Probability on Graphs: Techniques and Applications to Data Science

0 - Preliminaries

Sébastien Roch UW-Madison Mathematics

July 25, 2018

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

A lot more details and examples in the lecture notes at:

http://www.math.wisc.edu/~roch/mdp/

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Networks are ubiquitous: Social networks

< ロ > < 同 > < 三 >

Networks are ubiquitous: Biological networks

ヘロト ヘアト ヘヨト ヘ

Data science: Network modeling

ヘロト ヘアト ヘヨト ヘ

э

э

Data science: Network processes

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

Data science: Network sampling

イロト イポト イヨト イヨト

2 Basic examples of stochastic processes on graphs

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

Definition

An *(undirected) graph* is a pair G = (V, E) where V is the set of *vertices* and

$$E \subseteq \{\{u, v\} : u, v \in V\},\$$

is the set of edges.

イロト イポト イヨト イヨト 一臣

An example: the Petersen graph

(신문) (문)

< 🗇 ▶

Basic definitions

Definition (Neighborhood)

Two vertices $u, v \in V$ are *adjacent*, denoted by $u \sim v$, if $\{u, v\} \in E$. The set of adjacent vertices of v, denoted by N(v), is called the *neighborhood* of v and its size, i.e. $\delta(v) := |N(v)|$, is the *degree* of v. A vertex v with $\delta(v) = 0$ is called *isolated*.

Example

All vertices in the Petersen graph have degree 3. In particular there is no isolated vertex.

イロト イ押ト イヨト イヨトー

An example: the Petersen graph

(신문) (문)

< 🗇 ▶

Paths and connectivity

Definition (Paths)

A *path* in *G* is a sequence of vertices $x_0 \sim x_1 \sim \cdots \sim x_k$. The number of edges, *k*, is called the *length* of the path. If $x_0 = x_k$, we call it a *cycle*. We write $u \leftrightarrow v$ if there is a path between *u* and *v*. The equivalence classes of \leftrightarrow are called *connected components*. The length of the shortest path between two vertices *u*, *v* is their *graph distance*, denoted $d_G(u, v)$.

Definition (Connectivity)

A graph is *connected* if any two vertices are linked by a path, i.e., if $u \leftrightarrow v$ for all $u, v \in V$.

Example

The Petersen graph is connected.

An example: the Petersen graph

(신문) (문)

< 🗇 ▶

Adjacency matrix

Definition

Let G = (V, E) be a graph with n = |V|. The *adjacency matrix* A of G is the $n \times n$ matrix defined as $A_{xy} = 1$ if $\{x, y\} \in E$ and 0 otherwise.

Example

The adjacency matrix of a *triangle* (i.e. 3 vertices with all edges) is

イロト イポト イヨト イヨト 三日

Examples of finite graphs

- *K_n*: clique with *n* vertices, i.e., graph with all edges present
- C_n: cycle with n non-repeated vertices
- \mathbb{H}^n : *n*-dimensional hypercube, i.e., $V = \{0, 1\}^n$ and $u \sim v$ if *u* and *v* differ at one coordinate

イロト イポト イヨト イヨト 三日

Basic examples of stochastic processes on graphs

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロン ヘアン ヘビン ヘビン

Erdös-Rényi random graph

Definition

Let V = [n] and $p \in [0, 1]$. The *Erdös-Rényi graph* G = (V, E) on *n* vertices with density *p* is defined as follows: for each pair $x \neq y$ in *V*, the edge $\{x, y\}$ is in *E* with probability *p* independently of all other edges. We write $G \sim \mathbb{G}_{n,p}$ and we denote the corresponding measure by $\mathbb{P}_{n,p}$.

Questions:

- What is the probability of observing a triangle?
- Is G connected?
- What is the typical chromatic number (i.e., the smallest number of colors needed to color the vertices so that no two adjacent vertices share the same color)?

ヘロン 人間 とくほ とくほ とう

Other random graph models

- Preferential attachement
- Small world
- Fixed degree distribution

ヘロト ヘアト ヘビト ヘビト

Random walk on a network

Definition

Let G = (V, E) be a graph. Let $c : E \to \mathbb{R}_+$ be a positive edge weight function on *G*. We call $\mathcal{N} = (G, c)$ a *network*. Random walk on \mathcal{N} is the Markov chain on *V*, started at an arbitrary vertex, which at each time picks a neighbor of the current state proportionally to the weight of the corresponding edge.

Questions:

- How often does the walk return to its starting point?
- How long does it take to visit all vertices once or a particular subset of vertices for the first time?
- How fast does it approach stationarity?

ヘロト ヘアト ヘビト ヘビト

Other sampling schemes

- Random walks with restarts
- Branching random walks
- Random sample of vertices and their neighbors

ヘロト ヘアト ヘビト ヘビト

э

Undirected graphical models I

Definition

Let *S* be a finite set and let G = (V, E) be a finite graph. Denote by \mathcal{K} the set of all cliques of *G*. A positive probability measure μ on $\mathcal{X} := S^V$ is called a *Gibbs random field* if there exist *clique potentials* $\phi_K : S^K \to \mathbb{R}, K \in \mathcal{K}$, such that

$$u(\mathbf{x}) = \frac{1}{\mathcal{Z}} \exp\left(\sum_{\mathbf{K}\in\mathcal{K}} \phi_{\mathbf{K}}(\mathbf{x}_{\mathbf{K}})\right),$$

where x_K is x restricted to the vertices of K and \mathcal{Z} is a normalizing constant.

イロト イ理ト イヨト イヨト

Undirected graphical models II

Example

For $\beta > 0$, the *ferromagnetic Ising model* with inverse temperature β is the Gibbs random field with $S := \{-1, +1\}$, $\phi_{\{i,j\}}(\sigma_{\{i,j\}}) = \beta \sigma_i \sigma_j$ and $\phi_K \equiv 0$ if $|K| \neq 2$. The function $\mathcal{H}(\sigma) := -\sum_{\{i,j\} \in E} \sigma_i \sigma_j$ is known as the *Hamiltonian*. The normalizing constant $\mathcal{Z} := \mathcal{Z}(\beta)$ is called the *partition function*. The states $(\sigma_i)_{i \in V}$ are referred to as *spins*.

Questions:

- How fast is correlation decaying?
- How to sample efficiently?
- How to reconstruct the graph from samples?

ヘロン 人間 とくほ とくほ とう

Other graphical models

- Gaussian graphical models
- Bayes nets
- Latent graphical models

イロン 不良 とくほう 不良 とうほ

More details and examples on basic models at:

```
http://www.math.wisc.edu/~roch/mdp/
```

For more on probability on graphs in general, see e.g. (available online):

- Probability on Graphs by Grimmett
- Probability on Trees and Networks by Lyons with Peres

ヘロン 人間 とくほ とくほ とう

Probability on Graphs: Techniques and Applications to Data Science

1 - First and second moment methods

Sébastien Roch UW-Madison Mathematics

July 25, 2018

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

Pirst and second moment methods

3 Illustration: Erdös-Rényi connectivity threshold

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

・ロト ・ 同ト ・ ヨト ・ ヨト

Markov's inequality

Theorem (Markov's inequality)

Let X be a non-negative random variable. Then, for all b > 0,

$$\mathbb{P}[X \ge b] \le rac{\mathbb{E}X}{b}.$$

Proof:

$$\mathbb{E}X \ge \mathbb{E}[X; X \ge b] \ge \mathbb{E}[b; X \ge b] = b \mathbb{P}[X \ge b].$$

イロト イポト イヨト イヨト 三日

Markov's inequality: Proof by picture

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

(< ≥) < ≥)</p>

э

Chebyshev's inequality

Theorem (Chebyshev's inequality)

Let X be a random variable with $\mathbb{E}X^2 < +\infty$. Then, for all $\beta > 0$, $\mathbb{P}[|X - \mathbb{E}X| > \beta] \le \frac{\operatorname{Var}[X]}{\beta^2}.$

Proof: This follows immediately by applying Markov's inequality to $|X - \mathbb{E}X|^2$ with $b = \beta^2$.

<ロ> (四) (四) (三) (三) (三)

Markov's inequality

First and second moment methods Illustration: Erdös-Rényi connectivity threshold

Chebyshev's inequality: Proof by picture

∃ → < ∃ →</p>

< 🗇

э

Pirst and second moment methods

3 Illustration: Erdös-Rényi connectivity threshold

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

э

First moment method

Theorem (First moment method)

If X is a non-negative, integer-valued random variable, then

 $\mathbb{P}[X>0] \leq \mathbb{E}X.$

Proof: Take b = 1 in Markov's inequality.

That is: if X has "small" expectation, then its value is 0 with "large" probability. Typically used in the following way: one wants to show that a "bad event" does not occur with high probability; the random variable X counts the number of such "bad events." In that case, X is a sum of indicators and the theorem reduces to the *union bound*.

ヘロン 人間 とくほ とくほ とう

Going in the other direction

The first moment method gives an *upper bound* on the probability that a non-negative, integer-valued random variable is positive—provided its expectation is small. Suppose we want a *lower bound*. Note that a large expectation does not suffice.

Example

Say X_n is n^2 with probability 1/n, and 0 otherwise. Then $\mathbb{E}X_n = n \to +\infty$, yet $\mathbb{P}[X_n > 0] \to 0$.

くロト (過) (目) (日)

Second moment method

Theorem (Second moment method)

If X is a non-negative, integer-valued random variable, then

$$\mathbb{P}[X > 0] \geq \frac{(\mathbb{E}X)^2}{\mathbb{E}[X^2]} \left(= 1 - \frac{\operatorname{Var}[X]}{(\mathbb{E}X)^2 + \operatorname{Var}[X]} \right)$$

Proof (of weaker version): By Chebyshev's inequality,

$$\mathbb{P}[X=0] \leq \mathbb{P}[|X-\mathbb{E}X| \geq \mathbb{E}X] \leq rac{\operatorname{Var}[X]}{(\mathbb{E}X)^2}.$$

ヘロン 人間 とくほ とくほ とう

Э

Second moment method: Proof by picture

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

э
First and second moment methods: summary

If X is a non-negative, integer-valued random variable, then

$$\mathbb{P}[X > 0] \leq \mathbb{E}X,$$

and

$$\mathbb{P}[X > 0] \geq rac{(\mathbb{E}X)^2}{\mathbb{E}[X^2]}.$$

ヘロト ヘアト ヘビト ヘビト

3

Markov's inequality

Pirst and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

Threshold phenomena

Consider the Erdös-Rényi random graph. A *threshold function* for a graph property P is a function r(n) such that

$$\lim_{n} \mathbb{P}_{n,p_n}[G_n \text{ has property } P] = \begin{cases} 0, & \text{if } p_n \ll r(n) \\ 1, & \text{if } p_n \gg r(n), \end{cases}$$

where $G_n \sim \mathbb{G}_{n,p_n}$ is an Erdös-Rényi graph with *n* vertices and density p_n .

Connectivity via isolated vertices

We use the first and second moment methods to show that the threshold function for connectivity in the Erdös-Rényi random graph is $\frac{\log n}{n}$.

We prove this result by deriving the threshold function for the presence of isolated vertices. Of course isolated vertices imply a disconnected graph. What is less obvious: the two thresholds actually *coincide*.

★ E ► ★ E ►

Erdös-Rényi with n = 100 and $p_n = 1/100$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

Erdös-Rényi with n = 100 and $p_n = 2/100$

Erdös-Rényi with n = 100 and $p_n = 3/100$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

⇒ < ⇒ >

Erdös-Rényi with n = 100 and $p_n = 4/100$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

∃ ► < ∃ ►</p>

Erdös-Rényi with n = 100 and $p_n = 5/100$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

Erdös-Rényi with n = 100 and $p_n = 6/100$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

∃ > < ∃ >

Threshold for isolated vertices I

Theorem

"Not having an isolated vertex" has threshold function $\frac{\log n}{n}$.

Proof: Let X_n be the number of isolated vertices in the Erdös-Rényi graph $G_n \sim \mathbb{G}_{n,p_n}$. Using $1 - x \leq e^{-x}$ for all $x \in \mathbb{R}$,

$$\mathbb{E}_{n,p_n}[X_n]=n(1-p_n)^{n-1}\leq e^{\log n-(n-1)p_n}\to 0,$$

when $p_n \gg \frac{\log n}{n}$. So the first moment method gives one direction: $\mathbb{P}_{n,p_n}[X_n > 0] \to 0$ when $p_n \gg \frac{\log n}{n}$.

Threshold for isolated vertices II

Proof (continued): Let A_j be the event that vertex j is isolated and $X_n = \sum_j \mathbf{1}_{A_j}$. By the computation above, using $1 - x \ge e^{-x-x^2}$ for $x \in [0, 1/2]$,

$$\mu_n = \mathbb{E}_{n,p_n}[X_n] = \sum_i \mathbb{P}_{n,p_n}[A_i] = n(1-p_n)^{n-1} \ge e^{\log n - np_n - np_n^2},$$

which goes to $+\infty$ when $p_n \ll \frac{\log n}{n}$.

Note that for all $i \neq j$

$$\mathbb{P}_{n,p_n}[A_i \cap A_j] = (1 - p_n)^{2(n-2)+1},$$

so that

$$\gamma_n = \mathbb{E}_{n,p_n}[X_n^2] - \mathbb{E}_{n,p_n}[X_n] = \sum_{i\neq j} \mathbb{P}_{n,p_n}[A_i \cap A_j] = n(n-1)(1-p_n)^{2n-3}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Threshold for isolated vertices III

Proof (continued): We have

$$\begin{aligned} \frac{\mathbb{E}_{n,p_n}[X_n^2]}{(\mathbb{E}_{n,p_n}[X_n])^2} &= \frac{\mu_n + \gamma_n}{\mu_n^2} \\ &\leq \frac{n(1-p_n)^{n-1} + n^2(1-p_n)^{2n-3}}{n^2(1-p_n)^{2n-2}} \\ &\leq \frac{1}{n(1-p_n)^{n-1}} + \frac{1}{1-p_n}, \end{aligned}$$

which is 1 + o(1) when $p_n \ll \frac{\log n}{n}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Threshold for connectivity I

Theorem

Connectivity has threshold function $\frac{\log n}{n}$.

