
Lecture 1 : Overview. Conditional Expectation I.

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Sections 0, 4.8, 9], [Dur10, Section 5.1].

1 Stochastic processes

The course MATH 275B is an introduction to stochastic processes.

DEF 1.1 A stochastic process (SP) is a collection {Xt}t∈T of (E, E)-valued ran-

dom variables on a triple (Ω,F ,P), where T is an arbitrary index set. For a fixed

ω ∈ Ω, {Xt(ω) : t ∈ T } is called a sample path.

EX 1.2 When T = N or T = Z+ we have a discrete-time SP. For instance,

• X1, X2, . . . iid RVs

• {Sn}n≥1 where Sn =
�

i≤nXi with Xi as above

EX 1.3 When T = R+, we have a continuous-time SP. For instance,

• Nt = sup{n ≥ 1 : Sn ≤ t} where Sn is as above with nonnegative Xis

In general, T does not need to represent time.

EX 1.4 When T is finite, we have a random vector. Although seemingly simple,

this example encapsulates many non-trivial SPs. For instance,

• Let V = {1, . . . , n} and E = {e = (u, v) : u �= v ∈ V } . Consider iid RVs

X(e), e ∈ E, distributed according to Bernoulli(p) for 0 ≤ p ≤ 1. Then

Gp = (V,Ep), where Ep = {e ∈ E : X(e) = 1}, is called an Erdos-Renyi
random graph.
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2 A Preview of Things to Come

Two main themes:

1. Beyond independence

2. Sample path properties

Here are a few important examples of processes and questions we will answer
about them.

2.1 Random walks

DEF 1.5 A random walk (RW) on Rd
is an SP of the form:

Sn =
�

i≤n

Xi, n ≥ 1

where the Xis are iid in Rd
.

EX 1.6 When d = 1, recall from MATH 275A that

• SLLN: n−1Sn → E[X1] a.s. when E|X1| < +∞

• CLT:

Sn − nE[X1]�
nVar[X1]

⇒ N(0, 1),

when E[X2
1 ] < ∞.

These are examples of limit theorems. Sample path properties, on the other hand,

involve properties of the sequence S1(ω), S2(ω), . . .. For instance, let A ⊂ Rd

• P[Sn ∈ A for some n ≥ 1]?

• P[Sn ∈ A i.o.]?

• E[TA]? where TA = inf{n ≥ 1 : Sn ∈ A}

2.2 Branching processes

DEF 1.7 A branching process is an SP of the form:

• Let X(i, n), i ≥ 1, n ≥ 1, be an array of iid Z+-valued RVs with finite mean

µ = E[X(1, 1)] < +∞ and P[X(1, 1) = 0] > 0
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• Z0 = 1, and inductively,

Zn =
�

1≤i≤Zn−1

X(i, n)

EX 1.8 Typical questions about branching processes are:

• Extinction: P[Zn = 0 for some n ≥ 1]?

• Exponential growth: Mn = µ−nZn →?

• Limit of expectations: when µ < 1 we have E[Mn] = 1 for all n yet

E[M∞] = 0

2.3 Markov chains

The two previous examples are special cases of a large class of SPs.

DEF 1.9 A discrete-time countable-space Markov chain(MC) is an SP of the form:

• E countable state space

• µ initial distribution, that is, µi ≥ 0, i ∈ E, and
�

i∈E µi = 1

• {pij}i,j∈E transition matrix, that is, pij ≥ 0, i, j ∈ E, and
�

j∈E pij = 1
for all i ∈ E

• Let Y (i, n), i ∈ E, n ≥ 1, be an array of iid RVs distributed according to

pi·

• Define the process recursively by Z0 = 0, and,

Zn = Y (Zn−1, n)

3 Review of undergraduate conditional probability

3.1 Conditional probability

For two events A,B, the conditional probability of A given B is defined as

P[A |B] =
P[A ∩B]

P[B]
,

where we assume P[B] > 0.
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3.2 Conditional expectation

Let X and Z be RVs taking values x1, . . . , xm and z1, . . . , zn resp. The conditional
expectation of X given Z = zj is given as

yj ≡ E[X |Z = zj ] =
�

i

xiP[X = xi |Z = zj ].

