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Abstract

In this tutorial, through a series of analytical computations and numerical simulations, we
review many known insights into a fundamental question: how much data is needed to recon-
struct the Tree of Life? Code is provided in Python.

1 Introduction

Phylogeny estimation is a central problem in evolutionary biology and beyond [Ste16]. In the
most basic form of the problem, one has access to aligned homolous DNA sequences, say from a
common gene, across multiple species. The goal is to output a phylogeny that describes the un-
derlying evolutionary relationships. A large number of inference methods have been developed
for this problem [War17]. Often one relies on the assumption that the data fits a stochastic model
of sequence evolution on a tree, under which many methods have been proven to be statistically
consistent, i.e., as the amount of data increases, the estimated phylogeny converges to the true
phylogeny with probability one.

In order to compare the statistical accuracy of different methods, however, a natural theoretical
approach is to analyze the rate at which this convergence occurs. Through a series of analytical
computations and numerical simulations, we review some known insights into this fundamental
question: how much data is needed to reconstruct the Tree of Life? After some basic definitions,
we analyze in detail a simple setting: the three-leaf rooted case under the Cavender-Farris model.
Despite its simplicity, this setting already brings to light the important role played by various pa-
rameters, in particular the shortest branch length and the depth, in the difficulty of reconstructing
phylogenies. We consider both distance-based and likelihood-based methods, as well as some
information-theoretic lower bounds. We subsequently extend these observations to larger trees,
emphasising the role of a different parameter, the branching rate. Bibliographic information is
provided in the last section.

Code is provided in Python. A Jupyter notebook is available at: github.com/sebroc/seq-len/.
A mathematical introduction to phylogenetics is found at: math.wisc.edu/~roch/evol-gen/.
The basic probability results used below are reviewed here: math.wisc.edu/~roch/mdp/.

*Department of Mathematics, University of Wisconsin–Madison, Madison WI 53706. Work supported by NSF grants
DMS-1149312 (CAREER), DMS-1614242 and CCF-1740707 (TRIPODS).
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2 Definitions

The unknown phylogeny is a tree T = (V, E) whose root R has degree 2 and whose internal
vertices have degree 3. We let Tn be the set of such phylogenies with n leaves.

The sequence data at the leaves L = {X1, . . . , Xn} is assumed to be generated under the
Cavender-Farris (CF) model. Formally, given branch lengths le ∈ R+ for e ∈ E, every site
i = 1, . . . , k is distributed independently according to the following process. Pick the root state
σi

R uniformly at random in S = {−1,+1}. A substitution occurs independently on edge e with
probability

p(le) :=
1
2

(
1− e−2le

)
.

Let τi
e = −1 if a substitution occurs on e on site i, and let τi

e = +1 otherwise. The state at U on site
i is

σi
U = σi

R ∏
e∈P(R,U)

τi
e

where P(R, U) is the set of edges on the path from root R to vertex U. While this representation
of the CF model may be unfamiliar to the reader, it will make both analytical derivations and
numerical computations more straightforward. Denote by

σ
(k)
U = (σ1

U , . . . , σk
U),

the resulting sequence at U and let σ
(k)
L = {σ(k)

X : X ∈ L} be the set of sequences at the leaves. We
write σ

(k)
L ∼ (T, l)⊗k for a sequence dataset with k sites generated at the leaves L of T with branch

lengths l = (le : e ∈ E).
A phylogenetic reconstruction algorithm is a collection of maps {Rk

n : SL×[k] → Tn} from
sequence datasets of length k on L to phylogenies with n leaves, for all n, k ∈ N (where we used
the notation [k] = {1, . . . , k}). Such an algorithm is statistically consistent if: for any number of
leaves n and any weighted phylogeny on n leaves (T, l), the probability of correct reconstruction
goes to 1 as the sequence length k goes to +∞, i.e.,

lim
k

P
[
Rk

n(σ
(k)
L ) = T

]
= 1,

where σ
(k)
L ∼ (T, l)⊗k.

The sequence-length requirement of a consistent reconstruction algorithm R = {Rk
n :, n, k ∈

N} is a natural way to quantify the convergence rate of the success probability as k → +∞. Fix
δ ∈ (0, 1). Formally, we define the sequence-length requirement of R at (T, l) as the smallest
integer KR(T, l) such that

P
[
Rk

n(σ
(k)
L ) = T

]
> 1− δ,

for all k ≥ KR(T, l), where σ
(k)
L ∼ (T, l)⊗k. The requirement at a given model (T, l) is not partic-

ularly meaningful: we can always achieve perfect reconstruction by simply outputting (T, l) on
any dataset. We instead consider a class of phylogenetic models P , e.g., all phylogenies with n
leaves and branch lengths in some set of allowed values. We will then define the sequence-length
requirement over P as

KR(P) = sup
(T,l)∈P

KR(T, l).

Rather than computing KR explicitly, one typically looks for upper and lower bounds that depend
on structural parameters that affect the accuracy of R, namely the size of the tree, its shortest
branch length as well as its depth.
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3 A simple setting

We will mostly focus on the simplest setting: a three-leaf phylogeny under the molecular clock
assumption. Despite its simplicity, this setting suffices to illustrate key elementary insights about
sequence-length requirements.

On the set of leaves L = {A, B, C}, there are three possible rooted topologies, denoted respec-
tively by AB|C, AC|B and BC|A, where the first two leaves are "closest." For T = XY|Z, let M
be the most recent common ancestor of X and Y. We denote by g the lengths lXM = lYM and we
denote by f the length lMR, where R is the root. We further assume that lZR = g + f . Notice that
all paths from the root to the leaves have the same length — this is the so-called molecular clock
case. We refer to this model as XY|Zg, f and we write σ

(k)
L ∼ XY|Z⊗k

g, f for a corresponding dataset
of length k.

We will use numerical simulations (embedded in the text) to illustrate some basic results on
sequence-length requirements. Below the function AB_C generates N sequence datasets of length
k at the leaves of the tree T = AB|C with parameters g and f, as defined above. Rather than
outputting the sequences themselves, it returns what will turn out to be a more convenient repre-
sentation: for each pair of leaves X, Y, each site i and each sample the quantity

si
XY = σi

Xσi
Y,

which is −1 if X and Y disagree, and +1 otherwise. Note that each assignment of values
si

AB, si
AC, si

BC in fact corresponds to two different sites (by flipping all the signs), but this will not
be an issue below. To see how these si

XY values are generated, note that a different but equiva-
lent expression for si

XY is si
MXsi

MY, where we use the notation si
U1U2

= σi
U1

σi
U2

for any two vertices
U1, U2 ∈ V. Further, observe that si

MA = τi
MA and si

MB = τi
MB while

si
MC = τi

RMτi
RC,

i.e., there is a substitution between M and C if there is an odd number of substitutions on the
path RM, RC. The total length of this path is g + 2 f and, as a result, it can be checked (using the
computations later in this section for instance) that the probability that si

MC = −1 is p(g + 2 f ).

In [1]: from math import exp, sqrt
import numpy as np
np.random.seed(0)

def l2p(l): # branch length to substitution probability
return (1-exp(-2*l))/2

def sub(p,k,N): # output -1 indicates substitution (o.w. 1)
return 1 - 2*(np.random.rand(N,k)<p)

def AB_C(g,f,k,N): # generate dataset under AB|C
sMA, sMB = sub(l2p(g),k,N), sub(l2p(g),k,N)
sMC = sub(l2p(g+2*f),k,N)
return sMA*sMB, sMA*sMC, sMB*sMC

The class of reconstruction methods that is perhaps easiest to analyze are the distance-based
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methods, i.e., loosely speaking those methods based on pairwise sequence comparisons. Let

Σk
XY =

k

∑
i=1

si
XY.

Observe that this quantity is positive if and only if X and Y agree on a majority of sites. The un-
corrected Cavender-Farris distance formula, i.e., the fraction of differences between the sequences
at X and Y, is then given by 1

2

(
1− 1

k Σk
XY
)

.
To provide some insights into the sequence-length requirements of distance-based meth-

ods, we begin with the following intuitive algorithm D over three-species datasets: we return
D(σ

(k)
L ) = XY|Z if

min
{

Σk
XY − Σk

XZ, Σk
XY − Σk

YZ

}
> 0;

and we return a failure if no such pair exists. Notice that at most one pair can satisfy this property.
In words, we choose the closest pair to be that whose sequences are most similar.