Proof: We start with the easy direction. If $p_n \ll \frac{\log n}{n}$, the previous result implies that the graph has isolated vertices, and therefore is disconnected, with probability going to 1 as $n \to +\infty$.

Now assume that $p_n \gg \frac{\log n}{n}$. Let \mathcal{D}_n be the event that G_n is disconnected. To bound $\mathbb{P}_{n,p_n}[\mathcal{D}_n]$, for $k \in \{1, \ldots, n/2\}$ we let Y_k be the number of subsets of k vertices that are disconnected from all other vertices in the graph. Then, by the first moment method,

$$\mathbb{P}_{n,p_n}[\mathcal{D}_n] \leq \mathbb{P}_{n,p_n}\left[\sum_{k=1}^{n/2} Y_k > 0\right] \leq \sum_{k=1}^{n/2} \mathbb{E}_{n,p_n}[Y_k].$$

くロト (過) (目) (日)

Threshold for connectivity II

Proof (continued): Using that $k \le n/2$ and $\binom{n}{k} \le n^k$,

$$\mathbb{E}_{n,p_n}[Y_k] = \binom{n}{k} (1-p_n)^{k(n-k)} \leq \left(n(1-p_n)^{n/2}\right)^k.$$

The expression in parentheses is o(1) when $p_n \gg \frac{\log n}{n}$. Summing over k,

$$\mathbb{P}_{n,p_n}[\mathcal{D}_n] \leq \sum_{k=1}^{+\infty} \left(n(1-p_n)^{n/2} \right)^k = O(n(1-p_n)^{n/2}) = o(1),$$

where we used that the geometric series (started at k = 1) is dominated asymptotically by its first term.

イロト 不得 トイヨト イヨト 二日 二

Go deeper

More details and examples on the first and second moment methods at:

```
http://www.math.wisc.edu/~roch/mdp/
```

For more on random graphs in general, see e.g. (available online):

- Random Graphs and Complex Networks. Vol. I and II by van der Hofstad
- Random Graph Dynamics by Durrett

Probability on Graphs: Techniques and Applications to Data Science

2 - Exponential tail bounds

Sébastien Roch UW-Madison Mathematics

July 26, 2018

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

3

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

ъ

Moment-generating function

Definition

The *moment-generating function* of *X* is the function

$$M_X(s) = \mathbb{E}\left[e^{sX}\right],$$

defined for all $s \in \mathbb{R}$ where it is finite, which includes s = 0.

ヘロン 人間 とくほ とくほ とう

3

Chernoff-Cramér bound

Assume X is a centered (i.e. mean 0) random variable such that $M_X(s) < +\infty$ for $s \in (-s_0, s_0)$ for some $s_0 > 0$. Exponentiating within Markov's inequality gives, for any $\beta > 0$ and s > 0,

$$\mathbb{P}[X \geq \beta] = \mathbb{P}[e^{sX} \geq e^{s\beta}] \leq \frac{M_X(s)}{e^{s\beta}} = \exp\left[-\left\{s\beta - \Psi_X(s)\right\}\right],$$

where $\Psi_X(s) = \log M_X(s)$. The best exponent is

$$\Psi^*_X(eta) = \sup_{oldsymbol{s}\in\mathbb{R}_+}(oldsymbol{s}eta-\Psi_X(oldsymbol{s})).$$

Chernoff-Cramér for sums of independent variables

Let $S_n = \sum_{i \le n} X_i$, where the X_i s are i.i.d. centered random variables. Then

$$\Psi_{S_n}(s) = \log \mathbb{E}[e^{s\sum_{i\leq n}X_i}] = \log \prod_{i\leq n}\mathbb{E}[e^{sX_i}] = n\Psi_{X_1}(s)$$

Theorem

Assume $M_{X_1}(s) < +\infty$ on $s \in (-s_0, s_0)$ for some $s_0 > 0$. For any $\beta > 0$,

$$\mathbb{P}[S_n \ge \beta] \le \exp\left(-n\Psi_{X_1}^*\left(rac{eta}{n}
ight)
ight).$$

ヘロン 人間 とくほ とくほ とう

Example: Binomial

Let Z_n be a binomial random variable with parameters n and p. Recall that Z_n is a sum of i.i.d. indicators Y_1, \ldots, Y_n and, letting $X_i = Y_i - p$ and $S_n = Z_n - np$,

$$\Psi_{X_1}(s) = \log \mathbb{E}[e^{s(Y_1 - \rho)}] = \log \left(\rho e^s + (1 - \rho)\right) - \rho s$$

For $b \in (0, 1 - p)$, letting a = b + p, direct calculation gives

$$\begin{array}{lcl} \Psi_{X_1}^*\left(b\right) & = & \sup_{s>0}(sb-(\log\left[pe^s+(1-p)\right]-ps))\\ & = & (1-a)\log\frac{1-a}{1-p}+a\log\frac{a}{p}=:D(a\|p), \end{array}$$

achieved at $s_b = \log \frac{(1-p)a}{p(1-a)}$. By the previous result, for $\beta > 0$,

$$\mathbb{P}[Z_n \ge np + \beta] \le \exp\left(-nD\left(p + \beta/n\|p\right)\right).$$

イロト 不得 とくほ とくほ とうほ

Sub-Gaussian variables I

Let $X \sim N(0, \nu)$ where $\nu > 0$ and note that

$$\begin{aligned} M_X(s) &= \int_{-\infty}^{+\infty} e^{sx} \frac{1}{\sqrt{2\pi\nu}} e^{-\frac{x^2}{2\nu}} \, \mathrm{d}x = \int_{-\infty}^{+\infty} e^{\frac{s^2\nu}{2}} \frac{1}{\sqrt{2\pi\nu}} e^{-\frac{(x-s\nu)^2}{2\nu}} \, \mathrm{d}x \\ &= \exp\left(\frac{s^2\nu}{2}\right), \end{aligned}$$

so that straightforward calculus gives for $\beta > 0$

$$\Psi^*_X(eta) = \sup_{oldsymbol{s}>0}(oldsymbol{s}eta-oldsymbol{s}^2
u/2) = rac{eta^2}{2
u},$$

achieved at $s_{\beta} = \beta/\nu$. Plugging $\Psi_X^*(\beta)$ into Theorem 2 leads for $\beta > 0$ to the bound

$$\mathbb{P}[X \ge \beta] \le \exp\left(-rac{\beta^2}{2
u}
ight).$$

Sub-Gaussian variables II

We say that a centered random variable *X* is *sub-Gaussian* with variance factor $\nu > 0$ if for all $s \in \mathbb{R}$

$$\Psi_X(s) \leq \frac{s^2\nu}{2},$$

which is denoted by $X \in \mathcal{G}(\nu)$. By the Chernoff-Cramér bound

$$\mathbb{P}\left[X \leq -\beta\right] \lor \mathbb{P}\left[X \geq \beta\right] \leq \exp\left(-\frac{\beta^2}{2\nu}\right),$$

where we used that $X \in \mathcal{G}(\nu)$ implies $-X \in \mathcal{G}(\nu)$.

1

Example: Back to the binomial

Theorem (Case p = 1/2)

Let X_1, \ldots, X_n be independent $\{-1, 1\}$ -valued random variables with $\mathbb{P}[X_i = 1] = \mathbb{P}[X_i = -1] = 1/2$. Let $S_n = \sum_{i \le n} X_i$. Then, for any $\beta > 0$, $\mathbb{P}[S_n \ge \beta] \le e^{-\beta^2/2n}$.

Proof: The moment-generating function of X_1 can be bounded as follows

$$M_{X_1}(s) = \frac{e^s + e^{-s}}{2} = \sum_{j \ge 0} \frac{s^{2j}}{(2j)!} \le \sum_{j \ge 0} \frac{(s^2/2)^j}{j!} = e^{s^2/2}.$$
 (1)

So $\Psi_{\mathcal{S}_n}(s) = n \Psi_{X_1}(s) \leq s^2 n/2$ and $\mathcal{S}_n \in \mathcal{G}(n)$.

Sub-Gaussian variables III

Theorem (General Hoeffding inequality)

Let X_1, \ldots, X_n be independent centered random variables with $X_i \in \mathcal{G}(\nu_i)$ for $0 < \nu_i < +\infty$ and let $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$. Let $S_n = \sum_{i < n} \alpha_i X_i$. Then $S_n \in \mathcal{G}(\sum_{i=1}^n \alpha_i^2 \nu_i)$ and for all $\beta > 0$,

$$\mathbb{P}\left[\boldsymbol{\mathcal{S}}_{n} \geq \beta\right] \leq \exp\left(-\frac{\beta^{2}}{2\sum_{i=1}^{n}\alpha_{i}^{2}\nu_{i}}\right).$$

Proof: By independence,

$$\Psi_{\mathcal{S}_n}(s) = \sum_{i \leq n} \Psi_{\alpha_i X_i}(s) = \sum_{i \leq n} \Psi_{X_i}(s\alpha_i) \leq \sum_{i \leq n} \frac{(s\alpha_i)^2 \nu_i}{2} = \frac{s^2 \sum_{i \leq n} \alpha_i^2 \nu_i}{2}.$$

Example: Bounded variables I

For bounded random variables, the previous inequality reduces to a standard bound.

Theorem (Hoeffding's inequality)

Let X_1, \ldots, X_n be independent random variables where, for each *i*, X_i takes values in $[a_i, b_i]$ with $-\infty < a_i \le b_i < +\infty$. Let $S_n = \sum_{i \le n} X_i$. For all $\beta > 0$,

$$\mathbb{P}[S_n - \mathbb{E}S_n \ge \beta] \le \exp\left(-rac{2\beta^2}{\sum_{i \le n} (b_i - a_i)^2}
ight).$$

Illustration: Maximum degree of Erdös-Rényi

Let $G_n \sim \mathbb{G}_{n,p}$ be an Erdös-Rényi graph with *n* vertices and density $p_n = p \in (0, 1)$. Let D_i be the degree of vertex *i* and let $D^* = \max_i D_i$. Note that D_i is Bin(n - 1, p), i.e. a sum of independent [0, 1]-variables, so by Hoeffding's inequality

$$\mathbb{P}_{n, p}[D_i - (n-1)p \geq \sqrt{(1+arepsilon)n\log(n)/2}] \leq e^{-(1+arepsilon)\log n}$$

By a union bound

$$\mathbb{P}_{n,p}[D^* \ge (n-1)p + \sqrt{(1+arepsilon)n\log(n)/2}] \ \le \sum_i \mathbb{P}_{n,p}[D_i - (n-1)p \ge \sqrt{(1+arepsilon)n\log(n)/2}] \ < n imes n^{-(1+arepsilon)} o 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: Bounded variables II

Proof: By the general Hoeffding inequality, it suffices to show that $X_i - \mathbb{E}X_i \in \mathcal{G}(\nu_i)$ with $\nu_i = \frac{1}{4}(b_i - a_i)^2$. We give a quick proof of a weaker version that uses a trick called *symmetrization*. Suppose the X_i s are centered and satisfy $|X_i| \le c_i$ for some $c_i > 0$. Let X'_i be an independent copy of X_i and let Z_i be an independent uniform in $\{-1, 1\}$. By Jensen's inequality

$$\mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}\boldsymbol{X}_{i}}\right] = \mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}\mathbb{E}\left[X_{i}-X_{i}'\mid X_{i}\right]}\right] \leq \mathbb{E}\left[\mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}\left(X_{i}-X_{i}'\right)}\mid \boldsymbol{X}_{i}\right]\right] = \mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}\left(X_{i}-X_{i}'\right)}\right]$$

By the symmetry of $X_i - X'_i$, we then get

$$\begin{split} \mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}(X_i-X_i')}\right] &= \mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}Z_i(X_i-X_i')}\right] = \mathbb{E}\left[\mathbb{E}\left[\boldsymbol{e}^{\boldsymbol{s}Z_i(X_i-X_i')} \mid \boldsymbol{X}_i, \boldsymbol{X}_i'\right]\right] \\ &\leq \mathbb{E}\left[\mathbb{E}\left[\boldsymbol{e}^{(\boldsymbol{s}(X_i-X_i'))^2/2} \mid \boldsymbol{X}_i, \boldsymbol{X}_i'\right]\right] \leq \mathbb{E}\left[\boldsymbol{e}^{(\boldsymbol{s}(X_i-X_i'))^2/2}\right] \leq \boldsymbol{e}^{-2c_i^2 s^2}. \end{split}$$

ヘロン 人間 とくほ とくほ とう

Many more concentration inequalities

- Bernstein's inequality
- Azuma's inequality
- Matrix inequalities

イロト イポト イヨト イヨト

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

ъ

Epsilon-nets I

Exponential tail inequalities are useful, among other things, to study the deviations of suprema of random variables. When the supremum is over an *infinite* index set, one way to proceed is to apply a tail inequality to a sufficiently dense finite subset of the index set, and then extend the resulting bound by continuity. This is referred to as an ε -net argument.

Epsilon-nets II

Definition (ε -net)

Let *S* be a subset of a metric space (M, ρ) and let $\varepsilon > 0$. A collection of points $N \subseteq S$ is called an ε -net of *S* if all pairs of points in *N* are at distance greater than ε and *N* is maximal by inclusion in *S*. In particular for all $z \in S$, $\inf_{y \in N} \rho(z, y) \le \varepsilon$. The *covering number* of *S*, denoted by $\mathcal{N}(S, \rho, \varepsilon)$, is the smallest cardinality of an ε -net of *S*.

The definition of an ε -net immediately suggests an algorithm for constructing one. Start with $N = \emptyset$ and successively add a point to N at distance at least ε from all other previous points until that is not possible to do so anymore. (Provided *S* is compact, this procedure will terminate after a finite number of steps.)

A D b 4 A b

Epsilon-nets by picture

(a) This covering of a pentagon K by seven ε -balls shows that $\mathcal{N}(K, \varepsilon) \leq 7$.

