3−γ) ≤ ε. Set D > 10g

and take W such that ln W
3
> 4g. For a distance matrix D and a set of nodes N , denote

D(N ) = max {D(x, y) : {x, y} ⊆ N} .

This concludes the sketch of the proof of Theorem 2.
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4 The Distance Matrix is Not Sufficient

A statistic (i.e., a function of the full data) is called sufficient if, conditioned on the value of the

statistic, the distribution of the full data does not depend on the parameters of the generating

model. Roughly speaking, a sufficient statistic encapsulates all the information about the data.

See e.g. (S10). In this section, it is shown that the pairwise correlation matrices do not constitute

a sufficient statistic for the full Markov model of evolution. Hence, there is in principle more

information in the full sequence dataset than there is in the matrix of evolutionary distances.

A simple example of non-sufficiency follows. Consider a four-leaf tree with leaf set L =

{a, b, c, d} and split ab|cd. Assume a CFN model with purines denoted “0” and pyrimidines

denoted “1” with equal mutation probabilities p is used.

Example 4 (CFN Model). The CFN model is the GTR model with φ = 2, π = (1/2, 1/2), and

Q = QCFN ≡
(
−1/2 1/2
1/2 −1/2

)
.

Consider the following correlation matrices

F̂ ij
υ1υ2

=
1

4
,

for all i 6= j ∈ L and υ1, υ2 ∈ {0, 1}. Two different datasets consistent with these correlation

matrices are

Data1 =


0 0 0 0 1 1 1 1
0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 0
1 1 0 0 0 0 1 1

 ,
and

Data2 =


0 0 0 0 1 1 1 1
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1
0 1 1 0 1 0 0 1

 ,
where the columns are the sites and the rows are the leaves in the order a, b, c, d.
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Compare the probability of observing the two datasets under two different values of p: p = ε

and = 1/2 − ε for ε > 0 small. In the first case, in a first approximation it suffices to compute

the parsimony scores and

Pε[Data1] =
(ε

2

)8

+O(ε9) =
ε8

256
+O(ε9),

and

Pε[Data2] =

(
1

2

)2 (ε
2

)2 (
ε2
)4

+O(ε11) =
ε10

16
+O(ε11).

In particular, the following ratio is obtained

Pε[Data2 | F̂ ]

Pε[Data1 | F̂ ]
=

Pε[Data2]

Pε[Data1]
= ε2 +O(ε3).

On the other hand, if p = 1/2− ε then the state distribution is almost uniform and

P1/2−ε[Data2 | F̂ ]

P1/2−ε[Data1 | F̂ ]
=

P1/2−ε[Data2]

P1/2−ε[Data1]
= 1 +O(ε).

Since the ratios are different, it has been shown that the distribution of the data conditioned on

the correlation matrices depends on the parameters of the model. Therefore, the distance matrix

is not a sufficient statistic.
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A Proofs

A.1 Section 2

Proof of Theorem 1: Fix D > 3g + 2f , 2g + 2f < D < D, and

ε′ < min

{
e2f − 1

e2f + 1
,
eD−2g−2f − 1

eD−2g−2f + 1

}
.

This choice ensures that

e2f 1− ε′

1 + ε′
> 1,

and

eD−2g−2f 1− ε′

1 + ε′
> 1,

which will be needed later. Let

ε = min{ε′e−D, ε′e−D},

and let χ be as in Lemma 2 in Section 3 for this choice of ε. Taking κ large enough, assume the

conclusion of Lemma 2 holds for all pairs of clades in the tree, an event denoted by (?).

By definition,

δ̄u(A,B) ≤ δ̄u(A′, B′) ⇐⇒ Θu(A,B) ≥ Θu(A′, B′).

For convenience, in the rest of the proof Θu is used rather than δ̄u. If A,B are disjoint clades

with respective MRCA a∗ and b∗ satisfying δ(a∗, b∗) < D,

Θu(A,B) < Θu(A,B) + ΘAΘBε

≤ ΘAΘB(e−δ(a
∗,b∗) + ε′e−D)

< ΘAΘB(e−δ(a
∗,b∗) + ε′e−δ(a

∗,b∗))

= Θu(A,B)(1 + ε′),
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and similarly

Θu(A,B) > Θu(A,B)(1− ε′).