The function test_pairwise below implements this method and estimates its accuracy under
sequence data of length up to k generated under T = AB|C with parameters g, f. The number
of repetitions is N. For speed, we re-use the data for sequence length k′ − 1 in the simulation for
sequence length k′.

In [2]: def comp(critABvAC,critABvBC): # cumulative comparison across sequences
return np.cumsum(critABvAC,axis=1), np.cumsum(critABvBC,axis=1)

def test_pairwise(g,f,k,N): # testing D under AB|C
sAB, sAC, sBC = AB_C(g,f,k,N)
ABvAC, ABvBC = comp(sAB-sAC,sAB-sBC)
return np.sum(np.logical_and(ABvAC>0, ABvBC>0),axis=0)/N

As the next experiment illustrates, the frequency of successful reconstruction by D increases to
1 as k→ +∞. That is, the simulation supports (but does not prove) the claim that D is a consistent
reconstruction algorithm in this simple setting.

In [3]: import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 300 # high-resolution figures

In [4]: # EXP 1: accuracy of pairwise comparisons v. k
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 300 # high-resolution figures

g, f, k, N = 0.1, 0.05, 500, 1000

freq_succ_pw = test_pairwise(g, f, k, N)

plt.plot(np.arange(1,k+1),freq_succ_pw);
plt.xlabel('Sequence Length'), plt.ylabel('Success Probability');
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In fact, consistency is straightforward to establish analytically in this case. Indeed, recall that
si

AB = si
MAsi

MB = τi
MAτi

MB. Define

E
[
τi

MA

]
= [+1](1− p(g)) + [−1]p(g) = e−2g =: θ(g).

Because edge substitutions are independent, it follows that

E
[
si

AB

]
= E

[
τi

MAτi
MB

]
= θ(g)2.

Similarly, E
[
si

AC
]
= θ(g + 2 f )2 and E

[
si

BC
]
= θ(g + 2 f )2. Hence, by the law of large numbers, as

k→ +∞ it holds that

1
k

Σk
AB → θ(g),

1
k

Σk
AC → θ(g + 2 f ),

1
k

Σk
BC → θ(g + 2 f ).

Since θ is strictly decreasing in its argument, the last observation implies that Σk
AB is eventually

larger than both Σk
AC and Σk

BC with probability 1, establishing consistency.
In the next section, we consider the rate of convergence.

4 Phylogenetic signal

As pointed out earlier, two structural parameters that affect the sequence-length requirement of
reconstruction algorithms are the shortest branch length and the depth of a phylogeny. We study
them in turn in the three-leaf case. We do not compute the sequence-length requirement explicitly
— rather we obtain upper bounds depending on g and f . In a subsequent section, we also provide
lower bounds.
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Let T = AB|C, assume that σ
(k)
L ∼ AB|C⊗k

g, f and let Σk
XY be defined as above. For the

distance-based method D to succeed, it must be that events EAC = {Σk
AB − Σk

AC > 0} and
EBC = {Σk

AB − Σk
BC > 0} hold simultaneously. To get an upper bound on this probability, we

appeal to a standard concentration result, Hoeffding’s inequality, which states: if W1, . . . , Wk are
independent respectively [αi, βi]-valued random variables then for all ε > 0

P

[
k

∑
i=1

(Wi −E[Wi]) ≥ kε

]
≤ exp

(
− 2k2ε2

∑k
i=1(βi − αi)2

)
.

Hence, re-writing

P [E c
AC] = P

[
k

∑
i=1

(
si

AC − θ(g + f )− si
AB + θ(g)

)
≥ k (θ(g)− θ(g + 2 f ))

]
,

and applying Hoeffding’s inequality, we obtain

P [E c
AC] ≤ exp

(
−2k2 [θ(g)− θ(g + 2 f )]2

k(2)2

)
= exp

(
− k

2
[θ(g)− θ(g + 2 f )]2

)
.

By a union bound,

P
[
D(σ

(k)
L ) = T

]
= 1−P [E c

AC ∪ E c
BC] ≥ 1− 2 exp

(
− k

2
[θ(g)− θ(g + 2 f )]2

)
.

Observe that
θ(g)− θ(g + 2 f ) = e−2g

(
1− e−4 f

)
,

so that if

k ≥ κ̄D(g, f ) :=
2 ln(2/δ)

e−4g
(
1− e−4 f

)2 ,

then D succeeds with probability greater than 1− δ. That is, the sequence-length requirement of
D at AB|Cg, f is smaller than κ̄D(g, f ).

This bound extends to a much larger class of phylogenetic models. Let

P =
⋃

g′≤g, f ′≥ f

{AB|Cg′, f ′ , AC|Bg′, f ′ , BC|Ag′, f ′}.

By symmetry over the topologies and by the monotonicity of κ̄D(g, f ) in g and f , we have the
following upper bound on the sequence-length requirement of D over P

KD(P) ≤
2 ln(2/δ)

e−4g
(
1− e−4 f

)2 .

4.1 Short branches

When fixing δ, g and taking f → 0, a Taylor expansion of the denominator shows that κ̄D(g, f )
scales like ∝ f−2. The next experiment illustrates this point. Here, under T = AB|C for a fixed
value of g and an array f_arr of values of f , the smallest sequence length to achieve the target
value for 1 − δ is identified. That produces an empirical estimate of KD(AB|Cg, f ). In a plot of
log KD v. log f , the slope can be seen to be somewhat close to −2, the theoretical prediction.
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In [5]: # EXP 2: requirement for pairwise comparisons v. f
g, k, N, target = 0.1, 1500, 1000, 0.95
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

k_thres_f = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_pairwise(g, f_arr[i], k, N)
k_thres_f[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr), np.log(k_thres_f));
plt.xlabel('Log f'), plt.ylabel('Log Length Required');

4.2 Depth

Similarly, fixing δ, f in the previous expression gives that κ̄D(g, f ) scales like ∝ e4g. The next
experiment illustrates this point. Here, for an array g_arr of values of g, the smallest sequence
length to achieve the target value for 1− δ is identified. In a plot of log KD v. g, we observe a
roughly linear relationship, as expected.

In [6]: # EXP 3: requirement for pairwise comparisons v. g
f, k, N = 0.05, 1500, 1000
g_arr_min, g_arr_max, g_arr_len, target = 0.01, 0.2, 10, 0.95
g_arr = np.linspace(g_arr_min, g_arr_max, num=g_arr_len)
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k_thres_g = np.zeros(g_arr_len)
for i in range(g_arr_len):

freq_succ = test_pairwise(g_arr[i], f, k, N)
k_thres_g[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(g_arr, np.log(k_thres_g));
plt.xlabel('g'), plt.ylabel('Log Length Required');

5 Not all reconstruction methods are created equal

Sequence-length requirements are useful to compare reconstruction methods: by definition, a
higher requirement indicates more data is needed to achieve the same accuracy. We give a simple
(albeit artificial) example.

Consider the following modification of the distance-based method D. Assuming k is even.
Define

Πk
XYvXZ =

k

∑
i=1

i odd

(si
XY − si

XZ)(s
i+1
XY − si+1

XZ ),

and

Πk
XYvYZ =

k

∑
i=1

i odd

(si
XY − si

YZ)(s
i+1
XY − si+1

YZ ).

The reconstruction algorithm D2 then proceeds as follows: we return D2(σ
(k)
L ) = XY|Z if

min
{

Πk
XYvXZ, Πk

XYvYZ

}
> ηg, f :=

1
2

e−4g
(

1− e−4 f
)2

;
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and we return a failure if no such pair exists or if more than one pair satisfies this property. Note
that this reconstruction algorithm requires knowledge of (or bounds on) g and f .

To see that D2 is consistent, let again T = AB|C and σ
(k)
L ∼ AB|C⊗k

g, f . Notice that, by indepen-
dence of the odd and even sites, it holds that for i odd

E
[
(si

AB − si
AC)(s

i+1
AB − si+1

AC )
]
= E

[
si

AB − si
AC

]
E
[
si+1

AB − si+1
AC

]
= [θ(g)− θ(g + 2 f )]2 .

Similarly
E
[
(si

AB − si
BC)(s

i+1
AB − si+1

BC )
]
= [θ(g)− θ(g + 2 f )]2 ,

and
E
[
(si

AC − si
BC)(s

i+1
AC − si+1

BC )
]
= 0.