We assume P[Z = zj ] > 0.
As motivation for the general definition, we make the following observations:

• We can think of the conditional expectation as a RV Y ≡ E[X |Z] defined
as follows:

Y (ω) = yj , on Gj ≡ {ω : Z(ω) = zj}.

• Then Y is G-measurable where G = σ(Z).

• On sets in G, the expectation of Y agrees with the expectation of X , that is,

E[Y ;Gj ] = yjP[Gj ]

=
�

i

xiP[X = xi |Z = zj ]P[Z = zj ]

=
�

i

xiP[X = xi, Z = zj ]

= E[X;Gj ].

This is also true for all G ∈ G by summation.

4 Conditional expectation: definition, existence, unique-

ness

4.1 Definition

DEF&THM 1.10 Let X ∈ L1(Ω,F ,P) and G ⊆ F a sub σ-field. Then there

exists a (a.s.) unique Y ∈ L1(Ω,G,P) s.t.

E[Y ;G] = E[X;G], ∀G ∈ G.

Such Y is called a version of E[X | G].

Further reading

Kolmogorov’s extension theorem [Dur10, Section A.3]. Radon-Nikodym theo-
rem [Dur10, Section A.4].



Lecture 1: Overview. Conditional Expectation I. 5

References

[Dur10] Rick Durrett. Probability: theory and examples. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, fourth edition, 2010.

[Wil91] David Williams. Probability with martingales. Cambridge Mathematical
Textbooks. Cambridge University Press, Cambridge, 1991.



Lecture 2 : Conditional Expectation II

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 9], [Dur10, Section 5.1].

1 Conditional expectation: definition, existence, unique-
ness

1.1 Definition

DEF&THM 2.1 Let X ∈ L1(Ω,F ,P) and G ⊆ F a sub σ-field. Then there exists
a (a.s.) unique Y ∈ L1(Ω,G,P) s.t.

E[Y ;G] = E[X;G], ∀G ∈ G.

Such Y is called a version of E[X | G].

1.2 Proof of uniqueness

Let Y, Y � be two versions of E[X |G] such that w.l.o.g. P[Y > Y
�] > 0. By

monotonicity, there is n ≥ 1 with G = {Y > Y
� + n

−1} ∈ G such that P[G] > 0.
Then, by definition,

0 = E[Y − Y
�;G] > n

−1P[G] > 0,

which gives a contradiction.

1.3 Proof of existence

There are two main approaches:

1. First approach: Radon-Nikodym theorem. Read [Dur10, Section A.4].

2. Second approach: Hilbert space method.

We begin with a definition.
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DEF&THM 2.2 Let X ∈ L2(Ω,F ,P) and G ⊆ F a sub σ-field. Then there exists
a (a.s.) unique Y ∈ L2(Ω,G,P) s.t.

∆ ≡ �X − Y �2 = inf{�X −W�2 : W ∈ L
2(Ω,G,P)},

and, moreover,
�Z,X − Y � = 0, ∀Z ∈ L

2(Ω,G,P).
Such Y is called an orthogonal projection of X on L2(Ω,G,P).

We give a proof for completeness.
Proof: Take (Yn) s.t. �X−Yn�2 → ∆. Remembering that L2(Ω,G,P) is complete
we seek to prove that (Yn) is Cauchy. Using the parallelogram law

2�U�
2
2 + 2�V �

2
2 = �U − V �

2
2 + �U + V �

2
2,

note that

�X − Yr�
2
2 + �X − Ys�

2
2 = 2�X −

1

2
(Yr + Ys)�

2
2 + 2�

1

2
(Yr − Ys)�

2
2.

The first term on the LHS is at least ∆2 so we have what we need. Let Y be the
limit of (Yn).

