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1 Phylogenetic Trees: The What and The Why

Mathematical phylogenetics is concerned primarily with the study of phylogenetic
trees, a class of semi-labeled trees (defined formally below) which depict evolu-
tionary relationships between organisms. Roughly, the branchings of the trees
indicate past speciation events, while the labels assigned to the leaves correspond
to the names of current species. In addition to providing an important visual
representation of the history of life, phylogenetic trees play a key role in most
evolutionary analyses. Hence their reconstruction using morphological or genetic
data, typically from extant species, is a fundamental—and difficult—problem in
computational biology. A rich mathematical theory of phylogenetic trees, as well
as various generalizations, has been developed to facilitate this reconstruction and
to provide a theoretical basis for downstream biological analyses. Before say-
ing more about this, we briefly review a few basic graph-theoretic definitions and
formalize the notion of a phylogenetic tree.

Recall that a graph G = (V,E) consists of a set, V , of vertices and a set,
E ⊆ {{x, y} : x, y ∈ V, x 6= y}, of edges. We also write V (G) and E(G) for
the vertex and edge sets of G respectively. Two graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic if there is a bijection between the vertex sets Ψ : V1 → V2
such that {u, v} ∈ E1 exactly when {Ψ(u),Ψ(v)} ∈ E2. If e = {u, v} ∈ E then
u and v are adjacent or neighbors, and the degree d(v) of v ∈ V is the number
of neighbors of v. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆
E(G). We say that a subgraph H of G is induced if E(H) contains all edges of
E(G) between pairs of vertices in V (H). A path in G is a sequence of distinct
vertices v1, . . . , vk such that, for all i ∈ {1, . . . , k− 1}, {vi, vi+1} ∈ E is an edge.
If further {vk, v1} ∈ E, then the subgraph C with vertices V (C) = {v1, . . . , vk}
and edges E(C) = {v1, v2} ∪ · · · ∪ {vk, v1} is a cycle. A graph G = (V,E) is
connected if, for all u, v ∈ V , there is a path between u and v. The maximal
connected subgraphs of G are called its connected components.
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We will be concerned here with a particularly simple class of graphs: a tree
T = (V,E) is a connected, cycle-free graph. Finally, we come to the key defi-
nition. Throughout, X is a finite set. Think of it as the names of the species of
interest.

Definition 1 (X-tree) An X-tree T = (T, φ) is a pair where T is a tree and
φ : X → V is a map such that φ(X) contains all vertices with degree at most
2. Two X-trees T1 = (T1, φ1) and T2 = (T2, φ2) are isomorphic if there is a
graph isomorphism Ψ between T1 and T2 such that φ2 = Ψ ◦φ1, which we denote
by T1 ∼= T2. We also write V (T ) and E(T ) for the vertex and edge sets of T
respectively.

A vertex of degree 1 in a tree T is called a leaf. All other vertices of T are interior
vertices. An edge of T is interior if both its end vertices are interior. Typically, one
is interested in X-trees where only the leaves are labeled. These usually represent
living organisms. Formally, a phylogenetic tree T = (T, φ) on X is an X-tree
whose labeling map φ is a bijection into the leaves of its underlying tree T . We
say that T is binary if all interior vertices of T have degree 3. We denote by B(n)
the set of all binary phylogenetic trees where |X| = n. For computational reasons,
it matters that the number of phylogenetic trees grows rapidly with the number of
leaves n.

Theorem 2 (Counting binary phylogenetic trees) For all n ≥ 3,

|B(n)| = 1× 3× · · · × (2n− 5) ≡ (2n− 5)!! ∼ 1
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(See e.g. Section 2.1 of the book under review for a proof.) The edges of a phylo-
genetic tree T are often associated with weights {we}e∈E(T ) which may represent
either the time elapsed or the expected amount of evolution (e.g., in number of
mutations in a segment of the genome) along that edge.

As mentioned above, phylogenetic trees play a critical role in many evolution-
ary biology analyses. To illustrate, we briefly describe one application in biodi-
versity conservation. Imagine that, as a conservationist, you have a fixed budget to
help shield a number of species from extinction. A natural goal might be to pick a
set of species to protect that is “as diverse as possible” from an evolutionary point
of view. But how to define phylogenetic diversity precisely?