By the law of large numbers, we obtain

2
k

Πk
ACvAB =

2
k

Πk
ABvAC → [θ(g)− θ(g + 2 f )]2 ,

and
2
k

Πk
BCvAB =

2
k

Πk
ABvBC → [θ(g)− θ(g + 2 f )]2 ,

while
2
k

Πk
BCvAC =

2
k

Πk
ACvBC → 0.

Since
[θ(g)− θ(g + 2 f )]2 >

1
2

e−4g
(

1− e−4 f
)2

> 0,

that establishes consistency.
We now derive an upper bound on the sequence-length requirement of D2. Consider the

events

EABvAC =
{

Πk
ABvAC > ηg, f

}
, EABvBC =

{
Πk

ABvBC > ηg, f

}
, EACvBC

{
Πk

ACvBC < ηg, f

}
.

The event EABvAC ∪ EABvBC ∪ EACvBC implies that the output of D2 is correct. Re-writing

P [E c
ABvAC] = P

[
Πk

ABvAC −E
[
Πk

ABvAC

]
≤ −1

2
e−4g

(
1− e−4 f

)2
]

,

and, applying Hoeffding’s inequality, we get the upper bound

P [E c
ABvAC] ≤ exp

−2(k/2)2
[

1
2 e−4g (1− e−4 f )2

]2

k/2× (2)2

 ,

and similarly for the events E c
ABvBC, E c

ACvBC. By a union bound,

P
[
D2(σ

(k)
L ) = T

]
≥ 1− 3 exp

(
− k

16
e−8g

(
1− e−4 f

)4
)

.

So if

k ≥ κ̄D2(g, f ) :=
16 ln(3/δ)

e−8g
(
1− e−4 f

)4 ,
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then D2 succeeds with probability greater than 1− δ. That is, the sequence-length requirement of
D2 at AB|Cg, f is at most κ̄D2(g, f ).

Now, notice that as f → 0 (leaving g and δ fixed), we have the asymptotic behavior κ̄D2(g, f ) ∝
f−4, which is worse than what we obtained for D. In words, this bound suggests that D2 requires
significantly more data than D to achieve the same accuracy: if we divide f by 2 for instance,
D requires roughly four times as much data, while D2 requires 16 times as much. This is only
an upper bound of course. We use a numerical simulation to test the theoretical prediction. The
following function test_two_site implements D2 on T = AB|C with parameters g and f, and
tests it N times across sequences of length up to k.

In [7]: def test_two_site(g, f, k, N): # testing D^2 under AB|C
sABo, sACo, sBCo = AB_C(g,f,k//2,N)
sABe, sACe, sBCe = AB_C(g,f,k//2,N)
ABvAC, ABvBC = comp((sABo-sACo)*(sABe-sACe),(sABo-sACo)*(sABe-sACe))
eta = (1/2)*exp(-4*g)*(1-exp(-4*f))**2
return np.sum(np.logical_and(ABvAC>eta, ABvBC>eta),axis=0)/N

The following experiment is consistent with our bounds on the sequence-length requirements
of D and D2. Below, a plot of log KD2 v. log f (solid line), shows a roughly linear behavior with
slope close to −4. A plot of log KD v. log f (dotted line) is also reproduced for comparison.

In [8]: # EXP 4: D^2 has requirement f^-4 (takes a minute or two)
g, f, k, N = 0.1, 0.05, 240000, 200

k_thres_f2 = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_two_site(g, f_arr[i], k, N)
k_thres_f2[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr),np.log(k_thres_f2));
plt.plot(np.log(f_arr),np.log(k_thres_f),':');
plt.xlabel('Log f'), plt.ylabel('Log Length Required');
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6 What about maximum likelihood estimation?

So far, we have analyzed pairwise comparison methods. Another common approach in practice
is maximum likelihood estimation (MLE), which takes into account the full empirical distribution
at the leaves. In the three-leaf case considered previously, the MLE is defined as follows

L(σ(k)
L ) = argmax

{
sup
g0, f0

logLk(σ
(k)
L ; T0, g0, f0) : T0 ∈ {AB|C, AC|B, BC|A}

}
,

where Lk(σ
(k)
L ; T0, g0, f0) is the likelihood, i.e., the probability of observing the data σ

(k)
L under the

tree T0 with parameters g0, f0. For simplicity, if more than one tree achieves the maximum, we
return a failure. How does the sequence-length requirement of L compare to that of D?

To study this question, we note first that in this case the log-likelihood takes a simple analytical
form. Let T0 = XY|Z with parameters g0 and f0, and let M be the most recent common ancestor
of X and Y. By independence of the sites, the probability of observing σ

(k)
L is the product of the

probabilities of observing the σi
L’s, which after taking a logarithm becomes a sum

logLk(σ
(k)
L ; T0, g0, f0) =

k

∑
i=1

logL1(σi
L; T0, g0, f0).

Let p0 = p(g0) and q0 = p(g0 + 2 f0), and define

Ii
XY =

1 + si
XY

2
, Ii

XZ =
1 + si

XZ
2

,
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i.e., Ii
XY = 1 if X and Y agree on site i, and Ii

XY = 0 otherwise. In terms of Ii
XY and Ii

XZ (which are
functions of the data σi

L), the log-likelihood is

logL1(σi
L; T0, g0, f0) = log

(
1
2

Λ1 +
1
2

Λ2

)
,

where
Λ1 = (1− p0)(1− p0)

Ii
XY p1−Ii

XY
0 (1− q0)

Ii
XZ q1−Ii

XZ
0 ,

and
Λ2 = p0(1− p0)

1−Ii
XY pIi

XY
0 (1− q0)

1−Ii
XZ qIi

XZ
0 .

The above expression is obtained by considering whether or not there is a substitution along the
edge XM, followed by whether or not there are substitutions along edge MY and path MR, RZ.
Note that all these substitutions are independent.

6.1 Likelihood ratio test

Analyzing the behavior of L is somewhat complicated by the need to optimize over the nuisance
parameters g and f . To get some insight, it is easier to start by assuming that g and f are known
and that the true topology is either AB|C or AC|B. That is, we consider the class of phylogenetic
models P = {AB|Cg, f , AC|Bg, f }. Then the MLE is obtained by identifying the topology among
these two with largest log-likelihood. To simplify the notation, define

Lk
XY(σ

(k)
L ) = Lk(σ

(k)
L ; XY|Z, g, f ).

Consider the following modification L′ of L: we return AB|C if logLk
AB(σ

(k)
L ) > logLk

AC(σ
(k)
L );

AC|B if logLk
AC(σ

(k)
L ) > logLk

AB(σ
(k)
L ); or otherwise we choose uniformly at random between the

two. This is also known as a likelihood ratio test (LRT).
While we could use Hoeffding’s inequality again to analyze the sequence-length requirement

of L′, we will introduce instead a comparison argument to distance-based methods that general-
izes more easily to larger, more complex phylogenies. The comparison works as follows. Let Ψ be
an arbitrary randomized test for deciding whether sequence data σ

(k)
L was generated by AB|Cg, f

or AC|Bg, f , i.e., for each σ
(k)
L ∈ SL×[k], Ψ(σ

(k)
L ) is a {AB|C, AC|B}-valued random variable. The

sum of so-called Type I and Type II errors is defined as

WI,I I [Ψ] =WE,AB[Ψ] +WE,AC[Ψ],

whereWE,AB[Ψ] is the probability of error under AB|Cg, f

WE,AB[Ψ] = ∑
σ
(k)
L

Lk
AB(σ

(k)
L )(1−P[Ψ(σ

(k)
L ) = AB|C]),

and, similarly,WE,AC[Ψ] is the probability of errror if the data had been generated instead under
AC|Bg, f

WE,AC[Ψ] = ∑
σ
(k)
L

Lk
AC(σ

(k)
L )P[Ψ(σ

(k)
L ) = AB|C].

It is a standard fact of statistical theory that WI,I I [Ψ] is minimized by Ψ = L′ (as can easily be
derived by inspecting the expression forWI,I I).
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We use this fact to get a bound on the probability of error of L′. We will need a simple obser-
vation first. Notice that, by symmetry, for Ψ = L′ we haveWE,AB[Ψ] =WE,AC[Ψ]. Hence

P[L′(σ(k)
L ) 6= AB|C] = 1

2
WI,I I [L′] ≤

1
2
WI,I I [Ψ],

for any Ψ. Now choose Ψ to be the following modification D′ of D: we return AB|C if Σk
AB > Σk

AC;
AC|B if Σk

AC > Σk
AB; or otherwise we choose uniformly at random between the two. Because the

symmetry argument above holds for D′ as well, we finally get

P[L′(σ(k)
L ) 6= AB|C] ≤ P[D′(σ(k)

L ) 6= AB|C].