Note that for any Z ∈ L
2(Ω,G,P) and t ∈ R

�X − Y − tZ�
2
2 ≥ �X − Y �

2
2,

so that, expanding and rearranging, we have

−2t�Z,X − Y �+ t
2
�Z�

2
2 ≥ 0,

which is only possible if the first term is 0.
Uniqueness follows from the parallelogram law again.
We return to the proof of existence of the conditional expectation. We use the

standard machinery. The previous theorem implies that conditional expectations
exist for indicators and simple functions. Now take X ∈ L1(Ω,F ,P) and write
X = X

+−X
−, so we can assume X ∈ L1(Ω,F ,P)+ w.l.o.g. Using the staircase

function

X
(r) =






0, if X = 0
(i− 1)2−r

, if (i− 1)2−r
< X ≤ i2−r ≤ r

r, if X > r,

we have 0 ≤ X
(r) ↑ X . Let Y (r) = E[X(r) | G]. Using an argument similar to the

proof of uniqueness, it follows that U ≥ 0 implies E[U | G] ≥ 0. Using linearity ,
we then have Y

(r) ↑ Y ≡ lim supY (r) which is measurable in G. By (MON)

E[Y ;G] = E[X;G], ∀G ∈ G.



Lecture 2: Conditional Expectation II 3

2 Examples

EX 2.3 If X ∈ L1(G), then E[X | G] = X a.s. trivially.

EX 2.4 If G = {∅,Ω}, then E[X | G] = E[X].

EX 2.5 Let A,B ∈ F with 0 < P[B] < 1. If G = {∅, B,B
c
,Ω} and X = A,

then

P[A | G] =

� P[A∩B]
P[B] , on ω ∈ B

P[A∩Bc]
P[Bc] , on ω ∈ B

c

3 Conditional expectation: properties

We show that conditional expectations behave the way one would expect. Below
all Xs are in L1(Ω,F ,P) and G is a sub σ-field of F .

3.1 Extending properties of standard expectations

LEM 2.6 (cLIN) E[a1X1 + a2X2 | G] = a1E[X1 | G] + a2E[X2 | G] a.s.

Proof: Use linearity of expectation and the fact that a linear combination of RVs
in G is also in G.

LEM 2.7 (cPOS) If X ≥ 0 then E[X | G] ≥ 0 a.s.

Proof: Let Y = E[X | G] and assume P[Y < 0] > 0. There is n ≥ 1 s.t. P[Y <

−n
−1] > 0. But that implies, for G = {Y < −n

−1},

E[X;G] = E[Y ;G] < −n
−1P[G] < 0,

a contradiction.

LEM 2.8 (cMON) If 0 ≤ Xn ↑ X then E[Xn | G] ↑ E[X | G] a.s.

Proof: Let Yn = E[Xn | G]. By (cLIN) and (cPOS), 0 ≤ Yn ↑. Then letting
Y = lim supYn, by (MON),

E[X;G] = E[Y ;G],

for all G ∈ G.

LEM 2.9 (cFATOU) If Xn ≥ 0 then E[lim infXn | G] ≤ lim inf E[Xn | G] a.s.
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Proof: Note that, for n ≥ m,

Xn ≥ Zm ≡ inf
k≥m

Xm ↑∈ G,

so that infn≥m E[Xn | G] ≥ E[Zm | G]. Applying (cMON)

E[limZm | G] = limE[Zm | G] ≤ lim inf
n≥m

E[Xn | G].

LEM 2.10 (cDOM) If Xn ≤ V ∈ L1(Ω,F ,P) and Xn → X a.s., then

E[Xn | G] → E[X | G]

Proof: Apply (cFATOU) to Wn = 2V − |Xn −X| ≥ 0

E[2V | G] = E[lim infWn] ≤ lim inf E[Wn | G] = E[2V | G]−lim inf E[|Xn−X| | G].

Use that, by definition, |E[Xn −X | G]| ≤ E[|Xn −X| | G].

LEM 2.11 (cJENSEN) If f is convex and E[|f(X)|] < +∞ then

f(E[X | G]) ≤ E[f(X) | G].

Proof: Exercise!

3.2 Other properties

LEM 2.12 (Tower) If H ⊆ G is a σ-field

E[E[X | G] |H] = E[X |H].

In particular E[E[X | G]] = E[X].

Proof: Let Y = E[X | G] and Z = E[X |H]. Then Z ∈ H and for H ∈ H ⊆ G

E[Z;H] = E[X;H] = E[Y ;H].

LEM 2.13 (Taking out what is known) If Z ∈ G is bounded then

E[ZX | G] = ZE[X | G].