The restriction of an X-tree T to X ′ ⊆ X , denoted T |X ′, is the X ′-tree
obtained from T = (T, φ) by taking the minimal subtree of T including φ(X ′)
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and suppressing degree-two vertices not in φ(X ′). In particular, each edge f of
T |X ′ corresponds to a set EX′(f) of edges of T . If further the X-tree T has edge
weights {we}e∈E(T ), we associate to each edge f of T |X ′ a weight as follows

wf =
∑

e∈EX′ (f)

we.

The phylogenetic diversity of X ′ ⊆ X under T is then defined as

PDT (X ′) =
∑

f∈E(T |X′)

wf .

The biodiversity conservation problem is then to identify, for a given k, a set
X ′ which maximizes the phylogenetic diversity PDT (X ′) over subsets of X of
size k. Interestingly, an analysis of the properties of the phylogenetic diversity
reveals that the biodiversity conservation problem can be solved exactly using
a simple greedy strategy. That is, iteratively add a leaf to X ′ that maximizes the
phylogenetic diversity of the set chosen so far, until k is reached. (See e.g. Section
6.4 of the book under review for a proof.)

2 Phylogenetic Trees: How to Reconstruct Them
The reconstruction of phylogenetic trees using data collected from extant species
is a fundamental problem in evolutionary biology. Key to the development of
effective reconstruction methods has been the derivation of alternate mathematical
charaterizations of X-trees.

2.1 A first approach: characters and splits
Biological data can be formalized as follows. Let C be a set of character states.
For instance, letting C = {0, 1}, the value 1 might indicate that a species can fly
or has four limbs. A character χ on X is a function from X to C. In particular, a
character is binary if |C| = 2. Typically, one might collect many such characters
over the species of interest and seek to reconstruct a phylogenetic tree that is
consistent with them. More formally, this leads us to the following definition.

Definition 3 (Character Convexity) A character χ is convex on an X-tree T =
(T, φ) if there is an extension χ̄ : V (T )→ C such that
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1. χ̄ ◦ φ = χ;

2. for each α ∈ C, the subgraph of T induced by {v ∈ V : χ̄(v) = α} is
connected.

A collection of characters on X is compatible if there is an X-tree on which all of
them are convex. Finding such a tree is known as the perfect phylogeny problem.

In words, character convexity corresponds to evolutionary innovations occurring
only once in the tree of life, that is, in the absence of reverse transition, i.e. a new
state arising but later reverting to its earlier state, and convergent transition, i.e. a
new state occurring in two different parts of the tree.

Binary characters are closely related to the notion of split: an X-split A|B is a
nontrivial bipartition of X . To each edge e of an X-tree T = (T, φ) corresponds
an X-split as follows: T\e consists of two connected components with vertex sets
V1, V2; φ−1(V1)|φ−1(V2) is the X-split corresponding to e. We denote by Σ(T )
the collection of splits obtained from T in this manner.

Definition 4 (Split Compatibility) The X-splits A1|B2 and A2|B2 are compati-
ble if at least one of the sets C1 = A1 ∩ A2, C2 = A1 ∩ B2, C3 = B1 ∩ A2 and
C4 = B1 ∩B2 is empty.

It is straightforward to check that the splits of an X-tree are pairwise compatible.
There is also a converse:

Theorem 5 (Splits-Equivalence Theorem) Let Σ be a collection of X-splits. It
holds that Σ = Σ(T ) for some X-tree T if and only if the splits in Σ are pairwise
compatible. Such tree is unique up to isomorphism.

(See e.g. Section 2.4 of the book under review for more details.) The nontrivial
direction can be proved via a computationally efficient algorithm for reconstruct-
ingX-trees fromX-splits, known as Tree Popping, which iteratively adds an edge
to separate the two sides of each X-split. Viewing binary characters as X-splits,
the Splits-Equivalence Theorem and the Tree Popping procedure then provide an
algorithmic solution to the problem of checking whether a collection of binary
characters are compatible and, if so, of constructing an X-tree on which they are
convex. One can then always transform the output into a binary phylogenetic tree
by adding some X-splits.

Unfortunately, data is often not be compatible—indeed, reverse and conver-
gent transitions are common in evolution. A more flexible approach is to mini-
mize the number of convergent or reverse transitions needed to “explain the data.”
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Formally, let T = (T, φ) be an X-tree and let χ̄ be an extension of a character χ.
The changing number of χ̄ on T is

ch(χ̄, T ) = |{{u, v} ∈ E(T ) : χ̄(u) 6= χ̄(v)}| .