In words, the probability of failure of L′ is at most that of D′. We have already shown that the
right-hand side is ≤ exp

(
− k

2 [θ(g)− θ(g + 2 f )]2
)

, which is less than δ if

k ≥ 2 ln(1/δ)

e−4g
(
1− e−4 f

)2 .

In essence, this argument implies that over this restricted class P the sequence-length requirement
of the MLE is at most that of the distance-based method.

We further explore this prediction in a simulation. The function test_lrt below is in fact more
general than the LRT described above (in order to obtain a fair comparison to test_pairwise), as
it compares the log-likelihood of all three topologies AB|C, AC|B and BC|A for fixed parameters
g and f. It tests how often the log-likelihood of AB|C is strictly larger than that of the other two.

In [9]: def s2i(s): # converts {-1,+1} to {0,1}
return (1+s)//2

def llXY_Z(g,f,sXY,sXZ): # log-likelihood under XY|Z
p, q, iXY, iXZ = l2p(g), l2p(g+2*f), s2i(sXY), s2i(sXZ)
Lbda1 = (1-p)*((1-p)**iXY)*(p**(1-iXY))*((1-q)**iXZ)*(q**(1-iXZ))
Lbda2 = p*((1-p)**(1-iXY))*(p**iXY)*((1-q)**(1-iXZ))*(q**iXZ)
return np.log((1/2)*Lbda1+(1/2)*Lbda2)

def test_lrt(g,f,g0,f0,k,N): # testing LRT under AB|C
sAB, sAC, sBC = AB_C(g,f,k,N)
llAB = llXY_Z(g,f,sAB,sAC)
llAC, llBC = llXY_Z(g0,f0,sAC,sAB), llXY_Z(g0,f0,sBC,sAB)
ABvAC, ABvBC = comp(llAB-llAC,llAB-llBC)
return np.sum(np.logical_and(ABvAC>0, ABvBC>0),axis=0)/N

The following experiment indicates that the probabilities of success of the basic likelihood-
based (solid line) and distance-based (dotted line) methods are very similar in this setting for all
sequence lengths.

In [10]: # EXP 5: success of LRT v. k
g, f, k, N = 0.1, 0.05, 500, 1000 # params used for freq_succ_pw

freq_succ_ll = test_lrt(g,f,g,f,k,N)
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plt.plot(np.arange(1,k+1),freq_succ_ll);
plt.plot(np.arange(1,k+1),freq_succ_pw,':');
plt.xlabel('Sequence Length'), plt.ylabel('Success Probability');

We plot next the sequence length required for the three-way LRT to succeed with probabil-
ity at least target as f varies over an array of values f_arr. The results are consistent with a
requirement scaling as ∝ f−2.

In [11]: # EXP 6: requirement for LRT v. f
g, f, k, N, target = 0.1, 0.05, 2500, 1000, 0.95
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10 # same as k_thres_f
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

k_thres_fll = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_lrt(g,f_arr[i],g,f_arr[i],k,N)
k_thres_fll[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr), np.log(k_thres_fll));
plt.plot(np.log(f_arr),np.log(k_thres_f),':');
plt.xlabel('Log f'), plt.ylabel('Log Length Required');
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We plot next the sequence length required for the three-way LRT to succeed with probabil-
ity at least target as g varies over an array of values g_arr. The results are consistent with a
requirement scaling as exponentially in g.

In [12]: # EXP 7: requirement for LRT v. f
f, k, N, target = 0.05, 2500, 1000, 0.95
g_arr_min, g_arr_max, g_arr_len = 0.01, 0.2, 10 # same as k_thres_g
g_arr = np.linspace(g_arr_min, g_arr_max, num=g_arr_len)

k_thres_gll = np.zeros(g_arr_len)
for i in range(g_arr_len):

freq_succ = test_lrt(g_arr[i],f,g_arr[i],f,k,N)
k_thres_gll[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(g_arr, np.log(k_thres_gll));
plt.plot(g_arr,np.log(k_thres_g),':');
plt.xlabel('g'), plt.ylabel('Log Length Required');
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6.2 Optimizing the branch lengths

Up to this point, we have ignored the effect of branch length estimation on the MLE. To get some
partial insight into this difficult, but important issue, we consider a modified setting: we gener-
ate sequence datasets according to AB|Cg, f and study how often the log-likelihood under AB|C
exceeds that of the alternative AC|B — with the optimal choice of branch lengths in both cases in
the limit k → +∞. For AB|C, the choices g and f are optimal under the expected log-likelihood
by standard results in statistical theory (namely Gibbs’ inequality).

For AC|B however, it is not immediate what the right choice of branch lengths is when the
data is generater under AB|C. We first run an experiment which estimates the log-likelihood for
the model AC|B over a grid of branch lengths g and f with a large value of k. The contour plot
below, obtained under AB|C with parameters 0.1 and 0.05, suggests that in this case the optimal
f is 0 while the optimal g is somewhat larger than 0.1.

In [13]: # EXP 8: a better choice of branch lengths for alternative
g, f, k, N, m_gr = 0.1, 0.05, 10000, 1, 50
f_gr = np.linspace(0, 0.05, num=m_gr)
g_gr = np.linspace(0.05, 0.20, num=m_gr)

sAB, sAC, sBC = AB_C(g,f,k,N)
ll_gf = np.zeros((m_gr,m_gr))
for i_f in range(m_gr):

for i_g in range(m_gr):
ll_gf[i_f,i_g] = np.sum(llXY_Z(g_gr[i_g],f_gr[i_f],sAC,sAB))/k

16



opt_f = f_gr[np.unravel_index(np.argmax(ll_gf),np.shape(ll_gf))[0]]
opt_g = g_gr[np.unravel_index(np.argmax(ll_gf),np.shape(ll_gf))[1]]
print(f'Optimal f = {opt_f}')
print(f'Optimal g = {opt_g}')
[X, Y], Z = np.meshgrid(g_gr,f_gr), ll_gf
CS = plt.contour(X,Y,Z);
plt.clabel(CS), plt.xlabel('g'), plt.ylabel('f');

Optimal f = 0.0
Optimal g = 0.12959183673469388

In other words, the experiment above indicates that for those parameters the star tree achieves
the optimum under the alternative topology. We confirm this heuristically in the limit of small
branch lengths. Note first that for g and f small, we have p(g) = g + O(g2) and p( f ) = f +
O( f 2). Second, in this asymptotic setting, the first order contribution to the log-likelihood are
those realizations involving a single substitution (except for the constant site). Using these two
observations and the expression for the log-likelihood derived at the beginning of the section, it
can be shown that the expected log-likelihood under the model AC|Bg0, f0 (for g0, f0 small) given
data generated under AB|Cg, f is to the first order

l̃ogL0(g0, f0) = (−3g0 − 2 f0) + (2g + 2 f ) log g0 + g log(g0 + 2 f0),

where, for example, the last term correponds to A disagreeing with B but agreeing with C. The
first term corresponds to the constant sites, where we used log(1− x) = −x + O(x2) and ignored
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second order contributions. We seek to maximize l̃ogL0(g0, f0) for fixed g and f . The partial
derivative with respect to f0 is

∂ f0 l̃ogL0(g0, f0) = −2 + 2
g

g0 + 2 f0
.

Hence, for g0 < g, ∂ f0 l̃ogL0(g0, f0) = 0 when f0 satisfies g = g0 + 2 f0. While for g0 ≥ g,

∂ f0 l̃ogL0(g0, f0) < 0 for all f0 ≥ 0 and the optimal f0 for fixed g0 is 0. We plug back this opti-

mal f0 into l̃ogL0(g0, f0), and consider the two cases again: when g0 < g,

d
dg0

l̃ogL0(g0, (g− g0)/2) = −2 +
2g + 2 f

g0
> 0;

when g0 ≥ g,
d

dg0
l̃ogL0(g0, 0) = −3 +

3g + 2 f
g0

,

which is 0 for g0 satisfying 3g0 = 3g + 2 f . To summarize, the optimal choice of branch lengths is
therefore

g∗0 = g +
2
3

f , f ∗0 = 0.