This is also true if X,Z ≥ 0 and E[ZX] < +∞ or X ∈ Lp(F) and Z ∈ Lq(G)
with p

−1 + q
−1 = 1 and p > 1.
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Proof: By (LIN), we restrict ourselves to X ≥ 0. Clear if Z = G� is an indicator
with G

� ∈ G since

E[ G�X;G] = E[X;G ∩G
�] = E[E[X | G];G ∩G

�] = E[ G�E[X | G];G],

for all G ∈ G. Use the standard machine to conclude.

LEM 2.14 (Role of independence) If H is independent of σ(σ(X),G), then

E[X |σ(G,H)] = E[X | G].

In particular, if X is independent of H then E[X |H] = E[X].

Proof: Let H ∈ H and G ∈ G. Since Y = E[X | G] ∈ G, we have

E[X;G ∩H] = E[X;G]P[H] = E[Y ;G]P[H] = E[Y ;G ∩H].

We conclude with the following lemma.

LEM 2.15 (Uniqueness of extension) Let I be a π-system on a set S, that is,
a family of subsets stable under intersection. If µ1, µ2 are finite measures on
(S, σ(I)) with µ1(Ω) = µ2(Ω) that agree on I, then µ1 and µ2 agree on σ(I).

Indeed, note that the collection I of sets G∩H for G ∈ G, H ∈ H form a π-system
generating σ(G,H).

Further reading

Regular conditional probability [Dur10, Section 5.1]. π-λ theorem [Dur10, Section
A.1].
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1 Definitions

DEF 3.1 A filtered space is a tuple (Ω,F , {Fn},P) where:

• (Ω,F ,P) is a probability space

• {Fn} is a filtration, i.e.,

F0 ⊆ F1 ⊆ · · · ⊆ F∞ ≡ σ(∪Fn) ⊆ F .

where each Fi is a σ-field.

Intuitively, Fi is the information up to time i.

EX 3.2 Let X0, X1, . . . be iid RVs. Then a filtration is given by

Fn = σ(X0, . . . , Xn), ∀n ≥ 0.

Fix (Ω,F , {Fn},P).
DEF 3.3 A process {Wn}n≥0 is adapted if Wn ∈ Fn for all n.

Intuitively, the value of Wn is known at time n.

EX 3.4 Continuing. Let {Sn}n≥0 where Sn =
�

i≤nXi is adapted.

DEF 3.5 A process {Cn}n≥1 is previsible if Cn ∈ Fn−1 for all n ≥ 1.

EX 3.6 Continuing. Cn = {Sn−1 ≤ k}.

Our main definition is the following.

DEF 3.7 A process {Mn}n≥0 is a martingale (MG) if

• {Mn} is adapted

• E|Mn| < +∞ for all n

• E[Mn | Fn−1] = Mn−1 for all n ≥ 1

A superMG or subMG is similar except that the equality in the last property is

replaced with ≤ or ≥ respectively.

1
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2 Examples

EX 3.8 (Sums of iid RVs with mean 0) Let

• X0, X1, . . . iid RVs integrable and centered with X0 = 0

• Fn = σ(X0, . . . , Xn)

• Sn =
�

i≤nXi

Then note that E|Sn| < ∞ by the triangle inequality and

E[Sn | Fn−1] = E[Sn−1 +Xn | Fn−1]

= Sn−1 + E[Xn] = Sn−1.

EX 3.9 (Variance of a sum) Same setup with σ2 ≡ Var[X1] < ∞. Define

Mn = S2
n − nσ2.

Note that

E|Mn| ≤
�

i≤n

Var[Xi] + nσ2 ≤ 2nσ2 < +∞

and

E[Mn | Fn−1] = E[(Xn + Sn−1)
2 − nσ2 | Fn−1]

= E[X2
n + 2XnSn−1 + S2

n−1 − nσ2 | Fn−1]

= σ2 + 0 + S2
n−1 − nσ2 = Mn−1.

EX 3.10 (Exponential moment of a sum; Wald’s MG) Same setup with φ(λ) =
E[exp(λX1)] < +∞ for some λ �= 0. Define

Mn = φ(λ)−n exp(λSn).