On the other hand, if δ(a∗, b∗) > D,

Θu(A,B) < Θu(A,B) + ΘAΘBε

≤ ΘAΘB(e−δ(a
∗,b∗) + ε′e−D)

< ΘAΘB(e−D + ε′e−D)

= ΘAΘBe
−D(1 + ε′).

By (?) these inequalities hold for all such pairs of clades.

Two clades A, B are sister clades if their MRCA is their immediate ancestor. The following

convention is used. Recall that the leaves are denoted {1, . . . , n}. Let minA be the smallest

label in A. When denoting a pair of sister clades (A,B), assume minA < minB. There are

n − 1 pairs of sister clades. Order the sister pairs by decreasing value of Θu(A,B), breaking

ties by lexicographic order over (minA,minB):

(A1, B1), . . . , (An−1, Bn−1).

Assume that WPGMA uses the same tie-breaking rule. Let Ci = Ai ∪Bi.

The following basic claim is proved next. For all i = 1, . . . , n−1, at Selection Step i choose

(A∗, B∗) = (Ai, Bi). The result then follows. The argument works by induction. For i = 0,

there is nothing to prove. Assume the claim holds up to some 1 ≤ i < n− 1. Observations:

1. All the current clusters in Zi−1 are clades. This follows from the induction hypothe-

sis. By the induction hypothesis, one also gets that the values δ̄u(A,B) computed at the

Reduction Steps indeed correspond to the original definition:

δ̄u(A,B) =
∑
a∈A

∑
b∈B

2−|a|A2−|b|B δ̂u(a, b) =
1−Θu(A,B)

2
,
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where

Θu(A,B) =
∑
a∈A

∑
b∈B

2−|a|A2−|b|BΘ̂(a, b).

2. It is shown next that for all C ∈ Zi−1,

Θu(Ai, Bi)e
−2f < Θ2

C ≤ Θu(Ai, Bi)e
2g+2f .

Let C ∈ Zi−1 such that C = A ∪B for sister clades A,B. By (?),

Θ2
C = Θu(A,B)

> Θu(A,B)(1 + ε′)−1

> Θu(Ai, Bi)(1 + ε′)−1

> Θu(Ai, Bi)
1− ε′

1 + ε′

> Θu(Ai, Bi)e
−2f .

Conversely, if a clade C = A ∪B with sister clades A,B satisfies

Θ2
C = Θu(A,B) > Θu(Ai, Bi)e

2f , (11)

then

Θu(A,B) > (1− ε′)Θu(A,B)

> (1− ε′)Θu(Ai, Bi)e
2f

> (1− ε′)Θu(Ai, Bi)
1 + ε′

1− ε′

> (1 + ε′)Θu(Ai, Bi)

> Θu(Ai, Bi), (12)

so that C must be included in a cluster of Zi by the induction hypothesis. In particular, if

two sister cladesA,B are such that Θ2
A,Θ

2
B > Θu(Ai, Bi)e

2g+2f then (11) is satisfied, that
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is, Θu(A,B) > Θu(Ai, Bi)e
2f . By (12), (A,B) would have been selected in a previous

iteration by induction. That implies, for all C ∈ Zi−1,

Θ2
C ≤ Θu(Ai, Bi)e

2g+2f .

3. Claim: Ai, Bi ∈ Zi−1. Indeed, by the previous paragraph all clades with Θ2-value at least

Θu(Ai, Bi)e
2f have been constructed in a previous iteration. In particular, the clade Ai

has been constructed in a previous step as it satisfies

ΘAie
−f > ΘCi =

√
Θu(Ai, Bi).

The same holds for Bi. Moreover, Ai and Bi being sister clades of each other (and

no other clades), they cannot have been selected inside another pair by the induction

hypothesis.