That is consistent with the contour plot above.
In the next experiment, we use parameters g∗0 and f ∗0 for the alternatives and we plot the suc-

cess probability of the three-way LRT. For large k, observe that the distance-based method (dotted
line) performs better than the three-way LRT (solid line). For small k, however, the distance-based
method performs worse, possibly because our optimal choice is only valid in the limit k→ +∞.

In [14]: # EXP 9: accuracy of LRT v. k for better choice of lengths
g, f, k, N = 0.1, 0.05, 500, 1000 # params used for freq_succ_pw

freq_succ_ll = test_lrt(g,f,g+(2/3)*f,0,k,N)

plt.plot(np.arange(1,k+1),freq_succ_ll);
plt.plot(np.arange(1,k+1),freq_succ_pw,':');
plt.xlabel('Sequence Length'), plt.ylabel('Success Probability');
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Using again parameters g∗0 and f ∗0 for the alternative topologies, we plot the sequence length
required for the three-way LRT to succeed with probability at least target. The results are con-
sistent once again with a requirement scaling as ∝ f−2. This time, however, the requirement
for LRT (solid line) is significantly higher than that of the distance-based approach (dotted line).
While likelihood-based methods use the joint distribution of the data and, therefore, may be ex-
pected to perform better than distance-based methods which rely on pairwise distributions, in
the three-species settings there may not be enough "extra information" in the joint distribution to
compensate for the downsides of nuisance parameters.

In [15]: # EXP 10: requirement for LRT v. f for better choice of lengths
g, f, k, N, target = 0.1, 0.05, 2500, 1000, 0.95
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10 # same as k_thres_f
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

k_thres_fll = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_lrt(g,f_arr[i],g+(2/3)*f_arr[i],0,k,N)
k_thres_fll[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr), np.log(k_thres_fll));
plt.plot(np.log(f_arr),np.log(k_thres_f),':');
plt.xlabel('Log f'), plt.ylabel('Log Length Required');
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7 Lower bound on the best achievable requirement

In this section, we consider lower bounds on the sequence-length requirement. In particular we
show — both analytically and numerically — that, in the three-species setting, the requirement we
derived for distance-based and likelihood-based reconstruction approaches in previous sections
cannot be improved (up to constants). These lower bounds are information-theoretic, i.e., they
apply to any reconstruction method.

The standard way to obtain such a lower bound is to "make the problem easier" by considering
the two-topology setup of the previous section. Namely, suppose the sequence dataset σ

(k)
L is

generated by a model in the class P = {AB|Cg, f , AC|Bg, f }. Our goal again is to guess which one of
the two models the data came from. How large does k need to be for there to exist a reconstruction
method that succeeds with probability 1− δ? A lower bound on the required k for P automatically
gives a lower bound on the required k for the larger class ∪g′≤g, f ′≥ f {AB|Cg′, f ′ , AC|Bg′, f ′ , BC|Ag′, f ′}
— since it includes P .

Recall the definitions ofWE,AB[Ψ] andWE,AC[Ψ] and let

WE,max[Ψ] = max{WE,AB[Ψ],WE,AC[Ψ]},

be the maximum probability of error for Ψ under models in P . We seek to establish a lower bound
onWE,max[Ψ] that applies to any Ψ. We already know that

WE,max[Ψ] ≥ 1
2
WI,I I [L′].

We first relate the r.h.s. to a standard notion of distance on probability measures. If (λx : x ∈ X )
and (γx : x ∈ X ) are probability measures over the discrete space X , then their total variation
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distance is defined as
TV(λ, γ) =

1
2 ∑

x∈X
|λx − γx|,

which is always between 0 and 1. We express WI,I I [L′] in terms of the total variation distance
between Lk

AB and Lk
AC. By definition of L′ and the fact that Lk

AB sums to 1, we get

WI,I I [L′] = 1−∑
σ
(k)
L

(Lk
AB(σ

(k)
L )−Lk

AC(σ
(k)
L ))1[Lk

AB(σ
(k)
L ) > Lk

AC(σ
(k)
L )],

where 1[E ] is the indicator of the event E . Using symmetry under the interchanging of the role of
B and C, we get further

WI,I I [L′] = 1− 1
2 ∑

σ
(k)
L

∣∣∣Lk
AB(σ

(k)
L )−Lk

AC(σ
(k)
L )
∣∣∣ = 1− TV(Lk

AB,Lk
AC).

By combining this with the inequality above, we have reduced the problem of deriving a lower
bound onWE,max[Ψ] for any Ψ to that of deriving an upper bound on the total variation distance
between Lk

AB and Lk
AC.

Computing TV(Lk
AB,Lk

AC) for arbitrary k turns out to be tricky because of the underlying com-
binatorial complexity. Therefore, the next step is to further reduce the problem to a single site. We
use a standard trick in statistical theory: moving to the Hellinger distance. Let

H2(λ, γ) =
1
2 ∑

x∈X

(√
λx −

√
γx

)2
,

be the Hellinger distance between probability measures λ and γ, which is always between 0 and
1. This unintuitive distance has two useful properties. First, it is closely related to the more nat-
ural total variation distance, through the following inequality which we derive for completeness.
(There is also an inequality in the other direction, which we omit.) Writing

∑
x∈X
|λx − γx| = ∑

x∈X

(√
λx −

√
γx

) (√
λx +

√
γx

)
and applying the Cauchy-Shwarz inequality, we get

∑
x∈X
|λx − γx| ≤

√
∑

x∈X

(√
λx −

√
γx

)2
√

∑
x∈X

(√
λx +

√
γx

)2

Using the fact that λ and γ sum to 1 and applying the Cauchy-Shwarz inequality again,

∑
x∈X

(√
λx +

√
γx

)2
= 2 + 2 ∑

x∈X

√
λx
√

γx ≤ 2 + 2
√

∑
x∈X

λx

√
∑

x∈X
γx = 4.

Hence
TV(λ, γ) ≤

√
2H2(λ, γ).

Second, the Hellinger distance (somewhat magically) "tensorizes": let λ⊗k be the distribution of k
independent samples from λ, we have

1−H2(λ⊗k, γ⊗k) = ∑
x∈X k

k

∏
i=1

√
λxi γxi =

(
∑

x∈X

√
λxγx

)k

=
(
1−H2(λ, γ)

)k
.
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Putting everything together, we finally get the following key result: for any randomized test Ψ

WE,max[Ψ] ≥ 1
2

[
1−

√
2
[
1−

(
1−H2(L1

AB,L1
AC)
)k
]]

.

So it remains to bound H2(L1
AB,L1

AC), which can be estimated both numerically and analyti-
cally. The numerical experiment below computes the Hellinger-based lower bound onWE,max[Ψ]
for a fixed g and for k scaling like ∝ f−2, for an array f_arr of values of f . The plots indicate that
the lower bound increases towards 1/2 when k = b f−2 for b ranging between 0.01 and 1. Note
that, when b = 1, the lower bound on the probability of error is negative, which is of course use-
less. This is because our bound relating TV and H2 is off by a factor of

√
2 when the probability

measures are close to maximally distinct.

In [16]: # EXP 11: Hellinger distance between AB|C and AC|B v. f
g = 0.1
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

hell, s = np.zeros(f_arr_len), [-1,1]
for i in range(f_arr_len):

for jAB in range(2):
for jAC in range(2):

lAB = exp(llXY_Z(g,f_arr[i],s[jAB],s[jAC]))
lAC = exp(llXY_Z(g,f_arr[i],s[jAC],s[jAB]))
hell[i] = hell[i] + 2*((sqrt(lAB)-sqrt(lAC))**2)/2

base = (1-hell)**(1/(f_arr**2))
plt.plot(np.log(f_arr),(1/2)*(1 - np.sqrt(2*(1-base**0.1))));
plt.plot(np.log(f_arr),(1/2)*(1 - np.sqrt(2*(1-base**0.01))),':');
plt.plot(np.log(f_arr),(1/2)*(1 - np.sqrt(2*(1-base**1))),'--');
plt.xlabel('Log f'), plt.ylabel('Hellinger-based lower bound');
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We confirm the results above analytically. Fix g and consider the limit f → 0. By symmetry,
for constant sites σ1

L, L1
AB(σ

1
L) = L1

AC(σ
1
L) so such sites contribute nothing to H2(L1

AB,L1
AC). The

same holds for the sites σ1
L = (+1,−1,−1) and σ1

L = (−1,+1,+1). For the sites σ1
L = (+1,+1,−1)

and σ1
L = (−1,−1,+1), we use the expression for the likelihood derived in the previous section

with I1
AB = 1 and I1

AC = 0. Let p = p(g) and q = p(g + 2 f ) and expand to the first order in f to
get that q = p + c1 f + O( f 2) where c1 = 2e−2g. Then we have