Note that

E|Mn| ≤
φ(λ)n

φ(λ)n
= 1 < +∞

and

E[Mn | Fn−1] = φ(λ)−nE[exp(λ(Xn + Sn−1)) | Fn−1]

= φ(λ)−n exp(λSn−1)φ(λ) = Mn−1.
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EX 3.11 (Product of iid RVs with mean 1) Same setup with X0 = 1, Xi ≥ 0
and E[X1] = 1. Define

Mn =
�

i≤n

Xi.

Note that

E|Mn| = 1

and

E[Mn | Fn−1] = Mn−1E[Xn | Fn−1] = Mn−1.

EX 3.12 (Accumulating data; Doob’s MG) Let X ∈ L1(F). Define

Mn = E[X | Fn].

Note that

E|Mn| ≤ E|X| < +∞,

and

E[Mn | Fn−1] = E[X | Fn−1] = Mn−1,

by (TOWER).

EX 3.13 (Eigenvalues of transition matrix) Recall that a MC on a countable E
is:

• {µi}i∈E , {p(i, j)}i,j∈E

• Y (i, n) ∼ p(i, ·) (indep.)

• Z0 ∼ µ and Zn = Y (Zn−1, n).

Suppose f : E → R is s.t.

�

j

p(i, j)f(j) = λf(i), ∀i,

with E|f(Zn)| < +∞ for all n. Define

Mn = λ−nf(Zn).

Note that

E|Mn| < +∞,
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and

E[Mn | Fn−1] = λ−nE[f(Zn) | Fn−1]

= λ−n
�

j

p(Zn−1, j)f(j)

= λ−n · λ · f(Zn−1) = Mn−1.

EX 3.14 (Branching Process) Recall that a branching process is:

• X(i, n), i ≥ 1 and n ≥ 1, iid with mean m

• Z0 = 1 and Zn =
�

i≤Zn−1
X(i, n)

Note that for f(j) = j we have

�

j

p(i, j)j = mi,

so that Mn = m−nZn is a MG.

Further reading

Comments on harmonic functions in [Dur10, Seciton 5.2].

Next class

Stopping times and betting systems [Dur10, Section 5.2].
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1 Further definition and example

DEF 4.1 A process {Cn}n≥1 is previsible if Cn ∈ Fn−1 for all n ≥ 1.

EX 4.2 Let {Xn}n≥0 be an integrable adapted process and {Cn}n≥1, a bounded
previsible process. Define

Mn =
�

i≤n

(Xi − E[Xi | Fi−1])Ci.

Then
E|Mn| ≤

�

i≤n

2E|Xn|K < +∞,

where |Cn| < K for all n ≥ 1, and

E[Mn −Mn−1 | Fn−1] = E[(Xn − E[Xn | Fn−1])Cn | Fn−1]

= Cn(E[Xn | Fn−1]− E[Xn | Fn−1]) = 0.

2 Fair games

Take the previous example with {Xn}n≥0 a MG, that is,

Mn = (C •X)n ≡
�

i≤n

Ci(Xi −Xi−1),

where {(C •X)n}n≥0 is called the martingale transform and is a discrete analogue
of stochastic integration. If you think of Xn −Xn−1 as your net winnings per unit
stake at time n, then Cn is a gambling strategy and (C •X) is your total winnings
up to time n in a fair game.

Arguing as in the previous example, we have the following theorem.

THM 4.3 (You can’t beat the system) Let {Cn} be a bounded previsible process
and {Xn} be a MG. Then {(C •X)n} is also a MG. If, moreover, {Cn} is nonneg-
ative and {Xn} is a superMG, then {(C •X)n} is also a superMG.

1
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3 Stopping times

DEF 4.4 A random variable T : Ω → Z+ ≡ {0, 1, . . . ,+∞} is called a stopping
time if

{T ≤ n} ∈ Fn, ∀n ∈ Z+,

or, equivalently,
{T = n} ∈ Fn, ∀n ∈ Z+.

In the gambling context, a stopping time is a time at which you decide to stop
playing. That decision should only depend on the history up to time n.

EX 4.5 Let {An} be an adapted process and B ∈ B. Then

T = inf{n ≥ 0 : An ∈ B},

is a stopping time.

4 Stopped supermartingales are supermartingales

DEF 4.6 Let {Xn} be an adapted process and T be a stopping time. Then

XT
n (ω) ≡ XT (ω)∧n(ω),

is called {Xn} stopped at T .