The parsimony score `(χ, T ) of χ on T is the minimum value of ch(χ̄) over all
extensions of χ on T and, for a collection C = {χ1, . . . , χk} of characters, the
parsimony score of C on T is

`(C, T ) =
k∑
i=1

`(χi, T ).

Finally, a maximum parsimony tree T ∗ for C minimizes `(C, T ) over all X-trees.
Given a character χ on X and an X-tree T , one can compute efficiently

the parsimony score `(χ, T ) using a technique known as dynamic programming.
However, as Theorem 2 suggests, the space of trees is large and it turns out that
constructing a maximum parsimony tree T ∗ is in fact computationally intractable.
(See e.g. Section 5.3 of the book under review for more details.) Nevertheless a
natural heuristic for minimizing the parsimony score of C, which has proved use-
ful in practice, is to perform a local search on tree space. Several notions of “local
moves” on this space have been considered. A typical example is the following.

Definition 6 (Nearest-Neighbour Interchange) Let T = (T, φ) ∈ B(n). A
nearest-neighbour interchange (NNI) operation is obtained by choosing an in-
terior edge e = {u, v} ∈ E(T ) and two vertices u0 6= v, v0 6= u adjacent
respectively to u, v and interchanging the two subtrees rooted at u0, v0.

Theorem 7 (Tree Space is Connected under NNI) Let T 6= T ′ ∈ B(n). Then
T can be transformed into T ′ by a sequence of NNI operations.

(See e.g. Section 2.5 of the book under review for more details.)

2.2 A second approach: metrics and quartets
Another natural reconstruction approach comes from thinking of a weighted phy-
logenetic tree as a metric on the set of species. For instance, by counting the num-
ber of differences in the sequence of a protein inherited from a common ancestor,
one can estimate “how far apart” two species are in the tree of life. Formally, a
dissimilarity map on X is a function δ : X ×X → R such that δ(x, x) = 0 and
δ(x, y) = δ(y, x) for all x, y ∈ X .
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Definition 8 (Tree metric) Let T = (T, φ) be anX-tree with edge weights {we}e.
For two vertices u, v ∈ V (T ), we let Path(u, v) be the set of edges on the unique
path between u and v. The path metric corresponding to (T , w) is then defined as

dT ,w(x, y) =
∑

e∈Path(φ(x),φ(y))

we, ∀x, y ∈ X.

A dissimilarity map δ is a tree metric if there exists an X-tree T = (T, φ) and
a positive edge weight function w : E → R++ such that, for all x, y ∈ X ,
δ(x, y) = dT ,w(x, y). We then say that (T , w) is a tree representation of δ.

Theorem 9 (Uniqueness of tree representation) Let δ be a tree metric on X .
Up to isomorphism, there is a unique tree representation of δ.

(See e.g. Section 6.1 of the book under review for more details.) The proof of this
theorem uses an important characterization of X-trees in terms of their restriction
to four-tuples of X .

Theorem 10 (Quartet theorem) Let T1, T2 be X-trees. Then, T1 ∼= T2 if and
only if T1|X ′ ∼= T2|X ′ for all X ′ ⊆ X with |X ′| ≤ 4.

(See e.g. Section 4.1 of the book under review for more details.) To see the con-
nection with Theorem 9, one needs to establish that, for allX ′ = {x, y, u, v} ⊆ X
of size at most four, the tree metric δ determines T |X ′. Note for instance that the
expression

1

2
(δ(x, u) + δ(y, v)− δ(x, y)− δ(u, v))

is:

• the weight of the interior edge of T |X ′, if {x, y}|{u, v} ∈ Σ(T |X ′);

• −1× the weight of the interior edge of T |X ′, if {x, u}|{y, v} ∈ Σ(T |X ′);

• 0 otherwise.

Furthermore, there is an efficient algorithm for computing the X-splits of T from
the collection {T |X ′ : X ′ ⊆ X, |X ′| ≤ 4}, which together with the observation
above leads to a metric-based reconstruction approach for phylogenetic trees.

In fact, this “quartet perspective” also provides a useful characterization of
tree metrics.
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Definition 11 (Four-point condition) A dissimilarity map δ satisifies that four-
point condition if for all x, y, w, z ∈ X (not necessarily distinct)

δ(w, x) + δ(y, z) ≤ max{δ(w, y) + δ(x, z), δ(w, z) + δ(x, y)}.