4. By construction, (Ai, Bi) is chosen over all other sister clades present in Zi−1. So it

remains to show that (Ai, Bi) is selected over all other pairs. Pairs of clades that are far

enough will not be selected. That is, if A,B with MRCA a∗, b∗ is such that

δ(a∗, b∗) ≥ D,

then

Θu(A,B) < ΘAΘBe
−D(1 + ε′)

< Θu(Ai, Bi)e
2g+2fe−D(1 + ε′)

< Θu(Ai, Bi)(1− ε′)−1e2g+2fe−D(1 + ε′)

< Θu(Ai, Bi),

by assumption on ε′.
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5. Finally, non-sister clades that are closer than D cannot be selected. Indeed, assume by

contradiction that (A∗, B∗) is such a pair. Since (A∗, B∗) are not sister clades, at least

one of them, say A∗ without loss of generality, has an immediate ancestor u that is strictly

lower than the MRCA of A∗ and B∗. Take C∗ to be any clade in Zi−1 below u that is

different than A∗. There must be such a clade because otherwise A∗ would have been

merged with its sister already. The MRCA of A∗ and C∗ is u. Moreover, one must have

Θ2
A∗ > Θu(Ai, Bi)e

−2f ,

and

Θ2
C∗ ≤ Θu(Ai, Bi)e

2g+2f ,

so that

δ(a∗, c∗) < 2g + g + 2f < 3g + 2f < D,

where a∗ and c∗ are the MRCA of A∗ and C∗ respectively. Finally by (?)

Θu(A∗, C∗) > Θu(A∗, C∗)(1− ε′)

> Θu(A∗, B∗)e2f (1− ε′)

> Θu(A∗, B∗)(1 + ε′)−1e2f (1− ε′)

> Θu(A∗, B∗).

This is a contradiction.

�
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A.2 Section 3

Proof of Lemma 1: Note that E[F̂ ab
ij ] = πi

(
e−δ(a,b)Q

)
ij

. Then

E
[
ν>F̂ abν

]
=

∑
i∈Φ

νi
∑
j∈Φ

πi
(
e−δ(a,b)Q

)
ij
νj

=
∑
i∈Φ

νi(πie
−δ(a,b)νi)

= e−δ(a,b)
∑
i∈Φ

πiν
2
i

= e−δ(a,b).

�

Proof of Proposition 1: The proofs of (S5, S4) are followed below. Let ēi be the unit vector in

direction i. Let x ∈ [n], then

E[ē>sx | sr] = ē>sre
δ(r,x)Q.

Therefore,

E[σx |σr] = ē>sre
δ(r,x)Qν = σre

−δ(r,x),

and

E[S |σr] =
∑
x∈[n]

w(x)σre
−δ(r,x)

Θ(r, x)
= σr

∑
x∈[n]

w(x) = σr.

In particular,

E[S] =
∑
ι∈Φ

πiνi = 0.
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For x, y ∈ [n], let x ∧ y be the meeting point of the paths between r, x, y. Note

E[σxσy] =
∑
ι∈Φ

P[sx∧y = ι]E[σxσy | sx∧y = ι]

=
∑
ι∈Φ

πιE[σx | sx∧y = ι]E[σy | sx∧y = ι]

=
∑
ι∈Φ

πιe
−δ(x∧y,x)νιe

−δ(x∧y,y)νι

= e−δ(x,y)
∑
ι∈Φ

πιν
2
ι

= e−δ(x,y).

Then

Var[S] = E[S2]

=
∑
x,y∈[n]

w(x)w(y)

Θ(r, x)Θ(r, y)
E[σxσy]

=
∑
x,y∈[n]

w(x)w(y)e2δ(r,x∧y).