THM 4.7 Let {Xn} be a superMG and T be a stopping time. Then the stopped
process XT is a superMG and in particular

E[XT∧n] ≤ E[X0].

The same result holds at equality if {Xn} is a MG.

Proof: Let
C(T )
n = {n ≤ T}.

Note that
{C(T )

n = 0} = {T ≤ n− 1} ∈ Fn−1,

so that C(T ) is previsible. It is also nonnegative and bounded. Note further that

(C(T ) •X)n = XT∧n −X0 = XT
n −X0.

Apply the previous theorem.
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5 Optional stopping theorem

When can we say that E[XT ] ≤ E[X0]?

THM 4.8 Let {Xn} be a superMG and T be a stopping time. Then XT is inte-
grable and

E[XT ] ≤ E[X0].

if one of the following holds:

1. T is bounded

2. X is bounded and T is a.s. finite

3. E[T ] < +∞ and X has bounded increments

4. X is nonnegative and T is a.s. finite.

The first three hold with equality if X is a MG.

Proof: From the previous theorem, we have

(∗) E[XT∧n −X0] ≤ 0.

1. Take n = N in (∗) where T ≤ N a.s.

2. Take n to +∞ and use (DOM).

3. Note that
|XT∧n −X0| ≤ |

�

i≤T∧n
(Xi −Xi−1)| ≤ KT,

where |Xn −Xn−1| ≤ K a.s. Use (DOM).

4. Use (FATOU).

Further reading

No further reading.
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1 A natural gambling strategy

Recall that
(C •X)n =

�

i≤n

Cn(Xn −Xn−1),

where Cn is predictable and Xn is a superMG, can be interpreted as your net win-
nings in a game. A natural strategy is to choose α < β and apply the following

• REPEAT

– Wait until X gets below α

– Play a unit stake until X gets above β and stop playing

• UNTIL TIME N

More formally, let
C1 = {X0 < α},

and

Cn = {Cn−1 = 1} {Xn−1 ≤ β}+ {Cn−1 = 0} {Xn−1 < α}.

Then {Cn} is predictable.

2 Upcrossings

Define the following stopping times. Let T0 = −1,

T2k−1 = inf{n > T2k−2 : Xn < α},

and
T2k = inf{n > T2k−1 : Xn > β}.

1
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The number of upcrossings of [α, β] by time N is

UN [α, β] = sup{k : T2k ≤ N}.

LEM 5.1 (Doob’s Upcrossing Lemma) Let X be a superMG. Then

(β − α)EUN [α, β] ≤ E[(XN − α)−].

Proof: Let Yn = (C •X)n. Then Yn is a superMG and satisfies

YN ≥ (β − α)UN [α, β]− (XN − α)−,

since (XN − α)− overestimates the loss during the last interval of play. The result
follows from E[YN ] ≤ 0.

COR 5.2 Let X be a superMG bounded in L1. Then

UN [α, β] ↑ U∞[α, β],

(β − α)EU∞[α, β] ≤ |α|+ sup
n

E|Xn| < +∞,

so that
P[U∞[α, β] = ∞] = 0.

Proof: Use (MON).

3 Convergence theorem

THM 5.3 (Martingale convergence theorem) Let X be a superMG bounded in
L1. Then Xn converges and is finite a.s. Moreover, let X∞ = lim supnXn then
X∞ ∈ F∞ and E|X∞| < +∞.

Proof: Let α < β ∈ Q and

Λα,β = {ω : lim infXn < α < β < lim supXn}.

Note that

Λ = {ω : Xn does not converge}
= {ω : lim infXn < lim supXn}
= ∪α<β∈QΛα,β .

Since
Λα,β ⊆ {U∞[α, β] = ∞},

we have P[Λα,β ] = 0. By countability, P[Λ] = 0. Use (FATOU) on |Xn| to
conclude.
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COR 5.4 If X is a nonnegative superMG then Xn converges a.s.

Proof: X is bounded in L1 since

E|Xn| = E[Xn] ≤ E[X0], ∀n.