Theorem 12 (Tree-Metric Theorem) Let δ be a nonnegative dissimilarity map.
Then, δ is a tree metric if and only if δ satisfies the four-point condition.

(See e.g. Section 6.1 in the book under review for more details.) Unfortunately,
similarly to the case of the split-based approaches, dissimilarities obtained from
data never quite satisfy the four-point condition. However, one can establish that
standard metric-based methods have a “safety radius,” i.e. they return the correct
phylogenetic tree T as long as the input dissimilarity δ is close enough to the tree
metric dT ,w, say in `∞ norm. (See e.g. Section 6.2 in the book under review for
more details.)

3 Beyond Trees
Modern molecular sequencing technology has made it possible to access full
genomes from large (and rapidly increasing) numbers of species, leading to new
challenges in modeling, analyzing and reconstructing the evolutionary history of
life—and an abundance of new related mathematical questions. For one, genomes
are naturally subdivided into smaller regions. For example, genomes are com-
prised of hundreds or thousands of genes that encode proteins. As it turns out,
these smaller regions each have their own evolutionary history, which for a num-
ber of biological reasons, can differ from one another. Hence it is common in cur-
rent phylogenetic practice to reconstruct a separate tree for each gene. Information
about the overall speciation history must then be inferred from this collection of
gene trees.

Here is for instance an issue that arises frequently. Some genes may have been
lost in certain species lineages, while still being present in others. The question
then arises whether a phylogenetic tree can be reconstructed from a collection of
its restrictions to particular subsets of species. Formally, for X ′ ⊆ X , we say
that X-tree T displays X ′-tree T ′ if Σ(T ′) ⊆ Σ(T |X ′). For an X-tree T and a
collection χ = {X1, . . . , Xk} of subsets of X , define T |χ = {T |X1, . . . , T |Xk}.

Definition 13 (Decisiveness) We say that χ = {X1, . . . , Xk} is decisive for a
binary phylogenetic tree T on X if T |χ defines T in the sense that T is the

7



unique phylogenetic tree that displays all phylogenetic trees in T |χ. Further we
say that χ is decisive for unrooted phylogenies on X if χ is decisive for every
binary phylogenetic tree on X .

The following characterization of decisiveness has been established.

Theorem 14 (Criterion for decisiveness) A collection χ of subsets of X is deci-
sive for unrooted phylogenies on X if and only if for every partition Π of X into
four blocks, there exist elements x1, . . . , x4, one from each of the four blocks of Π,
for which {x1, . . . , x4} ⊆ X ′ for some X ′ ∈ χ.

(See e.g. Section 4.5 of the book under review for more details.)
In the previous example, it was assumed that all gene trees, while partially

known, are consistent with a single phylogenetic tree. But that is not always the
case. In the presence of hybridization for instance, separate genes may have en-
tirely different evolutionary histories. It is then significantly more challenging
to recover the speciation history. Considerable recent work in mathematical and
computational phylogenetics has been dedicated to modeling mechanisms that
produce incongruence, such as hybridization, lateral genetic transfer, incomplete
lineage sorting or duplications and losses, as well as to establishing rigorous prop-
erties of these models that allow reconstruction and analysis. In fact, a deeper
issue arises in this context: a tree may not be an appropriate representation of the
more complex histories produced by these mechanisms. By relaxing some of the
conditions in the definition and characterizations ofX-trees above, a large number
of different notions of phylogenetic networks have been obtained and are actively
being investigated.

4 About the Book
Mike Steel’s recent monograph Phylogeny—discrete and random processes in
evolution provides a thorough introduction to the mathematical aspects of phy-
logenetics. It covers both the more elementary background as well as areas of
current interest, such as those alluded to in the previous paragraph. In addition
to the combinatorial perspective emphasized here, the author extensively covers
probabilistic, algebraic and geometrical aspects which play a key role in modern
mathematical phylogenetics. The book is in some sense a follow-up to Steel’s pre-
vious 2003 monograph with Semple [SS03], which addresses some of the same
basic material (often covered differently though and with less coverage of the
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probabilitstic aspects than the new book) but does not include the recent devel-
opments following its publication of this fast-moving area. The new book has
close to 400 references, put in context and covering a large number of sub-areas,
that will form an excellent entry point to the recent literature and thusly make
it an invaluable resource to those interested in research in mathematical phylo-
genetics. As a complement, for more background on the computational side of
phylogenetics, one may also want to consult the recently published textbook by
Warnow [War17].
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