Illustration: Spectral norm of random matrix I

For a $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$, recall that the spectral norm is defined as

$$\|A\| := \sup_{\mathbf{x} \in \mathbb{R}^n \setminus \{0\}} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \sup_{\mathbf{x} \in \mathbb{S}^{n-1}} \|A\mathbf{x}\|_2 = \sup_{\substack{\mathbf{x} \in \mathbb{S}^{n-1} \\ \mathbf{y} \in \mathbb{S}^{m-1}}} \langle A\mathbf{x}, \mathbf{y} \rangle,$$

where \mathbb{S}^{n-1} is the sphere of radius 1 around the origin in \mathbb{R}^n .

(To see the rightmost equality above, note that Cauchy-Schwarz implies $\langle A\mathbf{x}, \mathbf{y} \rangle \leq \|A\mathbf{x}\|_2 \|\mathbf{y}\|_2$ and that one can take $\mathbf{y} = A\mathbf{x}/\|A\mathbf{x}\|_2$ for any \mathbf{x} such that $A\mathbf{x} \neq 0$ in the rightmost expression.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Illustration: Spectral norm of random matrix II

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a random matrix whose entries are centered, independent and sub-Gaussian with variance factor ν . Then there exist a constant $0 < C < +\infty$ such that, for all t > 0,

$$\|\boldsymbol{A}\| \leq C\sqrt{\nu}(\sqrt{m}+\sqrt{n}+t),$$

with probability at least $1 - e^{-t^2}$.

Without independence of the entries, the spectral norm can be much larger. Say *A* is all-(+1) or all-(-1) with equal probability. Taking the vector $\mathbf{x} = (1/\sqrt{n}, \dots, 1/\sqrt{n})$ shows that $||A|| \ge n$ with probability 1.

ヘロン 人間 とくほ とくほ とう
Illustration: Spectral norm of random matrix III

Proof: We seek to bound

$$|\boldsymbol{A}|| = \sup_{\substack{\mathbf{x} \in \mathbb{S}^{n-1} \\ \mathbf{y} \in \mathbb{S}^{m-1}}} \langle \boldsymbol{A}\mathbf{x}, \mathbf{y} \rangle = \sup_{\substack{\mathbf{x} \in \mathbb{S}^{n-1} \\ \mathbf{y} \in \mathbb{S}^{m-1}}} \sum_{i,j} x_i y_j A_{ij},$$

where we note that the last quantity is a linear combination of independent variables. Fix $\varepsilon = 1/4$. We proceed in two steps:

- We first apply the general Hoeffding inequality to control the deviations of the supremum restricted to ε -nets N and M of \mathbb{S}^{n-1} and \mathbb{S}^{m-1} .
- We then extend the bound to the full supremum by continuity.

イロト イポト イヨト イヨト 三日

Back to ε -nets: Sphere

Let \mathbb{S}^{k-1} be the sphere of radius 1 centered around the origin in \mathbb{R}^k with the Euclidean metric. Let $0 < \varepsilon < 1$. We claim that

$$\mathcal{N}(\mathcal{\boldsymbol{S}},
ho,arepsilon)\leq \left(rac{\mathbf{3}}{arepsilon}
ight)^{k}$$
 .

Let *N* be any ε -net of *S*. The balls of radius $\varepsilon/2$ around points in *N*, { $\mathbb{B}^{k}(x_{i}, \varepsilon/2) : x_{i} \in N$ }, satisfy two properties:

- Pairwise disjoint: if $z \in \mathbb{B}^k(x_i, \varepsilon/2) \cap \mathbb{B}^k(x_j, \varepsilon/2)$, then $\|x_i x_j\|_2 \le \|x_i z\|_2 + \|x_j z\|_2 \le \varepsilon$, a contradiction.
- **2** Contained in $\mathbb{B}^k(0,3/2)$: if $z \in \mathbb{B}^k(x_i, \varepsilon/2)$, then $||z||_2 \le ||z x_i||_2 + ||x_i|| \le \varepsilon/2 + 1 \le 3/2$.

The volume of a ball of radius is $\varepsilon/2$ is $\frac{\pi^{k/2}(\varepsilon/2)^k}{\Gamma(k/2+1)}$ and that of a ball of radius 3/2 is $\frac{\pi^{k/2}(3/2)^k}{\Gamma(k/2+1)}$. Divide one by the other.

Illustration: Spectral norm of random matrix IV

Lemma

Let N and M be as above. For C large enough, for all t > 0,

$$\mathbb{P}\left[\max_{\substack{\mathbf{x}\in N\\\mathbf{y}\in M}} \langle A\mathbf{x}, \mathbf{y} \rangle \geq \frac{1}{2}C\sqrt{\nu}(\sqrt{m}+\sqrt{n}+t)\right] \leq e^{-t^2}.$$

Proof: By the general Hoeffding inequality, $\langle A\bm{x}, \bm{y} \rangle$ is sub-Gaussian with variance factor

$$\sum_{i,j} (x_i y_j)^2 \nu = \|\mathbf{x}\|_2^2 \|\mathbf{y}\|_2^2 \nu = \nu,$$

for all $\mathbf{x} \in N$ and $\mathbf{y} \in M$. In particular, for all $\beta > 0$,

$$\mathbb{P}\left[\langle A\mathbf{x},\mathbf{y}
angle \geq eta
ight] \leq \exp\left(-rac{eta^2}{2
u}
ight).$$

イロト イポト イヨト イヨト 三日

Illustration: Spectral norm of random matrix V

Proof of lemma (continued): Hence, by a union bound over N and M,

$$\mathbb{P}\left[\max_{\substack{\mathbf{x}\in N\\\mathbf{y}\in M}} \langle A\mathbf{x}, \mathbf{y} \rangle \geq \frac{1}{2}C\sqrt{\nu}(\sqrt{m} + \sqrt{n} + t)\right]$$

$$\leq \sum_{\substack{\mathbf{x}\in N\\\mathbf{y}\in M}} \mathbb{P}\left[\langle A\mathbf{x}, \mathbf{y} \rangle \geq \frac{1}{2}C\sqrt{\nu}(\sqrt{m} + \sqrt{n} + t)\right]$$

$$\leq |N||M| \exp\left(-\frac{1}{2\nu}\left\{\frac{1}{2}C\sqrt{\nu}(\sqrt{m} + \sqrt{n} + t)\right\}^{2}\right)$$

$$\leq 12^{n+m} \exp\left(-\frac{C^{2}}{8}\left\{m + n + t^{2}\right\}\right)$$

$$\leq e^{-t^{2}},$$

for $C^2/8 = \log 12 \ge 1$, where in the third inequality we ignored all cross-products since they are non-negative.

Illustration: Spectral norm of random matrix VI

Lemma

For any ε -nets N and M of \mathbb{S}^{n-1} and \mathbb{S}^{m-1} respectively, the following inequalities hold

$$\sup_{\substack{\mathbf{x}\in N\\\mathbf{y}\in M}}\langle A\mathbf{x},\mathbf{y}\rangle \leq \|A\| \leq \frac{1}{1-2\varepsilon} \sup_{\substack{\mathbf{x}\in N\\\mathbf{y}\in M}}\langle A\mathbf{x},\mathbf{y}\rangle.$$

Proof: The first inequality is immediate. For the second inequality, we will use the following observation

$$\langle A\mathbf{x}, \mathbf{y} \rangle - \langle A\mathbf{x}_0, \mathbf{y}_0 \rangle = \langle A\mathbf{x}, \mathbf{y} - \mathbf{y}_0 \rangle + \langle A(\mathbf{x} - \mathbf{x}_0), \mathbf{y}_0 \rangle.$$

Fix $x \in \mathbb{S}^{n-1}$ and $y \in \mathbb{S}^{m-1}$ such that $\langle A\mathbf{x}, \mathbf{y} \rangle = ||A||$, and let $\mathbf{x}_0 \in N$ and $\mathbf{y}_0 \in M$ such that

$$\|\mathbf{x} - \mathbf{x}_0\|_2 \le \varepsilon$$
 and $\|\mathbf{y} - \mathbf{y}_0\|_2 \le \varepsilon$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Illustration: Spectral norm of random matrix VII

Proof of lemma (continued): Then the inequality above, Cauchy-Schwarz and the definition of the spectral norm imply

$$\|\boldsymbol{A}\| - \langle \boldsymbol{A}\boldsymbol{x}_0, \boldsymbol{y}_0 \rangle \leq \|\boldsymbol{A}\| \|\boldsymbol{x}\|_2 \|\boldsymbol{y} - \boldsymbol{y}_0\|_2 + \|\boldsymbol{A}\| \|\boldsymbol{x} - \boldsymbol{x}_0\|_2 \|\boldsymbol{y}_0\|_2 \leq 2\varepsilon \|\boldsymbol{A}\|.$$

Rearranging gives the claim.

ヘロン 人間 とくほ とくほ とう

1

ヘロト ヘワト ヘビト ヘビト

ъ

Clustering in Euclidean space

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ъ

э

Clustering in graphs

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Reducing the second problem to the first one

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

Stochastic blockmodel with two balanced blocks

Definition

Let V = [n] with *n* even, let $V_1 = \{1, ..., n/2\}$ and $V_2 = \{n/2 + 1, ..., n\}$, and let 0 < q < p < 1. We draw a graph G = (V, E) at random as follows. For each pair $x \neq y$ in *V*, the edge $\{x, y\}$ is in *E* with probability:

- *p* if *x*, *y* ∈ *V*₁, or *x*, *y* ∈ *V*₂;
- q if $x \in V_1$ and $y \in V_2$, or $x \in V_2$ and $y \in V_1$;

independently of all other edges. We write $G \sim \text{SBM}_{n,p,q}$ and we denote the corresponding measure by $\mathbb{P}_{n,p,q}$.

Community detection problem: Given *G* (without the node labels), output V_1 , V_2 (possibly approximately).

イロン 不良 とくほう 不良 とうほ

Stochastic blockmodel by picture

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

ъ

Expected adjacency matrix

Let $G \sim \text{SBM}_{n,p,q}$ and let A be the adjacency matrix of G.

Theorem

Let $D = \mathbb{E}_{n,p,q}[A]$. Then

$$D = n \frac{p+q}{2} \mathbf{u}_1 \mathbf{u}_1^T + n \frac{p-q}{2} \mathbf{u}_2 \mathbf{u}_2^T - p \mathbf{I},$$

where $\mathbf{u}_1 = \frac{1}{\sqrt{n}} (1, \dots, 1)^T$ and $\mathbf{u}_2 = \frac{1}{\sqrt{n}} (1, \dots, 1, -1, \dots, -1)^T$.

Proof: Note that *D* is a block matrix with diagonal blocks all-*p* and off-diagonal blocks all-*q*, all of size $n/2 \times n/2$, with the exception of the diagonal which is all-0.

Idea: Compute the second eigenvector of A and cluster by sign.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Spectral clustering: a positive result

Theorem

Let $G \sim \text{SBM}_{n,p,q}$ and let A be the adjacency matrix of G. Let $\mu = \min \{q, \frac{p-q}{2}\} > 0$. Clustering according to the sign of the second eigenvector of A identifies the two communities of G with probability at least $1 - e^{-n}$, except for C/μ^2 misclassified nodes for some constant C > 0.

<ロト < 同ト < 回ト < 回ト = 三

Matrix perturbation

Theorem (A version of Davis-Kahan)

Let *S* and *T* be symmetric $n \times n$ matrices. Let $\lambda_i(S)$ be the *i*-th largest eigenvalue of *S* with corresponding unit eigenvector $\mathbf{v}_i(S)$ (and similarly for *T*). If

$$\delta := \min_{j \neq i} |\lambda_i(S) - \lambda_j(S)| > 0,$$

then there is $\theta \in \{+1, -1\}$ such that

$$\|\mathbf{v}_i(\mathcal{S}) - heta \, \mathbf{v}_i(\mathcal{T})\|_2 \leq rac{4\|\mathcal{S}-\mathcal{T}\|}{\delta}.$$

イロト イポト イヨト イヨト 三日

Bounding the spectral norm

Lemma

Let $G \sim \text{SBM}_{n,p,q}$, let A be the adjacency matrix of G and let $D = \mathbb{E}_{n,p,q}[A]$. Then, there is a constant C > 0 such that

$$\|\boldsymbol{A}-\boldsymbol{D}\|\leq \boldsymbol{C}\sqrt{n},$$

with probability at least $1 - e^{-n}$.

Proof: The entries of R are centered, independent and sub-Gaussian with variance factor 1/4.

イロト イポト イヨト イヨト 一日

Spectral clustering: proof I

Proof of spectral clustering theorem: The eigenvalues of D are

$$n\frac{p+q}{2}-p,$$
 $n\frac{p-q}{2}-p,$ $-p$

so $\lambda_2(D) = n \frac{p-q}{2} - p$ and

$$\delta = \min_{j\neq 2} |\lambda_2(D) - \lambda_j(D)| = \min\left\{n \frac{p-q}{2}, n q\right\} =: n \mu > 0.$$

By Davis-Kahan and the previous lemma, with probability at least $1 - e^{-n}$, there is $\theta \in \{+1, -1\}$ such that

$$\|\mathbf{v}_2(D) - \theta \, \mathbf{v}_2(A)\|_2 \leq rac{4C\sqrt{n}}{n\mu} \leq rac{C'}{\sqrt{n}\mu}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Spectral clustering: proof II

Proof of spectral clustering theorem (continued): Put differently,

$$\sum_{i} \left| \sqrt{n} (\mathbf{v}_2(D))_i - \sqrt{n} \theta (\mathbf{v}_2(A))_i \right|^2 \leq \frac{(C')^2}{\mu^2}.$$

If the signs of $(\mathbf{v}_2(D))_i$ and $\theta(\mathbf{v}_2(A))_i$ disagree, then the *i*-th term in the sum above is ≥ 1 . So there can be at most $(C')^2/\mu^2$ of those. That establishes the desired bound on the number of misclassified nodes.