For e ∈ E, let e = (e↑, e↓) where e↑ is the vertex closest to r. Then, by a telescoping sum, for

u ∈ V ∑
e∈Path(r,u)

Rr(e) =
∑

e∈Path(r,u)

e2δ(r,e↓) −
∑

e∈Path(r,u)

e2δ(r,e↑)

= e2δ(r,u) − 1,

and therefore

E[S2] =
∑
x,y∈[n]

w(x)w(y)e2δ(v,x∧y)

=
∑
x,y∈[n]

w(x)w(y)

1 +
∑

e∈Path(r,x∧y)

Rr(e)


= 1 +

∑
e∈E

Rr(e)
∑
x,y∈[n]

1{e ∈ Path(r, x ∧ y)}w(x)w(y)

= 1 +
∑
e∈E

Rr(e)w(e)2.
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�

Proof of Proposition 2: The claim is proved by induction, moving away from the leaves. The

following analytical lemma is inspired by the proof of Peres and Roch.

Lemma 3 (Recursion Step). Let M = eδQ with second right eigenvector ν and corresponding

eigenvalue λ = e−δ satisfying δ ≥ f . Then there is c > 0 depending on Q and f such that for

all i ∈ Φ

F (x) ≡
∑
j∈Φ

Mij exp(νjx) ≤ exp(λνix+
1

2
c(1− λ2)x2) ≡ G(x), (13)

for all x ∈ R.

Proof of Lemma 3: Let c′ = c(1− λ2). Note that

F ′(x) =
∑
j∈Φ

Mijνj exp(νjx),

F ′′(x) =
∑
j∈Φ

Mijν
2
j exp(νjx),

G′(x) = (λνi + c′x) exp(λνix+
1

2
c′x2),

and

G′′(x) = ((λνi + c′x)2 + c′) exp(λνix+
1

2
c′x2).

Hence,

F (0) = G(0) = 1,

F ′(0) = G′(0) = λνi.

Let

π̄ = min
ι
πι,

and

ν̄ ≡ max
i
|νi| ≤

1√
π̄
.
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Note that

F ′′(x) ≤ ν̄2 exp(ν̄|x|) ≡ F (x),

and

G′′(x) ≥ c′ exp(−ν̄|x|+ 1

2
c′x2) ≡ G(x).

Choose c′ = c∗ > 0 such that F (x) < G(x) for all x ∈ R. Note in particular that taking

c∗ > max
{

4ν̄, ν̄2 exp(2ν̄)
}
,

is enough. Indeed, for |x| > 1 it holds that c∗ > ν̄2 and exp(−ν̄|x| + 1
2
c∗x2) > exp(ν̄|x|) so

that F (x) < G(x). For |x| ≤ 1,

G(x) > c∗ exp(−ν̄) > ν̄2 exp(ν̄) ≥ F (x).

Now choose c = c∗(1− e−2f )−1 in (13) (which implies c′ ≥ c∗ by δ ≥ f ). Then,

G′′(x) ≥ G(x) > F (x) ≥ F ′′(x),

and therefore

G(x) ≥ F (x),

for all x ∈ R. �

Going back to the proof of Proposition 2, let Sx = σx for all x ∈ [n] and

Su =
∑
α=1,2

Svα
ψ(eα)

θeα
,

where u ∈ V − [n] with children v1, v2 with corresponding edges e1, e2. Note that Sr = S. Let

Γiu(ζ) = ln E[exp(ζSu) |σu = νi].
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Take c > 0 as in Lemma 3. The main claim is clearly true at the leaves, that is, for all

x ∈ [n]

Γix(ζ) = ln E[exp(ζSx) |σx = νi]

= ln E[exp(ζσx) |σx = νi]

= νiζ

≤ νiζ +
1

2
cζ2Kx,w.
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For u ∈ V − [n] as above, it holds by the Markov property, induction, and Lemma 3 that

Γiu(ζ) = ln E

[
exp

(
ζ
∑
α=1,2

Svα
ψ(eα)

θeα

)
|σu = νi

]

=
∑
α=1,2

ln E

[
exp

(
ζSvα

ψ(eα)

θeα

)
|σu = νi

]

=
∑
α=1,2

ln

(∑
j∈Φ

M eα
ij E

[
exp

(
ζSvα

ψ(eα)

θeα

)
|σvα = νj

])

=
∑
α=1,2

ln

(∑
j∈Φ

M eα
ij exp

(
Γjvα

(
ζ
ψ(eα)

θeα

)))