EX 5.5 (Polya’s Urn) An urn contains 1 red ball and 1 green ball. At each time,
we pick one ball and put it back with an extra ball of the same color. Let Rn

(resp. Gn) be the number of red balls (resp. green balls) after the nth draw. Let
Fn = σ(R0, G0, R1, G1, . . . , Rn, Gn). Define Mn to be the fraction of green balls.
Then

E[Mn | Fn−1] =
Rn−1

Gn−1 +Rn−1

Gn−1

Gn−1 +Rn−1 + 1

+
Gn−1

Gn−1 +Rn−1

Gn−1 + 1

Gn−1 +Rn−1 + 1

=
Gn−1

Gn−1 +Rn−1
= Mn−1.

Since Mn ≥ 0 and is a MG, we have Mn → M∞ a.s. See [Dur10, Section 4.3] for
distribution of the limit and a generalization, or decipher,

P[Gn = m+ 1] =

�
n

m

�
m!(n−m)!

(n+ 1)!
=

1

n+ 1
,

so that
P[Mn ≤ x] =

�x(n+ 2)− 1�
n+ 1

→ x.

EX 5.6 (Convergence in L1?) We give an example that shows that the conditions
of the Martingale Convergence Theorem do not guarantee convergence of expec-
tations. Let {Sn} be SRW started at 1 and

T = inf{n > 0 : Sn = 0}.

Then {ST∧n} is a nonnegative MG. It can only converge to 0 . But E[X0] = 1 �= 0.
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1 Branching processes

DEF 6.1 A branching process is an SP of the form:

• Let X(i, n), i ≥ 1, n ≥ 1, be an array of iid Z+-valued RVs with finite mean
m = E[X(1, 1)] < +∞, and inductively,

Zn =
�

1≤i≤Zn−1

X(i, n)

To avoid trivialities we assume P[X(1, 1) = i] < 1 for all i ≥ 0.

LEM 6.2 Mn = m−nZn is a nonnegative MG.

Proof: Note that we have
�

j

jP[Zn = j |Zn−1 = i] = mi,

so the claim follows from the eigenvector method. Alternatively, use the following
lemma (proved in Hwk 1).

LEM 6.3 If Y1 = Y2 a.s. on B ∈ F then E[Y1 | F ] = E[Y2 | F ] a.s. on B.

Then, on {Zn−1 = k}

E[Zn | Fn−1] = E[
�

1≤j≤k

X(j, n) | Fn−1] = mk = mZn−1.

This is true for all k.

COR 6.4 Mn → M∞ < +∞ a.s. and E[M∞] ≤ 1.

1
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2 Extinction

The martingale convergence theorem in itself tells us little about the limit. Here
we try to give a more detailed picture of the limiting behavior—starting with ex-
tinction.

Let pi = P[X(1, 1) = i] for all i and for s ∈ [0, 1]

f(s) = p0 + p1s+ p2s
2 + · · · =

�

i≥0

pis
i.

Similarly, fn(s) = E[sZn ]. Ideally, we would like to compute the generating func-
tion of the limit—but this is rarely possible. Instead, we derive some of its proper-
ties. In particular, note that

π ≡ P[Zn = 0 for some n ≥ 0]

= lim
n→+∞

P[Zn = 0]

= lim
n→+∞

fn(0),

using the fact that 0 is an absorbing state and monotonicity.
Moreover, by the Markov property, fn as a natural recursive form:

fn(s) = E[sZn ]

= E[E[sZn | Fn−1]]

= E[f(s)Zn−1 ]

= fn−1(f(s)) = · · · = f (n)(s).

So we need to study iterates of f .
We summarize the properties of f next. To make it easier, we assume p0+p1 <

1.

LEM 6.5 The function f on [0, 1] satisfies:

1. f(0) = p0, f(1) = 1

2. f is indefinitely differentiable on [0, 1)

3. f is strictly convex and increasing

4. lims↑1 f �(s) = m < +∞
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Proof: 1. is clear by definition. The function f is a power series with radius of
convergence R ≥ 1. This implies 2. In particular,

f �(s) =
�

i≥1

ipis
i−1 ≥ 0,

and
f ��(s) =

�

i≥2

i(i− 1)pis
i−2 > 0.

because we must have pi > 0 for some i > 1 by assumption. This proves 3. Since
m < +∞, f �(1) is well defined and f � is continuous on [0, 1].