イロト イポト イヨト イヨト 三日

More details and examples on tail bounds at:

```
http://www.math.wisc.edu/~roch/mdp/
```

For more on concentration in general, see e.g. (available online):

- High-dimensional probability: An introduction with applications in data science by Vershynin
- Probability in High Dimension by van Handel

ヘロト ヘアト ヘビト ヘビト

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Probability on Graphs: Techniques and Applications to Data Science

3 - Spectral Techniques

Sébastien Roch UW-Madison Mathematics

July 26, 2018

イロト イポト イヨト イヨト

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Review of Markov chains

- Bounding the mixing time via the spectral gap
- 3 Bottleneck ratio and Cheeger's inequality
- 4 Application: Gibbs sampling at low temperature

イロト イポト イヨト イヨト

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Random walk on a network

Definition

Let G = (V, E) be a graph. Let $c : E \to \mathbb{R}_+$ be a positive edge weight function on G. We call $\mathcal{N} = (G, c)$ a *network*. Random walk on \mathcal{N} is the Markov chain on V, started at an arbitrary vertex, which at each time picks a neighbor of the current state proportionally to the weight of the corresponding edge.

ヘロン 人間 とくほ とくほ とう

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Transition matrix

Let (X_t) be a a Markov chain on V and let

$$P^t(x,y) := \mathbb{P}[X_t = y \mid X_0 = x].$$

The one-step probabilities $P(x, y) := P^1(x, y)$ are the elements of its *transition matrix* $P = (P(x, y))_{x,y}$. We have

$$\mathbb{P}_{\mu}[X_0 = x_0, \dots, X_t = x_t] = \mu(x_0) P(x_0, x_1) \cdots P(x_{t-1}, x_t),$$

and $P^t(x, y) = (P^t)_{x,y}.$

イロト イポト イヨト イヨト 三日

Review of Markov chains the mixing time via the spectral gap

Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Stationary distribution I

Definition (Stationary distribution)

Let (X_t) be a Markov chain with transition matrix *P*. A *stationary measure* π is a measure such that

$$\sum_{x\in V}\pi(x) P(x,y)=\pi(y), \qquad orall y\in V,$$

or in matrix form $\pi = \pi P$. We say that π is a *stationary distribution* if in addition π is a probability measure.

When *P* is *irreducible*, i.e. $\forall x, y, \exists t \text{ s.t. } P^t(x, y) > 0$, then the stationary distribution is unique and positive. This is the case for a random walk on a connected network.

ヘロト ヘアト ヘビト ヘビト

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Stationary distribution II

Definition (Reversible chain)

A transition matrix *P* is *reversible* w.r.t. a measure η if $\eta(x)P(x, y) = \eta(y)P(y, x)$ for all $x, y \in V$. By summing over *y*, one sees such a measure is necessarily stationary.

Let (X_t) be random walk on a network $\mathcal{N} = (G, c)$. Then (X_t) is reversible w.r.t. $\eta(v) := c(v)$, where

$$c(v) := \sum_{x \sim v} c(v, x).$$

If all edge weights are 1, then $\eta(\mathbf{v}) := \delta(\mathbf{v})$.

ヘロン 人間 とくほ とくほ とう

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Convergence I

A transition matrix *P* is *aperiodic* if, for all *x*, $P^t(x, x) > 0$ for all sufficiently large *t*. The *lazy walk* on \mathcal{N} is the Markov chain that, at each time, stays put with probability 1/2 or else takes a step according to the random walk on \mathcal{N} . This modified walk is aperiodic.

Theorem (Convergence to stationarity)

Suppose P is irreducible, aperiodic and has stationary distribution π . Then, for all $x, y, P^t(x, y) \rightarrow \pi(y)$ as $t \rightarrow +\infty$.

ヘロン 人間 とくほ とくほ とう

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs samplina at low temperature

Convergence II

For probability measures μ, ν on *V*, let their *total variation* distance be $\|\mu - \nu\|_{TV} := \sup_{A \subseteq V} |\mu(A) - \nu(A)|$.

Definition (Mixing time)

The mixing time is $t_{mix}(\varepsilon) := \min\{t \ge 0 : d(t) \le \varepsilon\}$, where $d(t) := \max_{x \in V} \|P^t(x, \cdot) - \pi(\cdot)\|_{TV}$.

<ロト < 同ト < 回ト < 回ト = 三

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Other useful random walk quantities

- Hitting times
- Cover times
- Heat kernels

イロト イポト イヨト イヨト

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Bayesian image analysis I

ヘロン ヘアン ヘビン ヘビン

э

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Bayesian image analysis II

Hidden node variables eg. dispairty values

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

・ロト ・ 同ト ・ ヨト ・ ヨト

Review of Markov chains ne mixing time via the spectral gap

Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Undirected graphical models I

Definition

Let *S* be a finite set and let G = (V, E) be a finite graph. Denote by \mathcal{K} the set of all cliques of *G*. A positive probability measure μ on $\mathcal{X} := S^V$ is called a *Gibbs random field* if there exist *clique potentials* $\phi_K : S^K \to \mathbb{R}, K \in \mathcal{K}$, such that

$$\mu(\mathbf{x}) = rac{1}{\mathcal{Z}} \exp\left(\sum_{\mathbf{K}\in\mathcal{K}} \phi_{\mathbf{K}}(\mathbf{x}_{\mathbf{K}})\right),$$

where x_K is x restricted to the vertices of K and \mathcal{Z} is a normalizing constant.

イロト イポト イヨト イヨト

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Undirected graphical models II

Example

For $\beta > 0$, the *ferromagnetic Ising model* with inverse temperature β is the Gibbs random field with $S := \{-1, +1\}$, $\phi_{\{i,j\}}(\sigma_{\{i,j\}}) = \beta \sigma_i \sigma_j$ and $\phi_K \equiv 0$ if $|K| \neq 2$. The function $\mathcal{H}(\sigma) := -\sum_{\{i,j\} \in E} \sigma_i \sigma_j$ is known as the *Hamiltonian*. The normalizing constant $\mathcal{Z} := \mathcal{Z}(\beta)$ is called the *partition function*. The states $(\sigma_i)_{i \in V}$ are referred to as *spins*.

ヘロン 人間 とくほ とくほ とう

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Back to Bayesian image analysis I

Hidden node variables eg. dispairty values

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

・ロト ・ 同ト ・ ヨト ・ ヨト

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Back to Bayesian image analysis II

We assume the prior (i.e. distribution of hidden variables) is an Ising model $\mu_{\beta}(\sigma)$ on the $L \times L$ grid G = (V, E). The observed variables τ are independent flips of the corresponding hidden variables with flip probability $q \in (0, 1/2)$, i.e.,

$$\begin{split} \mathbb{P}[\tau \mid \sigma] &= \prod_{i \in V} (1-q)^{\mathbf{1}_{\tau_i = \sigma_i}} q^{\mathbf{1}_{\tau_i \neq \sigma_i}} \\ &= \exp\left(\sum_{i \in V} \left\{ \log(1-q) \frac{1+\sigma_i \tau_i}{2} + \log(q) \frac{1-\sigma_i \tau_i}{2} \right\} \right) \\ &= \exp\left(\sum_{i \in V} \sigma_i \frac{\tau_i}{2} \log \frac{1-q}{q} + \mathcal{Y}(q)\right). \end{split}$$

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Back to Bayesian image analysis III

By Bayes' rule, the posterior is then given by

$$\mathbb{P}[\sigma \mid \tau] = \frac{\mathbb{P}[\tau \mid \sigma]\mu_{\beta}(\sigma)}{\sum_{\sigma} \mathbb{P}[\tau \mid \sigma]\mu_{\beta}(\sigma)}$$
$$= \frac{1}{\mathcal{Z}(\beta, q)} \exp\left(\beta \sum_{i \sim j} \sigma_{i}\sigma_{j} + \sum_{i} h_{i}\sigma_{i}\right),$$

where $h_i = \frac{\tau_i}{2} \log \frac{1-q}{q}$.

イロト イポト イヨト イヨト 三日

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Gibbs sampling I

Definition

Let μ_{β} be the Ising model with inverse temperature $\beta > 0$ on a graph G = (V, E). The *(single-site)* Glauber dynamics is the Markov chain on $\mathcal{X} := \{-1, +1\}^V$ which at each time:

- selects a site $i \in V$ uniformly at random, and
- updates the spin at *i* according to μ_β conditioned on agreeing with the current state at all sites in V\{*i*}.

<ロト < 同ト < 回ト < 回ト = 三
Application: Gibbs sampling II

Specifically, for $\gamma \in \{-1, +1\}$, $i \in \Lambda$, and $\sigma \in \mathcal{X}$, let $\sigma^{i,\gamma}$ be the configuration σ with the spin at *i* being set to γ . Let n = |V| and $S_i(\sigma) := \sum_{j \sim i} \sigma_j$. Then

$$\begin{aligned} Q_{\beta}(\sigma,\sigma^{i,\gamma}) &:= \frac{1}{n} \frac{\frac{1}{\mathcal{Z}(\beta)} \exp\left(\beta \sum_{j \sim k} \sigma_{j}^{i,\gamma} \sigma_{k}^{i,\gamma}\right)}{\sum_{i'=-,+} \frac{1}{\mathcal{Z}(\beta)} \exp\left(\beta \sum_{j \sim k} \sigma_{j}^{i',\gamma} \sigma_{k}^{i',\gamma}\right)} \\ &= \frac{1}{n} \cdot \frac{e^{\gamma \beta S_{i}(\sigma)}}{e^{-\beta S_{i}(\sigma)} + e^{\beta S_{i}(\sigma)}}. \end{aligned}$$

The Glauber dynamics is reversible w.r.t. μ_{β} . How quickly does the chain approach μ_{β} ?

Application: Gibbs sampling III

Proof of reversibility: This chain is clearly irreducible. For all $\sigma \in \mathcal{X}$ and $i \in V$, let $S_{\neq i}(\sigma) := \mathcal{H}(\sigma^{i,+}) + S_i(\sigma) = \mathcal{H}(\sigma^{i,-}) - S_i(\sigma)$. We have

$$\begin{split} \mu_{\beta}(\sigma^{i,-}) \, \mathcal{Q}_{\beta}(\sigma^{i,-}, \sigma^{i,+}) &= \frac{e^{-\beta S_{\neq i}(\sigma)} e^{-\beta S_i(\sigma)}}{\mathcal{Z}(\beta)} \cdot \frac{e^{\beta S_i(\sigma)}}{n[e^{-\beta S_i(\sigma)} + e^{\beta S_i(\sigma)}]} \\ &= \frac{e^{-\beta S_{\neq i}(\sigma)}}{n\mathcal{Z}(\beta)[e^{-\beta S_i(\sigma)} + e^{\beta S_i(\sigma)}]} \\ &= \frac{e^{-\beta S_{\neq i}(\sigma)} e^{\beta S_i(\sigma)}}{\mathcal{Z}(\beta)} \cdot \frac{e^{-\beta S_i(\sigma)}}{n[e^{-\beta S_i(\sigma)} + e^{\beta S_i(\sigma)}]} \\ &= \mu_{\beta}(\sigma^{i,+}) \, \mathcal{Q}_{\beta}(\sigma^{i,+}, \sigma^{i,-}). \end{split}$$

Review of Markov chains

Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Application: Back to Bayesian image analysis

ヘロト ヘワト ヘビト ヘビト

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

2 Bounding the mixing time via the spectral gap

- 3 Bottleneck ratio and Cheeger's inequality
- 4 Application: Gibbs sampling at low temperature

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

Eigenbasis I

Let *P* be the transition matrix of an irreducible, reversible Markov chain with stationary distribution $\pi > 0$. Define

$$egin{aligned} &\langle f,g
angle_{\pi} := \sum_{x \in V} \pi(x) f(x) g(x), & \|f\|_{\pi}^2 := \langle f,f
angle_{\pi}, \ &(Pf)(x) := \sum_{y} P(x,y) f(y). \end{aligned}$$

We let $\ell^2(V, \pi)$ be the Hilbert space of real-valued functions on V equipped with the inner product $\langle \cdot, \cdot \rangle_{\pi}$ (equivalent to the vector space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\pi})$).

Theorem

There is an orthonormal basis of $\ell^2(V, \pi)$ formed of eigenfunctions $\{f_j\}_{j=1}^n$ of P with real eigenvalues $\{\lambda_j\}_{j=1}^n$. We can take $f_1 \equiv 1$ and $\lambda_1 = 1$.

Eigenbasis II

Proof: Let D_{π} be the diagonal matrix with π on the diagonal. By reversibility,

$$M(x,y) := \sqrt{\frac{\pi(x)}{\pi(y)}} P(x,y) = \sqrt{\frac{\pi(y)}{\pi(x)}} P(y,x) =: M(y,x).$$

So $M = (M(x, y))_{x,y} = D_{\pi}^{1/2} P D_{\pi}^{-1/2}$ is symmetric and has orthonormal eigenvectors $\{\phi_j\}_{j=1}^n$ and real eigenvalues $\{\lambda_j\}_{j=1}^n$. Define $f_j := D_{\pi}^{-1/2} \phi_j$. Then

$$Pf_j = PD_{\pi}^{-1/2}\phi_j = D_{\pi}^{-1/2}D_{\pi}^{1/2}PD_{\pi}^{-1/2}\phi_j = D_{\pi}^{-1/2}M\phi_j = \lambda_j D_{\pi}^{-1/2}\phi_j = \lambda_j f_j,$$

and

$$egin{aligned} &\langle f_i, f_j
angle_\pi = \langle D_\pi^{-1/2} \phi_i, D_\pi^{-1/2} \phi_j
angle_\pi \ &= \sum_x \pi(x) [\pi(x)^{-1/2} \phi_i(x)] [\pi(x)^{-1/2} \phi_j(x)] = \langle \phi_i, \phi_j
angle. \end{aligned}$$

Because *P* is stochastic, the all-one vector is a right eigenvector of *P* with eigenvalue 1.