≤
∑
α=1,2

ln

(∑
j∈Φ

M eα
ij exp

(
νj

(
ζ
ψ(eα)

θeα

)
+

1

2
cKvα,w

(
ζ
ψ(eα)

θeα

)2
))

=
1

2
cζ2

∑
α=1,2

Kvα,w

(
ψ(eα)

θeα

)2

+
∑
α=1,2

ln

(∑
j∈Φ

M eα
ij exp

(
νj

(
ζ
ψ(eα)

θeα

)))

≤ 1

2
cζ2

∑
α=1,2

Kvα,w

(
ψ(eα)

θeα

)2

+
∑
α=1,2

θeανi

(
ζ
ψ(eα)

θeα

)
+

1

2
c(1− θ2

vα)

(
ζ
ψ(eα)

θeα

)2

= νiζ +
1

2
cζ2

∑
α=1,2

((1− θ2
vα) +Kvα,w)

(
ψ(eα)

θeα

)2

= νiζ +
1

2
cζ2Ku,w.

�
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Proof of Lemma 2: The expectation formula is proved first. Note that

E

[∑
a′∈A

∑
b′∈B

w(a′)w(b′)Θ(a, a′)−1Θ(b, b′)−1Θ̂(a′, b′)

]

= E

[
1

k

k∑
i=1

(∑
a′∈A

2−h
′
σia′

Θ(a, a′)

)(∑
b′∈B

2−h
′
σib′

Θ(b, b′)

)]

= E

[(∑
a′∈A

2−h
′
σa′

Θ(a, a′)

)(∑
b′∈B

2−h
′
σb′

Θ(b, b′)

)]

= E

[
E

[(∑
a′∈A

2−h
′
σa′

Θ(a, a′)

)(∑
b′∈B

2−h
′
σb′

Θ(b, b′)

)
|σa, σb

]]

= E

[
E

[∑
a′∈A

2−h
′
σa′

Θ(a, a′)
|σa

]
E

[∑
b′∈B

2−h
′
σb′

Θ(b, b′)
|σb

]]
= E [σaσb]

= e−δ(a,b),

where it was used that |A| = |B| = 2h
′ .

To prove the large deviation result, it suffices by standard arguments (S11) to bound the

exponential moment of

SaSb =

(∑
a′∈A

2−h
′
σia′

Θ(a, a′)

)(∑
b′∈B

2−h
′
σib′

Θ(b, b′)

)
.

Let N be Normal(0, 1) and recall that E[eζN ] = eζ
2/2. By applying Proposition 2 twice and

using Fubini’s Theorem for positive random variables, it follows that (letting w be the homoge-
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neous flow on T )

E[exp(ζSaSb) |σa, σb] ≤ E[exp(σaζSb +
1

2
cζ2S2

bKa,w) |σa, σb]

= E[exp(σaζSb +
√
cKa,wζSbN) |σa, σb]

= E[exp(Sb(σaζ +
√
cKa,wζN)) |σa, σb]

≤ E[exp(σb(σaζ +
√
cKa,wζN)

+
1

2
c(σaζ +

√
cKa,wζN)2Kb,w) |σa, σb]

< +∞,

uniformly in σa, σb for |ζ| > 0 small enough, where it was used that |σa|, |σb| ≤ ν̄ < +∞ and

E[ec
2ζ2Ka,wKb,wN

2

] =

(
1

1− 2(c2ζ2Ka,wKb,w)

)1/2

< +∞,

for small enough ζ . Cauchy-Schwarz and the moment-generating function of the chi-square

distribution were also used.

A more careful analysis gives the dependence of χ in ε as ε→ 0. By standard concentration

results, the value of χ is given by

χσa,σb = inf
0<ζ<1

exp(−ζ(E[SaSb |σa, σb] + ε))E[exp(ζSaSb) |σa, σb].