L1
AB(σ

1
L) =

1
2
(1− p)2q +

1
2

p2(1− q) =
1
2
(1− p)2 p +

1
2

p2(1− p) + c2 f + O( f 2),

where c2 = c1
2 [(1− p)2 − p2] = c1

2 (1− 2p), and

L1
AC(σ

1
L) =

1
2
(1− p)p(1− q) +

1
2

p(1− p)q =
1
2
(1− p)2 p +

1
2

p2(1− p) + c3 f + O( f 2),

where c3 = c1
2 [−(1− p)p + p(1− p)] = 0. Using

√
z + x =

√
z + x/(2

√
z) + O(x2) and letting

z = 1
2 (1− p)2 p + 1

2 p2(1− p) = 1
2 p(1− p), we get√
L1

AB(σ
1
L)−

√
L1

AC(σ
1
L) = c4 f + O( f 2),

where c4 = c2/(2
√

z). So the contribution of σ1
L to H2(L1

AB,L1
AC) is 1

2 c2
4 f 2 + O( f 3). By inter-

changing the role of B and C, we see that the contribution from the sites σ1
L = (+1,−1,+1) and

σ1
L = (−1,+1,−1) is the same. So finally

H2(L1
AB,L1

AC) = c5 f 2 + O( f 3).

where c5 = 2c2
4.
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Hence, taking k = b f−2 in our Hellinger-based lower bound on the maximum probability of
error, we get that

WE,max[Ψ] ≥ 1
2

[
1−

√
2
[
1− (1− c5 f 2 + O( f 3))b f−2

]]
,

which, as f → 0, converges to
1
2

[
1−

√
2 [1− e−c5b]

]
.

This last expression is 1/2 when b = 0, and it decreases monotonically as b gets larger.
To summarize, no method can have a maximum probability of error bounded away from 1/2

unless k scales at least like ∝ f−2.

8 Scaling up to large trees

Until now, we have restricted ourselves to small phylogenies. The results we have derived in
the previous sections can be used as building blocks to obtain some bounds on sequence-length
requirements for large trees as well.

In the molecular clock case, one can reconstruct all three-leaf subtrees of an n-species phylo-
genies T using the simple distance-based method described earlier. Once all such "triplets" have
been reconstructed correctly, it is straightforward to infer the full rooted phylogeny. What is the
sequence-length requirement in this case? Assume g and f are respectively the longest and short-
est branch lengths in T. Recall that if the sequence length k satisfies

k ≥ 2 ln(2/δ)

e−4G (1− e−4F)
2 ,

then the pairwise comparison test D succeeds at reconstructing a fixed triplet {A, B, C}with prob-
ability greater than 1− δ. Here G is the length of the path to the most recent common ancestor of
the two closest leaves in {A, B, C} and F is the length of the path from that vertex to the root of
the triplet. To obtain a bound on the sequence-length requirement, we need to bound F, G and δ
in terms of f , g and n.

We use that necessarily F ≥ f . As for δ, since there are at most n3 triplets, for all of them to be
reconstructed correctly with probability 1− δ′ we require δ = δ′/n3. It remains to upper bound
G, which depends on the minimum number of edges h from a leaf to the root. Because T is binary
and has n leaves, we have

n ≥ 2h.

Hence
G ≤ gh ≤ g log2 n.

Putting everything together, when the sequence length satisfies

k ≥ 6 ln(2n/δ′)

e−4g log2 n
(
1− e−4 f

)2 ,

reconstruction of T with probability 1− δ′ is possible. This bound differs from that of a three-
species phylogeny in two ways: 1) a factor of log n accounts for the fact that a polynomial in n
number of triplets must be correclty recontructed; 2) a polynomial factor in n (namely e4g log2 n)
accounts for the depth of the phylogeny. As it turns out, the latter — the role of the depth — is
more intricate than our naive analysis suggests. We discuss this next.
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8.1 Signal decay

The extent to which the depth of a phylogeny affects the sequence-length requirement of recon-
struction methods depends strongly on the branching rate. To highlight this subtle phenomenon,
we first consider a different problem: reconstructing an ancestral state. We begin with a numerical
simulation. The function full generates N samples of sequence length k at the leaves of a full bi-
nary tree with h levels where all branch lengths are equal to b. More specifically what is generated
is, for each site, the total number of substitutions on level h compared to the root state. While
this does not fully characterize the sequences at the leaves, it will suffice for our purposes. The
function test_maj then infers the root sequence by majority vote over the leaves on a single site
and outputs the fraction of successful reconstructions over N attempts.

In [17]: def child(s,i,p): # number of subs to one child of each parent
return np.random.binomial(s,1-p) + np.random.binomial(2**i-s,p)

def full(b,k,h,N): # number of subs at leaves of full binary tree
ns_root = np.zeros((N,k),dtype=int)
for i in range(h):

ns_root = child(ns_root,i,l2p(b)) + child(ns_root,i,l2p(b))
return ns_root

def test_maj(b,h,N): # ancestral reconstruction by majority over leaves
return np.sum(full(b,1,h,N)<2**(h-1))/N

The following experiment tests the accuracy of ancestral state reconstruction by majority vote
as the number of levels increases for two different values of branch lengths, b0 and b1. In both
cases, the probability of correct reconstruction roughly decreases with the number of levels. How-
ever, we see that for the longer branch length b1 (dotted line) the probability of correct recon-
struction appears to converge to 1/2, while that probability settles on a much larger value for
the shorter branch length b0 (solid line). Note that a success probability of 1/2 corresponds to
guessing at random.

In [18]: # EXP 12: accuracy of ancestral reconstruction by majority v. h
b0, b1, k, h, N = 0.1, 0.3, 1, 12, 1000

freq_succ0, freq_succ1 = np.zeros(h), np.zeros(h)
for i in range(h):

freq_succ0[i], freq_succ1[i] = test_maj(b0,i,N), test_maj(b1,i,N)

plt.plot(np.arange(h),freq_succ0);
plt.plot(np.arange(h),freq_succ1,':');
plt.xlabel('Height'), plt.ylabel('Success probability');
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We next explain this significant difference analytically. Precisely, we compute the variance of
the ancestral state estimator above and show that it undergoes a phase transition as the branch
length b increases. Let T = (V, E) be a full binary tree with h levels and all branch lenghts equal
to b. Let R be its root and L = {A1, . . . , A2h} be its leaves. Assume that (σv : v ∈ V) is a single
site on T generated under the CF model. In particular, σL denotes the states at the leaves. We are
interested in the following natural estimator of the root state σR from σL: take a majority vote over
the states at the leaves (or pick uniformly at random in case of a tie). In our setting, this estimator
is equivalent to the sign of the average state at the leaves, which for convenience we normalize as
follows,

Ah,θ =
1

2hθh

2h

∑
i=1

σAi ,

where θ := θ(b).
To analyze this estimator, we first show that Ah,θ is conditionally unbiased, given the state at

the root. Indeed, we get by symmetry

E [Ah,θ |σR] =
1
θh E [σA1 |σR] .

Recalling that P(R, A1) are the edges on the path between R and A1 and using the formulas de-
rived previously, we then get

E [Ah,θ |σR] =
1
θh E

[
σR ∏

e∈P(R,A1)

τe

∣∣∣∣∣σR

]
=

1
θh σRθh = σR.

26



Next, we study the variance of Ah,θ . By a standard formula,

Var [Ah,θ |σR] =
1

22hθ2h E

( 2h

∑
i=1

σAi

)2
∣∣∣∣∣∣σR

− (E [Ah,θ |σR])
2 .

We have already computed the second term on the r.h.s., which is 1. For the first term we observe
that the expectation is equal to

2h

∑
i,j=1

E
[
σAi σAj

∣∣∣σR

]
=

2h

∑
i,j=1

E

(σR ∏
e∈P(R,Ai)

τe

)σR ∏
e∈P(R,Aj)

τe

∣∣∣∣∣∣σR

 .

Let Ai ∧ Aj be the most recent common ancestor of Ai and Aj and let hi∧j be the graph distance
from the root to Ai ∧ Aj. Then cancellations on the path from the root to Ai ∧ Aj lead to the
simplified expression

E

(σR ∏
e∈P(R,Ai)

τe

)σR ∏
e∈P(R,Aj)

τe

∣∣∣∣∣∣σR

 = E

 ∏
e∈P(Ai∧Aj,Ai)

τe ∏
e∈P(Ai∧Aj,Aj)

τe

 = θ2h−2hi∧j .