Spectral decomposition I

Theorem

Let $\{f_j\}_{j=1}^n$ be the eigenfunctions of a reversible and irreducible transition matrix P with corresponding eigenvalues $\{\lambda_j\}_{j=1}^n$, as defined previously. Assume $\lambda_1 \geq \cdots \geq \lambda_n$. We have the decomposition

$$\frac{P^t(x,y)}{\pi(y)} = 1 + \sum_{j=2}^n f_j(x)f_j(y)\lambda_j^t.$$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

Spectral decomposition II

Proof: Let *F* be the matrix whose columns are the eigenvectors $\{f_j\}_{j=1}^n$ and let D_λ be the diagonal matrix with $\{\lambda_j\}_{j=1}^n$ on the diagonal. Using the notation of the eigenbasis theorem,

$$D_{\pi}^{1/2} P^t D_{\pi}^{-1/2} = M^t = (D_{\pi}^{1/2} F) D_{\lambda}^t (D_{\pi}^{1/2} F)',$$

which after rearranging becomes

$$P^t D_{\pi}^{-1} = F D_{\lambda}^t F'.$$

ヘロン 人間 とくほ とくほ とう

Lemma

Any eigenvalue λ of *P* satisfies $|\lambda| \leq 1$.

Proof: $Pf = \lambda f \implies |\lambda| ||f||_{\infty} = ||Pf||_{\infty} = \max_{x} |\sum_{y} P(x, y)f(y)| \le ||f||_{\infty}$

We order the eigenvalues $1 \ge \lambda_1 \ge \cdots \ge \lambda_n \ge -1$.

イロト イポト イヨト イヨト 一臣

Spectral gap

Definition (Spectral gap)

The (absolute) spectral gap is $\gamma_* := 1 - |\lambda_2| \vee |\lambda_n|$. The relaxation time is defined as $t_{rel} := \gamma_*^{-1}$.

Note that the eigenvalues of the lazy version $\frac{1}{2}P + \frac{1}{2}I$ of *P* are $\{\frac{1}{2}(\lambda_j + 1)\}_{j=1}^n$ which are all nonnegative.

Theorem

Let P be reversible, irreducible, and aperiodic with stationary distribution π . Let $\pi_{\min} = \min_x \pi(x)$. For all $\varepsilon > 0$,

$$(\mathfrak{t}_{\mathrm{rel}}-1)\log\left(rac{1}{2arepsilon}
ight)\leq \mathfrak{t}_{\mathrm{mix}}(arepsilon)\leq \log\left(rac{1}{arepsilon\pi_{\mathrm{min}}}
ight)\mathfrak{t}_{\mathrm{rel}}.$$

ヘロト 人間 とくほ とくほう

Example: Random walk on the cycle I

Consider random walk on an *n*-cycle. That is, $V := \{0, 1, ..., n-1\}$ and P(x, y) = 1/2 if and only if $|x - y| = 1 \mod n$.

Lemma (Eigenbasis on the cycle)

For $j = 0, \ldots, n - 1$, the function

$$f_j(x) := \cos\left(\frac{2\pi jx}{n}\right), \qquad x = 0, 1, \ldots, n-1,$$

is an eigenfunction of P with eigenvalue

$$\lambda_j := \cos\left(\frac{2\pi j}{n}\right).$$

Example: Random walk on the cycle II

Proof: Note that, for all *i*, *x*,

$$\sum_{y} P(x, y) f_{j}(y) = \frac{1}{2} \left[\cos \left(\frac{2\pi j(x-1)}{n} \right) + \cos \left(\frac{2\pi j(x+1)}{n} \right) \right]$$
$$= \frac{1}{2} \left[\frac{e^{j \frac{2\pi j(x-1)}{n}} + e^{-j \frac{2\pi j(x-1)}{n}}}{2} + \frac{e^{j \frac{2\pi j(x+1)}{n}} + e^{-j \frac{2\pi j(x+1)}{n}}}{2} \right]$$
$$= \left[\frac{e^{j \frac{2\pi j x}{n}} + e^{-j \frac{2\pi j x}{n}}}{2} \right] \left[\frac{e^{j \frac{2\pi j}{n}} + e^{-j \frac{2\pi j}{n}}}{2} \right]$$
$$= \left[\cos \left(\frac{2\pi j x}{n} \right) \right] \left[\cos \left(\frac{2\pi j}{n} \right) \right]$$
$$= \cos \left(\frac{2\pi j}{n} \right) f_{j}(x).$$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

Example: Random walk on the cycle III

Theorem (Relaxation time on the cycle)

The relaxation time for lazy random walk on the n-cycle is

$$t_{\rm rel} = \frac{2}{1 - \cos\left(\frac{2\pi}{n}\right)} = \Theta(n^2).$$

Proof: The eigenvalues are $\frac{1}{2}\left[\cos\left(\frac{2\pi j}{n}\right) + 1\right]$. The spectral gap is therefore $\frac{1}{2}(1 - \cos\left(\frac{2\pi}{n}\right))$. By a Taylor expansion,

$$1 - \cos\left(\frac{2\pi}{n}\right) = \frac{4\pi^2}{n^2} + O(n^{-4}).$$

Since $\pi_{\min} = 1/n$, we get $t_{\min}(\varepsilon) = O(n^2 \log n)$ and $t_{\min}(\varepsilon) = \Omega(n^2)$.

Review of Markov chains

2 Bounding the mixing time via the spectral gap

- Bottleneck ratio and Cheeger's inequality
- 4 Application: Gibbs sampling at low temperature

Back to eigenvalues I

Theorem (Rayleigh's quotient)

Let P be irreducible and reversible with respect to π . The second largest eigenvalue is characterized by

$$\lambda_2 = \sup\left\{\frac{\langle f, Pf \rangle_{\pi}}{\langle f, f \rangle_{\pi}} : f \in \ell^2(V, \pi), \sum_x \pi(x)f(x) = 0\right\}.$$

Proof: Recalling that $f_1 \equiv 1$, the condition $\sum_x \pi(x)f(x) = 0$ is equivalent to $\langle f_1, f \rangle_{\pi} = 0$.

イロト イポト イヨト イヨト 一臣

Back to eigenvalues II

For such an f, the eigendecomposition is

$$f = \sum_{j=1}^{n} \langle f, f_j \rangle_{\pi} f_j = \sum_{j=2}^{n} \langle f, f_j \rangle_{\pi} f_j,$$

and

$$Pf = \sum_{j=2}^{n} \langle f, f_j \rangle_{\pi} \lambda_j f_j,$$

so that

$$\frac{\langle f, Pf \rangle_{\pi}}{\langle f, f \rangle_{\pi}} = \frac{\sum_{i=2}^{n} \sum_{j=2}^{n} \langle f, f_i \rangle_{\pi} \langle f, f_j \rangle_{\pi} \lambda_j \langle f_i, f_j \rangle_{\pi}}{\sum_{j=2}^{n} \langle f, f_j \rangle_{\pi}^2} = \frac{\sum_{j=2}^{n} \langle f, f_j \rangle_{\pi}^2 \lambda_j}{\sum_{j=2}^{n} \langle f, f_j \rangle_{\pi}^2} \leq \lambda_2.$$

Taking $f = f_2$ achieves the supremum.

・ロト ・ 理 ト ・ ヨ ト ・

3

Dirichlet energy I

Note that

$$2\langle f, (I - P)f \rangle_{\pi}$$

$$= \sum_{x} \pi(x)f(x)^{2} + \sum_{y} \pi(y)f(y)^{2} - 2\sum_{x} \pi(x)f(x)f(y)P(x, y)$$

$$= \sum_{x,y} f(x)^{2}\pi(x)P(x, y) + \sum_{x,y} f(y)^{2}\pi(y)P(y, x) - 2\sum_{x} \pi(x)f(x)f(y)P(x, y)$$

$$= \sum_{x,y} f(x)^{2}\pi(x)P(x, y) + \sum_{x,y} f(y)^{2}\pi(x)P(x, y) - 2\sum_{x} \pi(x)f(x)f(y)P(x, y)$$

$$= 2\mathcal{E}(f)$$

where the *Dirichlet energy* is defined as (using $c(x, y) = \pi(x)P(x, y)$)

$$\mathcal{E}(f):=\frac{1}{2}\sum_{x,y}c(x,y)[f(x)-f(y)]^2.$$

イロン 不得 とくほ とくほ とうほ

Dirichlet energy II

We note further that if $\sum_{x} \pi(x) f(x) = 0$ then

$$\langle f, f \rangle_{\pi} = \langle f - \langle \mathbf{1}, f \rangle_{\pi}, f - \langle \mathbf{1}, f \rangle_{\pi} \rangle_{\pi} = \operatorname{Var}_{\pi}[f],$$

where the last expression denotes the variance under π . So the variational characterization of λ_2 translates into

$$\gamma \leq \frac{\mathcal{E}(f)}{\operatorname{Var}_{\pi}[f]} = \frac{\frac{1}{2} \sum_{x,y} c(x,y) [f(x) - f(y)]^2}{\operatorname{Var}_{\pi}[f]},$$

where $\gamma = 1 - \lambda_2$, for all *f* such that $\sum_x \pi(x)f(x) = 0$ (in fact for any *f* by considering $f - \langle \mathbf{1}, f \rangle_{\pi}$ and noticing that both numerator and denominator are unaffected by adding a constant).

Bottleneck ratio I

Let $\mathcal{N} = (G, c)$ be a finite or infinite network with G = (V, E). For a subset $S \subseteq V$, we let the *edge boundary* of *S* be

$$\partial_{\mathrm{E}} \mathcal{S} := \{ \boldsymbol{e} = (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{E} : \boldsymbol{x} \in \mathcal{S}, \boldsymbol{y} \in \mathcal{S}^{c} \}.$$

Let $g: E \to \mathbb{R}_+$ be an edge weight function. For $F \subseteq E$ we define

$$|F|_g := \sum_{e \in F} g(e).$$

For $S \subseteq V$, we let

$$\Phi_{\mathrm{E}}(\mathcal{S}; oldsymbol{g}, oldsymbol{h}) := rac{|\partial_{\mathrm{E}} \mathcal{S}|_{oldsymbol{g}}}{|oldsymbol{S}|_{oldsymbol{h}}}.$$

Bottleneck ratio II

For disjoint subsets $S_0, S_1 \subseteq V$, we let $c(S_0, S_1) := \sum_{x_0 \in S_0} \sum_{x_1 \in S_1} c(x_0, x_1)$.

Definition (Bottleneck ratio)

For a subset of states $S \subseteq V$, the *bottleneck ratio* of S is

$$\Phi_{\mathrm{E}}(\boldsymbol{S};\boldsymbol{c},\pi) = \frac{|\partial_{\mathrm{E}}\boldsymbol{S}|_{\boldsymbol{c}}}{|\boldsymbol{S}|_{\pi}} = \frac{\boldsymbol{c}(\boldsymbol{S},\boldsymbol{S}^{\boldsymbol{c}})}{\pi(\boldsymbol{S})}.$$

The bottleneck ratio of \mathcal{N} is

$$\Phi_* := \min\left\{ \Phi_{\mathrm{E}}(\mathcal{S}; \mathcal{c}, \pi) \ : \ \mathcal{S} \subseteq \mathcal{V}, \ \mathbf{0} < \pi(\mathcal{S}) \leq rac{1}{2}
ight\}$$

イロト イ理ト イヨト イヨト

A bottleneck

イロト イポト イヨト イヨト

э

Example: Clique

Example

Let $G = K_n$ be the clique on *n* vertices and assume c(x, y) = 1 for all $x \neq y$. For simplicity, take *n* even. Then for a subset *S* of size |S| = k,

$$\Phi_{\mathrm{E}}(\boldsymbol{S};\boldsymbol{c},\pi) = \frac{|\partial_{\mathrm{E}}\boldsymbol{S}|_{\boldsymbol{c}}}{|\boldsymbol{S}|_{\pi}} = \frac{k(n-k)}{k/n} = \frac{n-k}{n}$$

Thus, the minimum is achieved for k = n/2 and

$$\Phi_*=\frac{n-n/2}{n}=\frac{1}{2}.$$

Cheeger's inequality

Theorem (Spectral gap and the bottleneck ratio)

Let P be a finite, irreducible, reversible Markov transition matrix and let $\gamma = 1 - \lambda_2$ be the spectral gap of P. Then

$$\frac{\Phi_*^2}{2} \le \gamma \le 2\Phi_*.$$

In terms of the relaxation time $t_{rel} = \gamma^{-1}$, these inequalities have an intuitive meaning: the presence or absence of a strong bottleneck in the state space leads to slow or fast mixing respectively.