Note that

E[SaSb |σa, σb] = σaσb,

so that the first term cancels out in the bound on E[exp(ζSaSb) |σa, σb]. Take ζ = γε for a
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small γ > 0. By Cauchy-Schwarz,

χσa,σb ≤ exp(−γε2 +
1

2
cν̄2Kb,wγ

2ε2)

×
(
E[exp(2(σb + cσaKb,wγε)

√
cKa,wγεN) |σa, σb]

)1/2

×
(
E[exp(c2Ka,wKb,wγ

2ε2N2) |σa, σb]
)1/2

≤ exp(−γε2 +
1

2
cν̄2Kb,wγ

2ε2)

×
(
exp(2(σb + cσaKb,wγε)

2cKa,wγ
2ε2N)

)1/2

×
(

1

1− 2(c2γ2ε2Ka,wKb,w)

)1/4

= 1− (γ − 1

2
cν̄2Kb,wγ

2 − cν̄2Ka,wγ
2 − 1

2
c2Ka,wKb,wγ

2)ε2 +O(ε3).

Taking γ small enough as a function of c, ν̄, Ka,w, and Kb,w, one can make the parenthesis

above positive and one finally gets

χσa,σb = 1− Ω(ε2),

for all σa, σb.

To prove that the large deviation result is independent of the level h′, it is shown that Ka,w

is uniformly bounded in h′. From (10),

Ka,w ≤
h′−1∑
i=0

(1− e−2g)2h
′−i e

2(h′−i)g

22(h′−i)

≤
h′∑
j=1

e2jge−(2 ln
√

2)j

=
h′∑
j=1

e2j(g−g∗∗)

≤
+∞∑
j=0

(e−2(g∗∗−g))j

=
1

1− e−2(g∗∗−g) < +∞, (14)
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where recall that g∗∗ = ln
√

2 and g < g∗∗. �

Proof of Proposition 3: Let

ε′ = min{(eε − 1)e−D, (1− e−ε)e−D},

and observe that

δ̄c(a, b)− δ(a, b) < −ε

=⇒ e−δ̄c(a,b) > e−δ(a,b)+ε

=⇒ e−δ̄c(a,b) − e−δ(a,b) > (eε − 1)e−D ≥ ε′.

A similar implication holds in the other direction. The result now follows from Lemma 2. Note

that the dependence of κ in ε comes from the fact that χ = 1−Ω((ε′)2) and ε′ = O(ε) as ε→ 0.

�

Proof of Proposition 4: The proof is similar to the proof of Proposition 3. �

Proof of Proposition 5: Let ε < ∆/2. The first part of the proposition follows immediately

from Proposition 3 and the second part of Proposition 4. For the second part, choose κ so as

to satisfy the conditions of Proposition 3 with diameter D + lnW and apply the first part of

Proposition 4 using the remarks above the statement of Proposition 5. The dependence of κ in

∆ follows immediately from the corresponding statement in regarding ε in Proposition 3. �
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Algorithm WPGMA
Input: Distance estimates {δ̂u(a, b)}a,b∈[n];
Output: Tree;

• Initialization. Let Z0 be the set of leaves as clusters, that is,

Z0 = {{l} : l ∈ [n]},

and for all a, b ∈ [n] let
δ̄u({a}, {b}) = δ̂u(a, b).

• Main Loop. For i = 1, . . . , n− 1,

– Selection Step. Let

(A∗, B∗) ∈ arg min{δ̄u(A,B) : A,B ∈ Zi−1 distinct}.

Merge clusters A∗, B∗ to obtain Zi.
– Reduction Step. For all C ∈ Zi − {A∗ ∪B∗}, compute

δ̄u(C,A∗ ∪B∗) =
1
2

[δ̄u(C,A∗) + δ̄u(C,B∗)]. (15)

• Output. Output tree implied by the successive clusterings Z0, . . . ,Zn−1.