Plugging this back above and decomposing the sum over the levels of T, we get

2h

∑
i,j=1

E
[
σAi σAj

∣∣∣σR

]
=

h

∑
m=0

2m
(

2h−m−1
)2

θ2h−2m =
1
4

h

∑
m=0

22h−mθ2h−2m,

where the term
(
2h−m−1)2 counts the number of pairs Ai, Aj whose most recent common ancestor

Ai ∧ Aj is a fixed vertex v on level m, while the term 2m counts the number of such vertices v.
Finally

Var [Ah,θ |σR] =
1
4

h

∑
m=0

(2θ2)−m − 1.

The key observation is that the limit of this variance as the height goes to +∞ depends crucially
on the quantity 2θ2:

Var [Ah,θ |σR]→
{
+∞ if 2θ2 ≤ 1,

1
4(1−(2θ2)−1)

− 1 if 2θ2 > 1.

Intuitively this can be interpreted as follows: when the variance goes to +∞, the estimator Ah,θ is
essentially unable to distinguish between the cases σR = +1 and σR = −1.

This in indeed what we observe on the plot above. Note that, in terms of branch lengths, the
critical threshold is

2(e−2b)2 = 1 ⇐⇒ b =
1
2

log
√

2 = 0.173...

Hence, b0=0.1 above (solid line) is below the critical threshold, corresponding to a finite vari-
ance in the limit, while b1=0.3 (dotted line) is above the threshold, corresponding to an infinite
variance. Notice moreover that, while our analysis is asymptotic in h, the previous experiment
suggests that convergence occurs after a small number of levels.
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8.2 Depth v. branching

How is this related to sequence-length requirements? The results in the previous section indicate
that the decay of the signal along a phylogeny presents two regimes, as illustrated by the ability
of majority voting to reconstruct the state at the root. It is natural to expect that this phenomenon
may have a significant impact on phylogeny reconstruction. We first test this hypothesis through
a simulation.

We consider the following generalization of our previous simple setting: we start with triplet
AB|C with parameters g and f as before and we add a full binary tree with h levels below each of
A, B and C. Let T be the resulting tree and let

L = {A1, . . . , A2h , B1, . . . , B2h , C1, . . . , C2h} ,

be the corresponding leaves, where the first batch of size 2h are descendants of A, and so on. For
X ∈ {A, B, C}, let TX be the subtree below (and including) X. We assume that the branch lengths
on TA, TB and TC are all equal to b. Our goal is to infer the deep triplet AB|C from sequence data
σ
(k)
L at the leaves.

We begin with a simple test. We perform our previous pairwise comparison test D on the
sub-dataset (σ(k)

A1
, σ

(k)
B1

, σ
(k)
C1

), i.e., we only use the data from one leaf in each subtree. The function
test_deep_naive below performs this test.

In [19]: def test_deep_naive(g,f,b,h,k,N): # pairwise comp for deep triplet AB|C
sAB, sAC, sBC = AB_C(g+h*b,f,k,N)
ABvAC, ABvBC = comp(sAB-sAC,sAB-sBC)
return np.sum(np.logical_and(ABvAC[:,-1]>0, ABvBC[:,-1]>0),axis=0)/N

In the following experiment, we plot the success probability of this test as the number of levels
h increases for two different values of branch length b, one on each side of the critical thresh-
old. In both cases, the success probability rapidly converges to 1/3, although that convergence is
somewhat slower for the smaller branch length (solid line).

In [20]: # EXP 13: accuracy of pairwise comparisons for deep triplet
g, f, b0, b1, h, k, N = 0.01, 5, 0.1, 0.3, 12, 75, 1000

freq_succ0, freq_succ1 = np.zeros(h), np.zeros(h)
for i in range(h):

freq_succ0[i] = test_deep_naive(g,f,b0,i,k,N)
freq_succ1[i] = test_deep_naive(g,f,b1,i,k,N)

plt.plot(np.arange(h),freq_succ0);
plt.plot(np.arange(h),freq_succ1,':');
plt.xlabel('Height'), plt.ylabel('Success probability');
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That first test was somewhat naive, in that it used a single leaf per subtree. It is not surprising
that the rate of signal decay only has a mild effect on its behavior: in our observations on ancestral
state reconstruction, it was crucial to use all the leaves. A more sophisticated estimator is obtained
by averaging over all pairs of leaves between each pair of subtrees. Namely, we consider the
following distance-based algorithm D: we return D(σ

(k)
L ) = XY|Z if

min

{
2h

∑
i,j=1

Σk
XiYj
−

2h

∑
i,j=1

Σk
XiZj

;
2h

∑
i,j=1

Σk
XiYj
−

2h

∑
i,j=1

Σk
YiZj

}
> 0;

and we return a failure if no such pair exists. In the function avg_dst below, we re-write

2h

∑
i,j=1

Σk
XiYj

=
k

∑
m=1

(
2h

∑
i=1

sm
XiX

)
sm

XY

(
2h

∑
j=1

sm
YYj

)
,

and we note that the expressions in parentheses on the r.h.s. can be expressed in terms of the total
number of substitutions between X (respectively Y) and X1, . . . , X2h (respectively X1, . . . , X2h ). The
latter quantities are of course not known from the data at the leaves — we only use this convenient
representation for the sake of speedy simulation. The function test_deep_avg implements the
estimator D and tests it for different values of the depth h.

In [21]: def avg_dst(ns2X,sXY,ns2Y,h): # mean distance across deep subtrees X and Y
return (-ns2X+(2**h-ns2X))*sXY*(-ns2Y+(2**h-ns2Y))

def test_deep_avg(g,f,b,h,k,N): # averaged pairwise for deep triplet AB|C
sAB, sAC, sBC = AB_C(g,f,k,N)
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ns2A, ns2B, ns2C = full(b,k,h,N), full(b,k,h,N), full(b,k,h,N)
critABvAC = avg_dst(ns2A,sAB,ns2B,h) - avg_dst(ns2A,sAC,ns2C,h)
critABvBC = avg_dst(ns2A,sAB,ns2B,h) - avg_dst(ns2B,sBC,ns2C,h)
ABvAC, ABvBC = comp(critABvAC,critABvBC)
return np.sum(np.logical_and(ABvAC[:,-1]>0, ABvBC[:,-1]>0),axis=0)/N

The following experiment shows a drastically different outcome. In the plot, the solid line
is the probability of success of D when b is below the critical threshold (here b0=0.1) while the
dotted line shows the same quantity above the threshold (here b1=0.3). Below the threshold,
the probability of success remains 1 no matter how deep the tree is (here up to h=12). On the
other hand, above the threshold the success deteriotates fast with h. Morally, in the first case,
the phylogeny appears "shallow" (information-theoretically speaking) independently of its true
depth (combinatorially speaking). The sequence length was chosen so that, in both cases, the
success probability is 1 when h = 0 (trial and error not shown). Also g and f were chosen to
ensure that somewhat short sequences suffice, to allow for a fast simulation.

In [22]: # EXP 14: accuracy of averaged pairwise comparisons for deep triplet
g, f, b0, b1, h, k, N = 0.01, 5, 0.1, 0.3, 12, 75, 1000

freq_succ0, freq_succ1 = np.zeros(h), np.zeros(h)
for i in range(h):

freq_succ0[i] = test_deep_avg(g,f,b0,i,k,N)
freq_succ1[i] = test_deep_avg(g,f,b1,i,k,N)

plt.plot(np.arange(h),freq_succ0);
plt.plot(np.arange(h),freq_succ1,':');
plt.xlabel('Height'), plt.ylabel('Success probability');
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We confirm this picture analytically. We assume the data is generated under AB|C. We want
an upper bound on the probability of error, i.e., the probability of the intersection of the events

EAC =

{
2h

∑
i,j=1

Σk
Ai Bj
−

2h

∑
i,j=1

Σk
AiCj

> 0

}
,

and

EBC =

{
2h

∑
i,j=1

Σk
Ai Bj
−

2h

∑
i,j=1

Σk
BiCj

> 0

}
.