<ロト < 同ト < 回ト < 回ト = 三

1

Cheeger's inequality: Proof I

Proof: We only prove the upper bound. To get an upper bound on For $S \subseteq V$ with $\pi(S) \in (0, 1/2]$, we let

$$f_{\mathcal{S}}(\pmb{x}) := egin{cases} -\sqrt{rac{\pi(\mathcal{S}^c)}{\pi(\mathcal{S})}}, & \pmb{x} \in \pmb{S}, \ \sqrt{rac{\pi(\mathcal{S})}{\pi(\mathcal{S}^c)}}, & \pmb{x} \in \pmb{S}^c. \end{cases}$$

Then

$$\sum_{x} \pi(x) f_{\mathcal{S}}(x) = \pi(\mathcal{S}) \left[-\sqrt{\frac{\pi(\mathcal{S}^c)}{\pi(\mathcal{S})}} \right] + \pi(\mathcal{S}^c) \left[\sqrt{\frac{\pi(\mathcal{S})}{\pi(\mathcal{S}^c)}} \right] = 0,$$

and

$$\sum_{x} \pi(x) f_{\mathcal{S}}(x)^{2} = \pi(\mathcal{S}) \left[-\sqrt{\frac{\pi(\mathcal{S}^{c})}{\pi(\mathcal{S})}} \right]^{2} + \pi(\mathcal{S}^{c}) \left[\sqrt{\frac{\pi(\mathcal{S})}{\pi(\mathcal{S}^{c})}} \right]^{2} = 1$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Cheeger's inequality: Proof II

Proof (continued): From the variational characterization,

$$\begin{split} \gamma &\leq \frac{\mathcal{E}(f_{S})}{\operatorname{Var}_{\pi}[f_{S}]} = \mathcal{E}(f_{S}) \\ &= \frac{1}{2} \sum_{x,y} c(x,y) [f_{S}(x) - f_{S}(y)]^{2} = \sum_{x \in S, y \in S^{c}} c(x,y) \left[\sqrt{\frac{\pi(S^{c})}{\pi(S)}} + \sqrt{\frac{\pi(S)}{\pi(S^{c})}} \right]^{2} \\ &= \frac{c(S,S^{c})}{\pi(S)\pi(S^{c})} \leq 2 \frac{c(S,S^{c})}{\pi(S)}. \end{split}$$

Example: Cycle I

Let (Z_t) be lazy random walk on the *n*-cycle. Assume *n* is even. Consider a subset of vertices *S*. Note by symmetry $\pi(S) = \frac{|S|}{n}$. Moreover, for all $i \sim j$, $c(i,j) = \pi(i)P(i,j) = \frac{1}{n} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4n}$. Among all sets of size |S|, consecutive vertices minimize the size of the boundary. So

$$\Phi_* \leq rac{2rac{1}{4n}}{rac{\ell}{n}} = rac{1}{2\ell},$$

for all $\ell \leq n/2$. This expression is minimized for $\ell = n/2$ so

$$\Phi_* = \frac{1}{n}$$

Example: Cycle II

By Cheeger's inequality,

$$\frac{1}{2n^2} = \frac{\Phi_*^2}{2} \le \gamma \le 2\Phi_* = \frac{2}{n}$$

and

$$\frac{n}{2} \leq t_{\rm rel} = \gamma^{-1} \leq 2n^2.$$

Thus

$$t_{mix}(\varepsilon) \ge (t_{rel} - 1) \log \left(rac{1}{2 \varepsilon}
ight) = \Omega(n),$$

and

$$t_{\min}(\varepsilon) \leq \log\left(\frac{1}{\varepsilon\pi_{\min}}\right) t_{\mathrm{rel}} = O(n^2 \log n).$$

イロト 不得 とくほと くほとう

3

Review of Markov chains

Bounding the mixing time via the spectral gap

Bottleneck ratio and Cheeger's inequality

Application: Gibbs sampling at low temperature

Background I

Let G = (V, E) be a connected graph and $\mathcal{X} := \{-1, +1\}^V$. Recall that the (ferromagnetic) Ising model on V with *inverse temperature* β is the probability distribution over *spin configurations* $\sigma \in \mathcal{X}$ given by

$$\mu_{\beta}(\sigma) := \frac{1}{\mathcal{Z}(\beta)} e^{-\beta \mathcal{H}(\sigma)},$$

where

$$\mathcal{H}(\sigma) := -\sum_{i\sim j} \sigma_i \sigma_j,$$

is the Hamiltonian and $\mathcal{Z}(\beta) := \sum_{\sigma \in \mathcal{X}} e^{-\beta \mathcal{H}(\sigma)}$.

Background II

The single-site Glauber dynamics of the Ising model is the Markov chain on \mathcal{X} which, at each time, selects a site $i \in V$ uniformly at random and updates the spin σ_i according to $\mu_\beta(\sigma)$ conditioned on agreeing with σ at all sites in $V \setminus \{i\}$. Specifically, for $\gamma \in \{-1, +1\}, i \in V$, and $\sigma \in \mathcal{X}$, let $\sigma^{i,\gamma}$ be the configuration σ with the state at *i* being set to γ . The transition matrix is

$$Q_{\beta}(\sigma,\sigma^{i,\gamma}) := \frac{1}{n} \cdot \frac{e^{\gamma\beta S_i(\sigma)}}{e^{-\beta S_i(\sigma)} + e^{\beta S_i(\sigma)}} = \frac{1}{n} \left\{ \frac{1}{2} + \frac{1}{2} \tanh(\gamma\beta S_i(\sigma)) \right\},$$

where

$$S_i(\sigma) := \sum_{j \sim i} \sigma_j.$$

All other transitions have probability 0.

イロト イ理ト イヨト イヨト

Curie-Weiss model I

Let $G = K_n$ be the complete graph on *n* vertices. In this case, the Ising model is often referred to as the *Curie-Weiss model*. It is customary to scale β with *n*. We define $\alpha := \beta(n-1)$.

Theorem (Curie-Weiss model: slow mixing at low temperature)

For $\alpha > 1$, $t_{mix}(\varepsilon) = \Omega(\exp(r(\alpha)n))$ for some function $r(\alpha) > 0$ not depending on n.

ヘロン 人間 とくほ とくほ とう

Curie-Weiss model II

Proof: We only prove exponential mixing when α is large enough. The idea of the proof is to bound the bottleneck ratio. To simplify the proof, assume *n* is odd. We denote the bottleneck ratio of the chain by $\Phi_*^{\mathcal{X}}$ to avoid confusion with the base graph *G*. Intuitively, because the spins tend to align strongly at low temperature, it takes a considerable amount of time to travel from a configuration with a majority of -1s to a configuration with a majority of +1s. A natural place to look for a bottleneck is the set

$$S := \left\{ \sigma \in \mathcal{X} \, : \, \sum_i \sigma_i < \mathbf{0} \right\},$$

where the quantity $m(\sigma) := \sum_{i} \sigma_{i}$ is the *magnetization*.

A bottleneck

イロト イポト イヨト イヨト

э

Curie-Weiss model III

Proof (continued): Note that the magnetization is positive if and only if a majority of spins are +1. Observe further that $\mu_{\beta}(S) = 1/2$ by symmetry. The bottleneck ratio is hence bounded by

$$\Phi^{\mathcal{X}}_* \leq \frac{\sum_{\sigma \in \mathcal{S}, \sigma' \notin \mathcal{S}} \mu_{\beta}(\sigma) \mathcal{Q}_{\beta}(\sigma, \sigma')}{\mu_{\beta}(\mathcal{S})} = 2 \sum_{\sigma \in \mathcal{S}, \sigma' \notin \mathcal{S}} \mu_{\beta}(\sigma) \mathcal{Q}_{\beta}(\sigma, \sigma').$$

Because the Glauber dynamics changes a single spin at a time, in order for $\sigma \in S$ to be adjacent to a configuration $\sigma' \notin S$, it must be that

$$\sigma \in \boldsymbol{S}_{-1} := \left\{ \sigma \in \mathcal{X} : \boldsymbol{m}(\sigma) = -1 \right\},$$

and that $\sigma' = \sigma^{i,+}$ for some site *i* such that

$$i \in M_{\sigma} := \{i \in V : \sigma_i = -1\}.$$

Curie-Weiss model IV

Proof (continued): Because the number of such sites is (n + 1)/2 on S_{-1} , that is, $|M_{\sigma}| = (n + 1)/2$ for all $\sigma \in S_{-1}$, and the Glauber dynamics picks a site uniformly at random, it follows that for $\sigma \in S_{-1}$

$$\sum_{\sigma' \notin S} \mathcal{Q}_{eta}(\sigma,\sigma') \leq rac{(n+1)/2}{n} = rac{1}{2} \left(1+rac{1}{n}
ight).$$

Thus plugging this back

$$\begin{split} \Phi_*^{\mathcal{X}} &\leq 2\sum_{\sigma \in S, \sigma' \notin S} \mu_\beta(\sigma) \mathcal{Q}_\beta(\sigma, \sigma') \\ &\leq \left(1 + \frac{1}{n}\right) \mu_\beta(S_{-1}) = (1 + o(1)) \sum_{\sigma \in S_{-1}} \frac{e^{-\beta \mathcal{H}(\sigma)}}{\mathcal{Z}(\beta)} \\ &= (1 + o(1)) \sum_{\sigma \in S_{-1}} \frac{\exp\left(\frac{\alpha}{n-1} \left[\binom{|M_\sigma|}{2} + \binom{|M_\sigma^c|}{2} - |M_\sigma||M_\sigma^c|\right]\right)}{\mathcal{Z}(\beta)}. \end{split}$$

Curie-Weiss model V

Proof (continued): We bound $\mathcal{Z}(\beta) = \sum_{\sigma \in \mathcal{X}} e^{-\beta \mathcal{H}(\sigma)}$ with the all-(-1) term

$$\begin{split} \Phi^{\mathcal{X}}_* &\leq (1+o(1)) \sum_{\sigma \in S_{-1}} \frac{\exp\left(\frac{\alpha}{n-1} \left[\binom{|M_{\sigma}|}{2} + \binom{|M_{\sigma}^c|}{2} - |M_{\sigma}||M_{\sigma}^c|\right]\right)}{\exp\left(\frac{\alpha}{n-1} \left[\binom{|M_{\sigma}|}{2} + \binom{|M_{\sigma}^c|}{2} + |M_{\sigma}||M_{\sigma}^c|\right]\right)} \\ &= (1+o(1)) \sum_{\sigma \in S_{-1}} \exp\left(-\frac{2\alpha}{n-1}|M_{\sigma}||M_{\sigma}^c|\right) \\ &= (1+o(1)) \binom{n}{n/2} \exp\left(-\frac{2\alpha}{n-1} \left[\frac{n+1}{2}\right] \left[\frac{n-1}{2}\right]\right) \\ &= (1+o(1)) \sqrt{\frac{2}{\pi n}} 2^n (1+o(1)) \exp\left(-\frac{\alpha(n+1)}{2}\right) \\ &= C_{\alpha} \sqrt{\frac{2}{\pi n}} \exp\left(-n \left[\frac{\alpha}{2} - \ln 2\right]\right), \end{split}$$

for some constant $C_{\alpha} > 0$ depending on α .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●
Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

Curie-Weiss model VI

Proof (continued): Hence, by Cheeger's inequality, for $\alpha > 2 \ln 2$ there is $r(\alpha) > 0$

$$t_{\min}(\varepsilon) \ge (t_{rel} - 1) \log\left(\frac{1}{2\varepsilon}\right) \ge \exp(r(\alpha)n) \log\left(\frac{1}{2\varepsilon}\right).$$

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロン 不得 とくほ とくほ とうほ

Review of Markov chains Bounding the mixing time via the spectral gap Bottleneck ratio and Cheeger's inequality Application: Gibbs sampling at low temperature

More details and examples on spectral techniques at:

http://www.math.wisc.edu/~roch/mdp/

For more on mixing times in general, see e.g. (available online):

- Markov Chains and Mixing Times by Levin, Peres and Wilmer
- *Reversible Markov Chains and Random Walks on Graphs* by Aldous and Fill

ヘロト ヘアト ヘビト ヘビト

Probability on Graphs: Techniques and Applications to Data Science

4 - Coupling

Sébastien Roch UW-Madison Mathematics

July 26, 2018

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

- 2 Couplings of Markov chains
- 3 Path coupling
- 4 Back to the application: Gibbs sampling at high temperature

イロト 不得 とくほ とくほとう

ъ

Definition

Let μ and ν be probability measures on the same measurable space (*S*, *S*). A *coupling* of μ and ν is a probability measure γ on the product space ($S \times S, S \times S$) such that the *marginals* of γ coincide with μ and ν , i.e.,

$$\gamma(A \times S) = \mu(A)$$
 and $\gamma(S \times A) = \nu(A)$, $\forall A \in S$.

ヘロン 人間 とくほ とくほ とう

Examples

Example (Bernoulli variables)

Let *X* and *Y* be Bernoulli random variables with parameters $0 \le q < r \le 1$ respectively. That is, $\mathbb{P}[X = 0] = 1 - q$ and $\mathbb{P}[X = 1] = q$, and similarly for *Y*. Here $S = \{0, 1\}$ and $S = 2^{S}$.

- (Independent coupling) One coupling of X and Y is (X', Y') where $X' \stackrel{d}{=} X$ and $Y' \stackrel{d}{=} Y$ are independent. Its law is

$$\left(\mathbb{P}[(X',Y')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix} (1-q)(1-r)&(1-q)r\\q(1-r)&qr \end{pmatrix}.$$

(Monotone coupling) Another possibility is to pick U uniformly at random in [0, 1], and set X'' = 1{U≤q} and Y'' = 1{U≤r}. The law of coupling (X'', Y'') is

$$\left(\mathbb{P}[(X'',Y'')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}1-r&r-q\\0&q\end{pmatrix}$$

Coupling inequality I

Let μ and ν be probability measures on (S, S). Recall the definition of total variation distance:

$$\|\mu-
u\|_{\mathrm{TV}} := \sup_{\mathcal{A}\in\mathcal{S}} |\mu(\mathcal{A})-
u(\mathcal{A})| = \frac{1}{2} \sum_{x\in\mathcal{S}} |\mu(x)-
u(x)|.$$

Lemma

Let μ and ν be probability measures on (S, S). For any coupling (X, Y) of μ and ν ,

$$\|\mu - \nu\|_{\mathrm{TV}} \leq \mathbb{P}[X \neq Y].$$

ヘロン 人間 とくほ とくほ とう

3

Coupling inequality II

Proof:

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

= $\mathbb{P}[X \in A, X = Y] + \mathbb{P}[X \in A, X \neq Y]$
- $\mathbb{P}[Y \in A, X = Y] - \mathbb{P}[Y \in A, X \neq Y]$
= $\mathbb{P}[X \in A, X \neq Y] - \mathbb{P}[Y \in A, X \neq Y]$
 $\leq \mathbb{P}[X \neq Y],$

and, similarly, $\nu(A) - \mu(A) \le \mathbb{P}[X \ne Y]$. Hence $|\mu(A) - \nu(A)| \le \mathbb{P}[X \ne Y]$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Maximal coupling

In fact, the inequality is tight.

Lemma

Assume S is finite and let $S = 2^S$. Let μ and ν be probability measures on (S, S). Then,

 $\|\mu - \nu\|_{\mathrm{TV}} = \inf\{\mathbb{P}[X \neq Y] : \text{coupling}(X, Y) \text{ of } \mu \text{ and } \nu\}.$

イロト イポト イヨト イヨト 一臣

Maximal coupling by picture

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Example: Bernoullis

Example (Bernoulli variables, continued)

Let X and Y be Bernoulli random variables with parameters $0 \le q < r \le 1$ respectively.Let μ and ν be the laws of X and Y respectively. To construct the maximal coupling as above, we note that

$$p := \sum_{x} \mu(x) \wedge \nu(x) = (1-r) + q, \qquad 1-p = \alpha = \beta := r-q,$$

$$A := \{0\}, \qquad B := \{1\},$$

$$(\gamma_{\min}(x))_{x=0,1} = \left(\frac{1-r}{(1-r)+q}, \frac{q}{(1-r)+q}\right), \qquad \gamma_A(0) := 1, \qquad \gamma_B(1) := 1.$$

The law of the maximal coupling (X''', Y''') is

$$\left(\mathbb{P}[(X''',Y''')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}1-r&r-q\\0&q\end{pmatrix},$$

which coincides with the monotone coupling.