Figure 1: Algorithm WPGMA.
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Figure 2: Restricting the top tree to its white nodes.
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u8

u6

u7

u1

u2

u3

u4

u5

Figure 3: The subtrees T |{u1,u2,u3,u8} and T |{u4,u5,u6,u7} are edge-disjoint. The subtrees
T |{u1,u5,u6,u8} and T |{u2,u3,u4,u7} are edge-sharing.

y2z2

z1y1

T1

T2

u2

w2

v2

v1

x2

x1

u1

w1

Figure 4: Basic Disjoint Setup (General). The rooted subtrees T1, T2 are edge-disjoint but are
not assumed to be dangling. The white nodes may not be in the restricted subtrees T1, T2. The
case w1 = x1 and/or w2 = x2 is possible. Note that if one roots the tree at any node along the
dashed path, the subtrees rooted at y1 and y2 are edge-disjoint and dangling (unlike T1 and T2).
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Figure 5: Illustrative example (not to scale). The g0 and g1 values are branch lengths. The H0,
h0, and h1 values indicate numbers of levels.

Figure 6: In the terminology of the Basic Disjoint Setup (General), x1 = b∗ and y1, z1 are the
direct descendants of b∗ in B. Similarly, x2 = c∗ and y2, z2 are the direct descendants of c∗ in
C. The node w1 coincides with x1 (and in that case u1 and v1 are not relevant). The node w2

coincides with c∗d, which is also the parent of a∗d in A.
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Algorithm DISTORTEDMETRIC
Input: Rooted forestF = {T1, T2} rooted at vertices x1, x2; weights δ(e), for all e ∈ E(T1)∪E(T2);
Output: Distance Υ;

• [Children] Let yι, zι be the children of xι in F for ι = 1, 2 (if xι is a leaf, set zι = yι = xι);

• [Distance Computations] For all pairs (a, b) ∈ {y1, z1} × {y2, z2}, compute

D(a, b) := d̄c(a, b)− δ(a, x1)− δ(b, x2);

• [Multiple Test] If

max{
∣∣∣D(r(1)1 , r

(1)
2 )−D(r(2)1 , r

(2)
2 )
∣∣∣ :

(r(ι)1 , r
(ι)
2 ) ∈ {y1, z1} × {y2, z2}, ι = 1, 2} = 0,

return Υ := D(z1, z2), otherwise return Υ := +∞ (return Υ := +∞ if any of the distances
above is +∞).

Figure 7: Routine DISTORTEDMETRIC.
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Algorithm BLINDFOLDED CHERRY PICKING (distance-based version)
Input: Similarity estimates {Θ̂((, a), b)}a,b∈[n];
Output: Estimated topology;

• 0) Initialization:

– [Iteration Counter] i := 0;

– [Rooted Subforest] F0 := [n];

– [Local Metric] For all u, v ∈ F0, set D0(u, v) = d̄c(u, v);

• 1) Local Cherry Identification:

– Iteration: i;

– Set Fi+1 := Fi;

– For all (v1, w1) ∈
(
ρ(Fi)

2

)
,

∗ [Main Step] (IsCherry, lv, lw) := LOCALCHERRY ((v1, w1); (Fi,Di));
∗ If IsCherry = TRUE,

· [Update Forest] Create new node u1 and add cherry (v1, u1, w1) to Fi+1;
· [Edge Lengths] Set h(u1, v1) := lv and h(u1, w1) := lw;

• 2) Collision Removal:

– [Update Metric] For all x1, x2 ∈ ρ(Fi+1), for all uι ∈ TFi+1
xι , ι = 1, 2, set

Di+1(u1, u2) = DISTORTEDMETRIC(u1, u2;Fi+1; {h(e)}e∈Fi+1);

– Set F := Fi+1 and D := Di+1;

– For all (u0, u1) ∈ ρ(F)× ρ(F),

∗ Set HasCollision := FALSE;
∗ If u1 is not a leaf,

· [Main Step] (HasCollision, z) := DETECTCOLLISION ((u0, u1); (F,D));
∗ If HasCollision = TRUE,

· [Update Forest] Fi+1 := REMOVECOLLISION(z;Fi+1);

– [Second Pass] Set F := Fi+1 and repeat the previous step;

• 3) Termination:

– If |ρ(Fi+1)| ≤ 3,

∗ Join nodes in ρ(Fi+1) (star if 3, single edge if 2);
∗ Return (tree) Fi+1;

– Else, set i := i+ 1, and go to Step 1.