By symmetry, these have the same probability. We follow the argument used in the analysis of
D, with one modification. Rather than using Hoeffding’s inequality (which is valid for bounded
variables — not the case here) we use Chebyshev’s inequality, one form of which is the following:
if W1, . . . , Wk are independent random variables with respective variances αi, i = 1, . . . , k, then for
all ε > 0

P

[
k

∑
i=1

(Wi −E[Wi]) ≥ kε

]
≤ ∑k

i=1 αi

k2ε2 .

Hence, using the expression for ∑2h

i,j=1 Σk
Ai Bj

derived above, it remains to compute the mean

and variance of
(

∑2h

i=1 sm
Ai A

)
sm

AB

(
∑2h

j=1 sm
BBj

)
. By definition, sm

XY = σm
X σm

Y so that by cancellation

Σ̃m
AB :=

(
2h

∑
i=1

sm
Ai A

)
sm

AB

(
2h

∑
j=1

sm
BBj

)
=

(
2h

∑
i=1

σm
Ai

)(
2h

∑
j=1

σm
Bj

)
.

The law of total expectation allows to condition on the states at A and B as follows

E

[(
2h

∑
i=1

σm
Ai

)(
2h

∑
j=1

σm
Bj

)]
= E

[
E

[(
2h

∑
i=1

σm
Ai

)(
2h

∑
j=1

σm
Bj

)∣∣∣∣∣σm
A , σm

B

]]
.

This is useful because, once we condition on σm
A and σm

B , the states at leaves of TA and TB are
independent. This is the so-called Markov property. Hence we get

E

[
E

[(
2h

∑
i=1

σm
Ai

)(
2h

∑
j=1

σm
Bj

)∣∣∣∣∣σm
A , σm

B

]]
= E

[
E

[
2h

∑
i=1

σm
Ai

∣∣∣∣∣σm
A

]
E

[
2h

∑
j=1

σm
Bj

∣∣∣∣∣σm
B

]]
.

Using our previous formula for the conditional expectations above, we get finally

E

[
E

[
2h

∑
i=1

σm
Ai

∣∣∣∣∣σm
A

]
E

[
2h

∑
j=1

σm
Bj

∣∣∣∣∣σm
B

]]
= E

[
2hθ(b)hσm

A × 2hθ(b)hσm
B

]
= (2θ(b))2hθ(2g).

That is,
E
[
Σ̃m

AB

]
= (2θ(b))2hθ(2g).

As for the variance, we first use the conditional variance formula

Var
[
Σ̃m

AB

]
= Var

[
E
[
Σ̃m

AB

∣∣∣σm
A , σm

B

]]
+ E

[
Var

[
Σ̃m

AB

∣∣∣σm
A , σm

B

]]
.
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From the computation above, the first term is

Var
[
E
[
Σ̃m

AB

∣∣∣σm
A , σm

B

]]
= Var

[
2hθ(b)hσm

A × 2hθ(b)hσm
B

]
= (2θ(b))4hVar [σm

A σm
B ] .

Using that (σm
A )

2 = (σm
B )2 = 1,

Var [σm
A σm

B ] = 1− (E [σm
A σm

B ])2 = 1− θ(2g)2.

For the second term in the conditional variance formula, we use that

Var
[
Σ̃m

AB

∣∣∣σm
A , σm

B

]
= E

[(
Σ̃m

AB

)2
∣∣∣∣σm

A , σm
B

]
−
(

E
[
Σ̃m

AB

∣∣∣σm
A , σm

B

])2
.

The second term on the r.h.s. is equal to (2θ(b))4h while the first term is, by the Markov property
again,

E

( 2h

∑
i=1

σm
Ai

)2
∣∣∣∣∣∣σm

A

E

( 2h

∑
j=1

σm
Bj

)2
∣∣∣∣∣∣σm

B

 =

(
1
4

h

∑
m=0

22h−mθ(b)2h−2m

)2

,

where the last expression was derived in the section on ancestral state reconstruction. Note that
both terms in our derived expression for Var

[
Σ̃m

AB

∣∣∣σm
A , σm

B

]
do not in fact depend on σm

A , σm
B and

therefore are unaffected by taking an expectation. Putting everything together, the variance is

Var
[
Σ̃m

AB

]
= (2θ(b))4h (1− θ(2g)2)+(1

4

h

∑
m=0

22h−mθ(b)2h−2m

)2

− (2θ(b))4h.

After simplification that becomes

Var
[
Σ̃m

AB

]
=

(
1
4

h

∑
m=0

22h−mθ(b)2h−2m

)2

− (2θ(b))4hθ(2g)2.

We will bound P[E c
AC] as follows:

P[E c
AC] ≤ P[FAB] + P[FAC],

where

FAB =

{
k

∑
m=1

(
Σ̃m

AB −E[Σ̃m
AB]
)
≤ −k(2θ(b))2h θ(2g)− θ(2g + 2 f )

2

}
,

and

FAC =

{
k

∑
m=1

(
Σ̃m

AC −E[Σ̃m
AC]
)
≥ k(2θ(b))2h θ(2g)− θ(2g + 2 f )

2

}
.

In words, if ∑2h

i,j=1 Σk
Ai Bj
−∑2h

i,j=1 Σk
AiCj
≤ 0 then one of the two terms must be away from its expec-

tation by more than half the gap between the expectations. By Chebyshev’s inequality we have
the bound

P[FAB] ≤

(
1
4 ∑h

m=0 22h−mθ(b)2h−2m
)2
− (2θ(b))4hθ(2g)2

k(2θ(b))4h(θ(2g)− θ(2g + 2 f ))2/4
.
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After simplification, we get

P[FAB] ≤
1
k

1
4

(
∑h

m=0(2θ(b)2)−m
)2

(θ(2g)− θ(2g + 2 f ))2 .

It can be checked that the same bound holds for P[FAC]. Applying the same argument to P[E c
BC],

we finally get the following bound

P
[
D(σ

(k)
L ) 6= T

]
≤ 1

k

(
∑h

m=0(2θ(b)2)−m
)2

(θ(2g)− θ(2g + 2 f ))2 .

The sequence length required to drive down this error to δ depends on 2θ(b)2. When 2θ(b)2 >
1, the numerator on the r.h.s. is at most 1/(1− (2θ(b)2)−1)2 and we require

k ≥ 1
δ

1
(θ(2g)− θ(2g + 2 f ))2(1− (2θ(b)2)−1)2 ,

which does not depend on h. That is, in that regime, the sequence length requirement of this
method is not sensitive to the depth of the tree. On the other hand, when 2θ(b)2 < 1 (we omit
the equality case), the numerator on the r.h.s. of our bound on the error probability now grows
exponentially with h and we require

k ≥ 1
δ

(1/2θ(b)2)2h+2

(θ(2g)− θ(2g + 2 f ))2((1/2θ(b)2)− 1)2 .

9 Bibliographic remarks

While for simplicity we have focused exclusively on the Cavender-Farris model under a molecular
clock, sequence-length requirement results have been derived in much more general contexts —
using some of the insights described here as well as many other ideas. We give a brief, non-
extensive review of these results below.

Under a general Markov model on a general phylogeny with branch lengths bounded between
two constants, distance-based methods have been developed that have the same type of depen-
dence on shortest branch length and depth that we previoulsy described, although branch length
and depth must be defined with some care [ESSW99b, ESSW99a, HNW99, MR06]. In particular,
the sequence-length requirement of these so-called fast converging methods is polynomial in the
number of leaves n under these assumptions. It should be noted that not all distance-based meth-
ods are fast converging. Most prominently, the popular Neighbor-Joining has been shown to have
exponential requirement in n [LC06]. Results on fast converging distance-based methods have
also been extended to partial forest reconstruction [Mos07, DMR11a, DHJ+06].

Phase transition results on general phylogenies have also been obtained, albeit under more
restrictive assumptions. In the "reconstruction regime," i.e., when branch lengths are below a
critical threshold that depends on the model, the sequence-length requirement has been shown
to scale logarithmically in n for certain ad-hoc methods [Mos04, DMR11b, MHR13], as well as
distance-based methods similar to the one described above [Roc10] and maximum likelihood es-
timation [RS17]. Currently, these results have been rigorously established under simpler models,
such as Jukes-Cantor, and further require that branch lengths are discretized. It is a (potentially
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difficult) open problem to obtain logarithmic in n sequence-length requirements without this dis-
cretization assumption. Lower bounds have been derived in [SS02, Mos03, MRS11].

Some limited amount of work has been dedicated to deriving sequence-length requirements
in more complex models, including models of insertions and deletions [DR13] and multiloci
coalescent-based models [RW15, DNR15, MR17].
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