2 Couplings of Markov chains

4 Back to the application: Gibbs sampling at high temperature

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

ヘロト ヘワト ヘビト ヘビト

э

Bounding the mixing time via coupling I

Let *P* be an irreducible, aperiodic transition matrix on *V* with stationary distribution π . Recall that, for a fixed $0 < \varepsilon < 1/2$, the mixing time of *P* is

$$\mathbf{t}_{\min}(\varepsilon) := \min\{t : d(t) \le \varepsilon\},\$$

where

$$d(t) := \max_{x \in V} \| P^t(x, \cdot) - \pi \|_{\mathrm{TV}}.$$

It will be easier to work with

$$\bar{d}(t) := \max_{x,y \in V} \| \mathcal{P}^t(x,\cdot) - \mathcal{P}^t(y,\cdot) \|_{\mathrm{TV}},$$

which satisfies $d(t) \leq \overline{d}(t) \leq 2d(t)$.

ヘロト 人間 ト ヘヨト ヘヨト

Bounding the mixing time via coupling II

Definition (Markovian coupling)

A *Markovian coupling* of *P* is a Markov chain $(X_t, Y_t)_t$ on $V \times V$ with transition matrix *Q* satisfying:

- For all
$$x, y, x', y' \in V$$
,

$$\sum_{z'} Q((x, y), (x', z')) = P(x, x'),$$

$$\sum_{z'} Q((x, y), (z', y')) = P(y, y').$$

We say that a Markovian coupling is *coalescing* if further:

- For all $z \in V$, $x' \neq y' \implies Q((z,z),(x',y')) = 0.$

イロト イポト イヨト イヨト

э

Bounding the mixing time via coupling III

Let (X_t, Y_t) be a coalescing Markovian coupling of P. By the coalescing condition, if $X_s = Y_s$ then $X_t = Y_t$ for all $t \ge s$. That is, once (X_t) and (Y_t) meet, they remain equal. Let τ_{coal} be the *coalescence time* (also called coupling time), i.e.,

$$\tau_{\text{coal}} := \inf\{t \ge \mathbf{0} : X_t = Y_t\}.$$

The key to the coupling approach to mixing times is the following immediate consequence of the coupling inequality. For any starting point (x, y),

$$\| \mathcal{P}^t(x,\cdot) - \mathcal{P}^t(y,\cdot) \|_{\mathrm{TV}} \leq \mathbb{P}_{(x,y)}[X_t
eq Y_t] = \mathbb{P}_{(x,y)}[au_{\mathrm{coal}} > t].$$

<ロト < 同ト < 回ト < 回ト = 三

Bounding the mixing time via coupling IV

Theorem (Bounding the mixing time: coupling method)

Let (X_t, Y_t) be a coalescing Markovian coupling of an irreducible transition matrix P on a finite state space V with stationary distribution π . Then

$$d(t) \leq \max_{x,y \in V} \mathbb{P}_{(x,y)}[\tau_{\text{coal}} > t].$$

In particular

$$\operatorname{t_{mix}}(\varepsilon) \leq \inf \left\{ t \geq \mathsf{0} \, : \, \mathbb{P}_{(x,y)}[au_{\operatorname{coal}} > t] \leq \varepsilon, \, \forall x, y \right\}.$$

ヘロト ヘアト ヘビト ヘビト

3

Example: Hypercube I

Let (Z_t) be lazy random walk on the *n*-dimensional hypercube $\mathbb{Z}_2^n := \{0, 1\}^n$ where $i \sim j$ if $||i - j||_1 = 1$. We denote the coordinates of Z_t by $(Z_t^{(1)}, \ldots, Z_t^{(n)})$. The coupling (X_t, Y_t) started at (x, y) is the following:

At each time *t*, pick a coordinate *i* uniformly at random in [*n*], pick a bit value *b* in {0, 1} uniformly at random independently of the coordinate choice.

• Set both *i* coordinates to *b*, i.e., $X_t^{(i)} = Y_t^{(i)} = b$.

Clearly the chains coalesce when all coordinates have been updated at least once.

イロト 不得 とくほ とくほ とうほ

Example: Hypercube II

Lemma (Coupon collecting)

Let τ_{coll} be the time it takes to update each coordinate at least once. Then, for any c > 0,

$$\mathbb{P}\left[\tau_{\text{coll}} > \left\lceil n \log n + cn \right\rceil\right] \le e^{-c}.$$

Proof: Let B_i be the event that the *i*-th coordinate has not been updated by time $\lceil n \log n + cn \rceil$. Then

$$\mathbb{P}[\tau_{\text{coll}} > \lceil n \log n + cn \rceil] \leq \sum_{i} \mathbb{P}[B_{i}] = \sum_{i} \left(1 - \frac{1}{n}\right)^{\lceil n \log n + cn \rceil}$$
$$\leq n \exp\left(-\frac{n \log n + cn}{n}\right) = e^{-c}.$$

ヘロト ヘアト ヘビト ヘビト

Example: Hypercube III

Applying the coupling bound, we get

$$egin{aligned} d(\lceil n\log n+cn \rceil) &\leq \max_{x,y\in V} \mathbb{P}_{(x,y)}[au_{ ext{coal}}>\lceil n\log n+cn \rceil] \ &\leq \mathbb{P}[au_{ ext{coll}}>\lceil n\log n+cn \rceil] \ &\leq e^{-c}. \end{aligned}$$

Hence for $c := c_{\varepsilon} > 0$ large enough:

 $\mathsf{t}_{\min}(\varepsilon) \leq \lceil n \log n + c_{\varepsilon} n \rceil.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2 Couplings of Markov chains

Back to the application: Gibbs sampling at high temperature

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

э

Back to the application: Gibbs sampling at high temperature

Path coupling method I

Path coupling is a method for constructing Markovian couplings from "simpler" couplings. The building blocks are one-step couplings starting from pairs of initial states that are close in some dissimilarity graph. Let (X_t) be an irreducible Markov chain on a finite state space V with transition matrix P and stationary distribution π . Assume that we are given a *dissimilarity graph* $H_0 = (V_0, E_0)$ on $V_0 := V$ with edge weights $w_0 : E_0 \to \mathbb{R}_+$. This graph need not have the same edges as the transition graph of (X_t) . We extend w_0 to the *path metric*

$$w_0(x,y) := \inf \left\{ \sum_{i=0}^{m-1} w_0(x_i, x_{i+1}) : x = x_0, \dots, x_m = y \text{ is a path in } H_0
ight\},$$

where the infimum is over all paths connecting x and y in H_0 . We call a path achieving the infimum a *minimum-weight path*. Let

$$\Delta_0:=\max_{x,y}w_0(x,y),$$

be the weighted diameter of H_0 .

<ロト < 同ト < 回ト < 回ト = 三

Definitions and basic properties Couplings of Markov chains Path coupling

Back to the application: Gibbs sampling at high temperature

Path coupling method II

Theorem (Path coupling method)

Assume that $w_0(u, v) \ge 1$, for all $\{u, v\} \in E_0$. Assume further that there exists $\kappa \in (0, 1)$ such that:

- For all x, y with $\{x, y\} \in E_0$, there is a coupling (X^*, Y^*) of $P(x, \cdot)$ and $P(y, \cdot)$ satisfying the contraction property

$$\mathbb{E}[w_0(X^*, Y^*)] \leq \kappa w_0(x, y).$$

Then

$$d(t) \leq \Delta_0 \, \kappa^t,$$

or

$$t_{\min}(\varepsilon) \leq \left\lceil \frac{\log \Delta_0 + \log \varepsilon^{-1}}{\log \kappa^{-1}}
ight
ceil$$

.

Back to the application: Gibbs sampling at high temperature

Path coupling method III

Proof: The crux of the proof is to extend the contraction property to arbitrary pairs of vertices.

Lemma (Global coupling)

For all $x, y \in V$, there is a coupling (X^*, Y^*) of $P(x, \cdot)$ and $P(y, \cdot)$ such that the contraction property holds.

Iterating the coupling in this claim immediately implies the existence of a coalescing Markovian coupling (X_t, Y_t) of *P* such that

$$\begin{split} \mathbb{E}_{(x,y)}[w_0(X_t, Y_t)] &= \mathbb{E}_{(x,y)} \left[\mathbb{E}[w_0(X_t, Y_t) \mid X_{t-1}, Y_{t-1}] \right] \\ &\leq \mathbb{E}_{(x,y)} \left[\kappa \, w_0(X_{t-1}, Y_{t-1}) \right] \leq \cdots \leq \kappa^t \, \mathbb{E}_{(x,y)}[w_0(X_0, Y_0)] \\ &= \kappa^t \, w_0(x, y) \leq \kappa^t \, \Delta_0. \end{split}$$

By assumption, $\mathbf{1}_{\{x \neq y\}} \leq w_0(x, y)$ so that by the coupling inequality

$$d(t) \leq \bar{d}(t) \leq \max_{x,y} \mathbb{P}_{(x,y)}[X_t \neq Y_t] \leq \max_{x,y} \mathbb{E}_{(x,y)}[w_0(X_t, Y_t)] \leq \kappa^t \Delta_0,$$

which implies the theorem.

Definitions and basic properties Couplings of Markov chains

Path coupling

Back to the application: Gibbs sampling at high temperature

Global coupling lemma: proof by picture

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

æ

Definitions and basic properties

2 Couplings of Markov chains

Back to the application: Gibbs sampling at high temperature

イロト 不得 とくほと くほとう

ъ

Setup I

Let G = (V, E) be a finite, connected graph with maximum degree $\overline{\delta}$. Define $\mathcal{X} := \{-1, +1\}^V$. Recall that the (ferromagnetic) Ising model on V with *inverse temperature* β is the probability distribution over *spin configurations* $\sigma \in \mathcal{X}$ given by

$$\mu_eta(\sigma) := rac{1}{\mathcal{Z}(eta)} oldsymbol{e}^{-eta \mathcal{H}(\sigma)},$$

where

$$\mathcal{H}(\sigma) := -\sum_{i\sim j} \sigma_i \sigma_j,$$

is the Hamiltonian and $\mathcal{Z}(\beta) := \sum_{\sigma \in \mathcal{X}} e^{-\beta \mathcal{H}(\sigma)}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Setup II

The single-site Glauber dynamics of the Ising model is the Markov chain on \mathcal{X} which, at each time, selects a site $i \in V$ uniformly at random and updates the spin σ_i according to $\mu_\beta(\sigma)$ conditioned on agreeing with σ at all sites in $V \setminus \{i\}$. Specifically, for $\gamma \in \{-1, +1\}, i \in V$, and $\sigma \in \mathcal{X}$, let $\sigma^{i,\gamma}$ be the configuration σ with the state at *i* being set to γ . Then the transition matrix is

$$Q_{\beta}(\sigma,\sigma^{i,\gamma}) := \frac{1}{n} \cdot \frac{e^{\gamma\beta S_i(\sigma)}}{e^{-\beta S_i(\sigma)} + e^{\beta S_i(\sigma)}} = \frac{1}{n} \left\{ \frac{1}{2} + \frac{1}{2} \tanh(\gamma\beta S_i(\sigma)) \right\},$$

where

$$S_i(\sigma) := \sum_{j \sim i} \sigma_j.$$

All other transitions have probability 0. Recall that this chain is irreducible and reversible with respect to μ_{β} .

Fast mixing at high temperature I

We show that the Glauber dynamics of the Ising model is fast mixing when the inverse temperature β is small enough as a function of the maximum degree.

Theorem (Glauber dynamics: fast mixing at high temperature)

If
$$\beta < \overline{\delta}^{-1}$$
 then $\implies t_{\min}(\varepsilon) = O(n \log n)$.

Proof: We use path coupling. Let $H_0 = (V_0, E_0)$ where $V_0 := \mathcal{X}$ and $\{\sigma, \omega\} \in E_0$ if $\frac{1}{2} \|\sigma - \omega\|_1 = 1$ with unit w_0 -weights on all edges. (To avoid confusion, we reserve the notation \sim for adjacency in *G*.) Let $\{\sigma, \omega\} \in E_0$ differ at coordinate *i*.

イロト イポト イヨト イヨト 一臣

Definitions and basic properties Couplings of Markov chains Path coupling

Back to the application: Gibbs sampling at high temperature

Fast mixing at high temperature II

Proof (continued): We construct a coupling (X^*, Y^*) of $Q_\beta(\sigma, \cdot)$ and $Q_\beta(\omega, \cdot)$. We first pick the same coordinate i_* to update. If i_* is such that all its neighbors in *G* have the same state in σ and ω , i.e., if $\sigma_j = \omega_j$ for all $j \sim i_*$, we update X^* from σ according to the Glauber rule and set $Y^* := X^*$. Note that this includes the case $i_* = i$. Otherwise, i.e. if $i_* \sim i$, we proceed as follows. From the state σ , the probability of updating site i_* to state $\gamma \in \{-1, +1\}$ is given by $\frac{1}{2} + \frac{1}{2} \tanh(\gamma \beta S_i(\sigma))$, and similarly for ω . Unlike the previous case, we cannot guarantee that the update is identical in both chains. To minimize the chance of increasing the distance between the two chains, we perform a maximal coupling of Bernoullis: we pick a uniform-[-1, 1] variable U and set

$$X_{i_*}^* := egin{cases} +1, & ext{if } U \leq ext{tanh}(eta S_{i_*}(\sigma)) \ -1, & ext{o.w.} \end{cases}$$

and

$$Y_{i_*}^* := \begin{cases} +1, & \text{if } U \leq \tanh(\beta S_{i_*}(\omega)) \\ -1, & \text{o.w.} \end{cases}$$

ヘロト 人間 ト ヘヨト ヘヨト

Fast mixing at high temperature III

Proof (continued): We set $X_j^* := \sigma_j$ and $Y_j^* := \omega_j$ for all $j \neq i^*$. The expected distance between X^* and Y^* is then

$$\mathbb{E}[w_0(X^*, Y^*)] = 1 - \underbrace{\frac{1}{n}}_{(a)} + \underbrace{\frac{1}{n} \sum_{j \sim i} \frac{1}{2} |\operatorname{tanh}(\beta S_j(\sigma)) - \operatorname{tanh}(\beta S_j(\omega))|}_{(b)},$$

where (a) corresponds to $i_* = i$ in which case $w_0(X^*, Y^*) = 0$ and (b) corresponds to $i_* \sim i$ in which case $w_0(X^*, Y^*) = 2$ with probability $\frac{1}{2} |\tanh(\beta S_{i_*}(\sigma)) - \tanh(\beta S_{i_*}(\omega))|$ by our coupling, and $w_0(X^*, Y^*) = 1$ otherwise. To bound (b), we note that for $j \sim i$

$$|\tanh(\beta S_j(\sigma)) - \tanh(\beta S_j(\omega))| = \tanh(\beta (s+2)) - \tanh(\beta s),$$

where $s := S_j(\sigma) \wedge S_j(\omega)$. The derivative of tanh is maximized at 0 where it is equal to 1. So the r.h.s. above is $\leq 2\beta$.