Figure 8: Algorithm BLINDFOLDED CHERRY PICKING.
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Algorithm LOCALCHERRY
Input: Two nodes (v1, w1); current forest and distance matrix (F ,D);
Output: Boolean value and length estimates;

• Set IsCherry := TRUE and lv = lw = 0;

• [Short Distance]

– If D(v1, w1) > 2g, then IsCherry := FALSE;

• [Local Cherry]

– Set N =
{

(v2, w2) ∈
(
ρ(F)

2

)
: D({v1, w1, v2, w2}) ≤ 5g

}
;

– If N is empty, then IsCherry := FALSE; Else, for all (v2, w2) ∈ N ,

∗ If ISSPLIT ((v1, w1), (v2, w2);D) = FALSE then set IsCherry := FALSE and
break;

• [Edge Lengths]

– If IsCherry = TRUE,

∗ Let x1, x2 be the children of v1 in F (or let x1 = x2 = v1 if v1 is a leaf);
∗ Let z0 be the closest node to v1 in ρ(F)− {v1, w1} under D;
∗ Set (bv, lv) := ISSHORT ((x1, x2), (w1, z0);F);
∗ Repeat previous steps switching the roles of v1 and w1;
∗ Set IsCherry := bv ∧ bw;

• Return (IsCherry, lv, lw);

Figure 9: Routine LOCALCHERRY.
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Algorithm DETECTCOLLISION
Input: Two roots u0, u1; directed forest and distance matrix (F ,D);
Output: Boolean value and node;

• Set HasCollision := FALSE and z := 0;

• Let x0, y0 be the children of u0 in F ;

• Scan through all nodes v in Tu1 (except u1) in reverse BFS manner,

– Let w := SisterF (v) and u := ParentF (v);

– [Collision Test] Compute

bx := ISCOLLISION(x0, v, w, u;h(u, v); (F ,D)),

and
by := ISCOLLISION(y0, v, w, u;h(u, v); (F ,D));

– If HasCollision := bx ∧ by = TRUE then set z := v and break;

• Return (HasCollision, z);

Figure 10: Routine DETECTCOLLISION.

Algorithm REMOVECOLLISION
Input: Node v; rooted forest F ;
Output: Rooted forest;

• If v is not in F or v is a root in F , return F ;

• Let z0 be the root of the subtree of F in which v lies;

• Set x := v;

• While x 6= z0,

– Set x := ParentF (x);

– Remove node x and its adjacent edges below it;

• Return the updated forest F .

Figure 11: Routine REMOVECOLLISION.

Algorithm ISSHORT
Input: Two pairs of nodes (v1, w1), (v2, w2); rooted forest F ;
Output: Boolean value and length estimate;

• [Internal Edge Length] Set

ν =
1
2

(d̄c(v1, v2) + d̄c(w1, w2)− d̄c(v1, w1)− d̄c(v2, w2));

• [Test] If ν ≤ g return (TRUE, ν), o.w. return (FALSE, 0);

Figure 12: Routine ISSHORT.
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Algorithm ISSPLIT
Input: Two pairs of nodes (v1, w1), (v2, w2); a distance matrix D on these four nodes;
Output: TRUE or FALSE;

• [Internal Edge Length] Set

ν =
1
2

(D(w1, w2) +D(v1, v2)−D(w1, v1)−D(w2, v2)) ;

(set ν = +∞ if any of the distances is +∞)

• [Test] If ν < f/2 return FALSE, o.w. return TRUE.

Figure 13: Routine ISSPLIT.

Algorithm ISCOLLISION
Input: Four nodes x0, v, w, u; an edge length h; a rooted forest and a distance matrix (F ,D);
Output: TRUE or FALSE;

• [Children] Let v1, v2 be the children of v in F (or v1 = v2 = v if v is a leaf);

• [Internal Edge Length] Set

ν =
1
2

(D(v1, x0) +D(v2, w)−D(v1, v2)−D(x0, w)) ;

(set ν = +∞ if any of the distances is +∞)

• [Test] If (h− ν) > f/2 return TRUE, else return FALSE;

Figure 14: Routine ISCOLLISION.
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