イロン 不得 とくほ とくほ とうほ

Fast mixing at high temperature IV

Proof (continued): Plugging this back above we get

$$\mathbb{E}[w_0(X^*, Y^*)] \leq 1 - \frac{1 - \bar{\delta}\beta}{n} \leq \exp\left(-\frac{1 - \bar{\delta}\beta}{n}\right) = \kappa \, w_0(\sigma, \omega),$$

where

$$\kappa := \exp\left(-rac{1-ar{\delta}eta}{n}
ight) < 1,$$

by assumption. The diameter of H_0 is $\Delta_0 = n$. By the path coupling theorem,

$$\mathbf{t}_{\mathrm{mix}}(\varepsilon) \leq \left\lceil \frac{\log \Delta_0 + \log \varepsilon^{-1}}{\log \kappa^{-1}} \right\rceil = \left\lceil \frac{n(\log n + \log \varepsilon^{-1})}{1 - \bar{\delta}\beta} \right\rceil,$$

which implies the claim.

イロト イポト イヨト イヨト 一臣

More details and examples on coupling at:

http://www.math.wisc.edu/~roch/mdp/

For more on mixing times in general, see e.g. (available online):

- Markov Chains and Mixing Times by Levin, Peres and Wilmer
- *Reversible Markov Chains and Random Walks on Graphs* by Aldous and Fill

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Probability on Graphs: Techniques and Applications to Data Science

5 - Correlation decay

Sébastien Roch UW-Madison Mathematics

July 26, 2018

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications

イロト イポト イヨト イヨト

2 Application: Reconstructing Markov random fields

ヘロン ヘアン ヘビン ヘビン

ъ

Correlation decay Application: Reconstructing Markov random fields

An undirected graphical model

★ E > ★ E >

< < >> < </>

ъ

Recall: Ising model

Let G = (V, E) be a finite, connected graph with maximum degree $\overline{\delta} = d$. Define $\mathcal{X} := A^V$ where $A = \{-1, +1\}$. Recall that the (ferromagnetic) Ising model on *V* with *inverse temperature* β is the probability distribution over *spin configurations* $\sigma \in \mathcal{X}$ given by

$$\mu_{\beta}(\sigma) := \frac{1}{\mathcal{Z}(\beta)} \boldsymbol{e}^{-\beta \mathcal{H}(\sigma)},$$

where

$$\mathcal{H}(\sigma) := -\sum_{i\sim j} \sigma_i \sigma_j,$$

is the Hamiltonian and $\mathcal{Z}(\beta) := \sum_{\sigma \in \mathcal{X}} e^{-\beta \mathcal{H}(\sigma)}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ
Correlation decay

Spatial mixing: How much does the state at one vertex "influence" the state at a vertex far away?

There are many ways to measure this. Let $X \sim \mu_{\beta}$ on G = (V, E). For $u, v \in V$, define

$$d_C(u,v) = \sum_{x_u, x_v \in S} |\mathbb{P}[X_u = x_u, X_v = x_v] - \mathbb{P}[X_u = x_u]\mathbb{P}[X_v = x_v]|$$

It can be shown in some cases that, when β is large enough, the measure above decays exponentially with the graph distance. Such a statement can be useful to analyze the behavior of Ising models. This is easier seen on an example.

ヘロト 人間 とくほ とくほ とう

2 Application: Reconstructing Markov random fields

・ロト ・ 理 ト ・ ヨ ト ・

3

Structure learning

Problem: Let $X^{(1)}, \ldots, X^{(k)}$ be i.i.d. $\sim \mu_{\beta}$ on an unknown graph G = (V, E) with maximal degree $\overline{\delta} = d$. How to recover *G* from the samples $X^{(1)}, \ldots, X^{(k)}$?

イロト イポト イヨト イヨト 三日

Bresler et al. (2013)

SIAM J. COMPUT. Vol. 42, No. 2, pp. 563-578 © 2013 Society for Industrial and Applied Mathematics

イロト イポト イヨト イヨト

RECONSTRUCTION OF MARKOV RANDOM FIELDS FROM SAMPLES: SOME OBSERVATIONS AND ALGORITHMS*

GUY BRESLER[†], ELCHANAN MOSSEL[‡], AND ALLAN SLY[§]

Abstract. Markov random fields are used to model high dimensional distributions in a number of applied areas. Much recent interest has been devoted to the reconstruction of the dependency structure from independent samples from the Markov random fields. We analyze a simple algorithm for reconstructing the underlying graph defining a Markov random field on n nodes and maximum degree d given observations. We show that under mild nondegeneracy conditions it reconstructs the generating graph with high probability using $\Theta(de^{-2}\delta^{-4} \log n)$ samples, where ϵ, δ depend on the local interactions. For most local interactions ϵ, δ are of order $\exp(-O(d))$. Our results are optimal as a function of n up to a multiplicative constant depending on d and the strength of the local interactions. Our results seem to be the first results for general models that guarantee that the generating model is reconstructed. Furthermore, we provide explicit $O(n^{d+2}\epsilon^{-2}\delta^{-4} \log n)$ runningtime bound. In cases where the measure on the graph has correlation decay, the running time is long as the noise level is low, our algorithm is effective. On the other hand, we construct an example where large noise implies nonidentifiability even for generic noise and interactions. Furthermole, works can also be recovered.

Recall: Gibbs sampling

The single-site Glauber dynamics of the Ising model is the Markov chain on \mathcal{X} which, at each time, selects a site $i \in V$ uniformly at random and updates the spin σ_i according to $\mu_\beta(\sigma)$ conditioned on agreeing with σ at all sites in $V \setminus \{i\}$. Specifically, for $\gamma \in \{-1, +1\}$, $i \in V$, and $\sigma \in \mathcal{X}$, let $\sigma^{i,\gamma}$ be the configuration σ with the state at *i* being set to γ . Then the transition matrix is

$$Q_{\beta}(\sigma,\sigma^{i,\gamma}) := \frac{1}{n} \cdot \frac{e^{\gamma\beta S_i(\sigma)}}{e^{-\beta S_i(\sigma)} + e^{\beta S_i(\sigma)}} = \frac{1}{n} \left\{ \frac{1}{2} + \frac{1}{2} \tanh(\gamma\beta S_i(\sigma)) \right\},$$

where

$$S_i(\sigma) := \sum_{j \sim i} \sigma_j.$$

All other transitions have probability 0. Recall that this chain is irreducible and reversible with respect to μ_{β} .

A D b 4 A b

Markov property

Let $X \sim \mu_{\beta}$ on G = (V, E). Then X satisfies the following.

DEFINITION 1. On a graph G = (V, E), a Markov random field is a distribution X taking values in \mathcal{A}^V for some finite set \mathcal{A} with $|\mathcal{A}| = A$, which satisfies the Markov property

(1) P(X(W), X(U)|X(S)) = P(X(W)|X(S))P(X(U)|X(S))

when W, U, and S are disjoint subsets of V such that every path in G from W to U passes through S and where X(U) denotes the restriction of X from \mathcal{A}^V to \mathcal{A}^U for $U \subset V$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

One of BMS's Main Results

THEOREM 3. For an assignment $x_U = (x_{u_1}, \ldots, x_{u_l})$ and $y \in \mathcal{A}$, define

$$x_U^i(y) = (x_{u_1}, \dots, y, \dots, x_{u_l})$$

to be the assignment obtained from x_U by replacing the *i*th element by *y*. Suppose there exist $\epsilon, \delta > 0$ such that the following condition holds: for all $v \in V$, if $N(v) = \{u_1, \ldots, u_l\}$, then for each $i, 1 \leq i \leq l$, and for any set $W \subset V - (\{v\} \cup N(v))$ with $|W| \leq d$, there exist values $x_v, x_{u_1}, \ldots, x_{u_i}, ..., x_{u_l}, y \in \mathcal{A}$, and $x_W \in \mathcal{A}^{|W|}$ such that

(16)
$$\begin{aligned} & \left| P(X(v) = x_v | X(N(v)) = x_{N(v)}) - P(X(v) = x_v | X(N(v)) = x_{N(v)}^i(y)) \right| > \epsilon \end{aligned}$$

and

(17)
$$P(X(N(v)) = x_{N(v)}, X(W) = x_W) > \delta, P(X(N(v)) = x_{N(v)}^i(y), X(W) = x_W) > \delta.$$

Then for some constant $C = C(\epsilon, \delta) > 0$, if $k > Cd \log n$, then there exists an estimator $\widehat{G}(\underline{X})$ such that the probability of correct reconstruction is $P(G = \widehat{G}(\underline{X})) = 1 - o(1)$. The estimator \widehat{G} is computable in time $O(n^{2d+1} \log n)$.

イロト 不得 とくほ とくほ とうほ

Reconstructing neighborhoods

Proof. As in Theorem 2, we can assume that with high probability we have

(18)
$$\left| \widehat{P}(X(U) = x_U) - P(X(U) = x_U) \right| \le \gamma$$

for all $U = \{u_i\}_{i=1}^l \subset V$ and $\{x_i\}_{i=1}^l$ when $l \leq 2d + 1$ and $k \geq C(\gamma)d \log n$, so we assume that (18) holds. For each vertex $v \in V$ we consider all candidate neighborhoods for v, subsets $U = \{u_1, \ldots, u_l\} \subset V - \{v\}$ with $0 \leq l \leq d$. For each candidate neighborhood U, the algorithm computes a score

$$f(v; U) = \min_{W, i} \max_{x_v, x_W, x_U, y} \left| \hat{P}(X(v) = x_v | X(W) = x_W, X(U) = x_U) - \hat{P}(X(v) = x_v | X(W) = x_W, X(U) = x_U^i(y)) \right|$$

where for each W, i, the maximum is taken over all x_v, x_W, x_U, y , such that

(19)
$$\widehat{P}(X(W) = x_W, X(U) = x_U) > \delta/2,$$
$$\widehat{P}(X(W) = x_W, X(U) = x_U^i(y)) > \delta/2,$$

and $W \subset V - (\{v\} \cup U)$ is an arbitrary set of nodes of size $d, x_W \in \mathcal{A}^d$ is an arbitrary assignment of values to the nodes in W, and $1 \leq i \leq l$.

The algorithm selects as the neighborhood of v the largest set $U \subset V - \{v\}$ with $f(v; U) > \epsilon/2$. It is necessary to check that if U is the true neighborhood of v, then the algorithm accepts U, and otherwise the algorithm rejects U.

ヘロト ヘワト ヘビト ヘビト

A faster method under correlation decay

THEOREM 4. Suppose that G and X satisfy the hypothesis of Theorem 3 and that for all $u, v \in V$, $d_C(u, v) \leq \exp(-\alpha d(u, v))$ and there exists some $\kappa > 0$ such that for all $(u, v) \in E$, $d_C(u, v) > \kappa$. Then for some constant $C = C(\alpha, \kappa, \epsilon, \delta) > 0$, if $k > Cd \log n$, then there exists an estimator $\widehat{G}(\underline{X})$ such that the probability of correct reconstruction is $P(G = \widehat{G}(\underline{X})) = 1 - o(1)$ and the algorithm running time is $O(nd^{\frac{2d \ln(4/\kappa)}{\alpha}} + dn^2 \ln n)$ with high probability.

イロト イポト イヨト イヨト 三日

Cutting down the number of potential neighborhoods

Proof. Denote the correlation neighborhood of a vertex v as $N_C(v) = \{u \in V : \widehat{d_C}(u,v) > \kappa/2\}$, where $\widehat{d_C}(u,v)$ is the empirical correlation of u and v. For large enough C with high probability for all $v \in V$, we have that $N(v) \subseteq N_C(v) \subseteq \{u \in V : d(u,v) \leq \frac{\ln(4/\kappa)}{\alpha}\}$. Now the size of $|\{u \in V : d(u,v) \leq \frac{\ln(4/\kappa)}{\alpha}\}|$ is at most $d^{\frac{\ln(4/\kappa)}{\alpha}}$, which is independent of n.

When reconstructing the neighborhood of a vertex v we modify the algorithm in Theorem 3 to test only candidate neighborhoods U and sets W which are subsets of $N_C(v)$. The algorithm restricted to the smaller range of possible neighborhoods correctly reconstructs the graph with high probability since the true neighborhood of a vertex is in its correlation neighborhood. For each vertex v the total number of choices of candidate neighborhoods U and sets W the algorithm has to check is $O(d^{\frac{2d \ln(4/\kappa)}{\alpha}})$, so running the reconstruction algorithm takes $O(nd^{\frac{2d \ln(4/\kappa)}{\alpha}})$ operations. It takes $O(dn^2 \ln n)$ operations to calculate all the correlations, which for large n dominates the running time.

イロト 不得 とくほ とくほ とうほ

More details and results in:

- Bresler, Mossel, Sly, Reconstruction of Markov Random Fields from Samples: Some Observations and Algorithms, SIAM J. Comput., 42(2):563–578.
- Bresler, *Efficiently Learning Ising Models on Arbitrary Graphs*, STOC 2015.

イロト イポト イヨト イヨト 一臣