COR 6.6 (Fixed points) We have:

1. If m > 1 then f has a unique fixed point π0 ∈ [0, 1)

2. If m ≤ 1 then f(t) > t for t ∈ [0, 1) (Let π0 = 1 in that case.)

Proof: Since f �(1) = m > 1, there is δ > 0 s.t. f(1 − δ) < 1 − δ. On the
other hand f(0) ≥ 0 so by continuity of f there must be a fixed point in [0, 1− δ).
Moreover, by strict convexity, if r is a fixed point then f(s) < s for s ∈ (r, 1),
proving uniqueness.

The second part follows by strict convexity and monotonicity.

COR 6.7 (Dynamics) We have:

1. If t ∈ [0, π0), then f (n)(t) ↑ π0

2. If t ∈ (π0, 1) then f (n)(t) ↓ π0

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for
t ∈ [0, π0), we have t < f(t) < f(π0) = π0. Iterating

t < f (1)(t) < · · · < f (n)(t) < f (n)(π0) = π0.

So f (n)(t) ↑ L ≤ π0. By continuity of f we can take the limit inside of

f (n)(t) = f(f (n−1)(t)),

to get L = f(L). So by definition of π0 we must have L = π0.
We immediately obtain:

THM 6.8 (Extinction) The probability of extinction π is given by the smallest
fixed point of f in [0, 1]:

1. If m ≤ 1 then π = 1.

2. If m > 1 then π < 1.
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1 Preliminaries

DEF 7.1 For 1 ≤ p < +∞, we say that X ∈ Lp
if

�X�p = E[|Xp|]1/p < +∞.

By Jensen’s inequality, for 1 ≤ p ≤ r < +∞ we have �X�p ≤ �X�r if X ∈ Lr
.

Proof: For n ≥ 0, let
Xn = (|X| ∧ n)p.

Take c(x) = x
r/p on (0,+∞) which is convex. Then

(E[Xn])
r/p ≤ E[(Xn)

r/p] = E[(|X| ∧ n)r] ≤ E[|X|r].

Take n → ∞ and use (MON).

DEF 7.2 We say that Xn converges to X∞ in Lp
if �Xn − X∞�p → 0. By the

previous result, convergence on Lr
implies convergence in Lp

for r ≥ p ≥ 1.

LEM 7.3 Assume Xn, X∞ ∈ L1
. Then

�Xn −X∞�1 → 0,

implies

E[Xn] → E[X∞].

Proof: Note that

|E[Xn]− E[X∞]| ≤ E|Xn −X∞| → 0.

DEF 7.4 We say that {Xn}n is bounded in Lp
if

sup
n

�Xn�p < +∞.

1
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2 L2 convergence

THM 7.5 Let M be a MG with Mn ∈ L2
. Then M is bounded in L2

if and only if

�

k≥1

E[(Mk −Mk−1)
2] < +∞.

When this is the case, Mn converges a.s. and in L2
.

Proof:

LEM 7.6 (Orthogonality of increments) Let s ≤ t ≤ u ≤ v. Then,

�Mt −Ms,Mv −Mu� = 0.

Proof: Use Mu = E[Mv | Fu], Mt −Ms ∈ Fu and apply the L
2 characterization

of conditional expectations.
That implies

E[M2
n] = E[M2

0 ] +
�

1≤i≤n

E[(Mi −Mi−1)
2],

proving the first claim.
By monotonicity of norms, M is bounded in L

2 implies M bounded in L
1

which, in turn, implies M converges a.s. Then using (FATOU) in

E[(Mn+k −Mn)
2] =

�

n+1≤i≤n+k

E[(Mi −Mi−1)
2],

gives
E[(M∞ −Mn)

2] ≤
�

n+1≤i

E[(Mi −Mi−1)
2].

The RHS goes to 0 which proves the second claim.

3 Back to branching processes

THM 7.7 Let Z be a branching process with Z0 = 1, m = E[X(1, 1)] > 1
and σ

2 = Var[X(1, 1)] < +∞. Then, Mn = m
−n

Zn converges in L
2
, and in

particular, E[M∞] = 1.
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Proof: From the orthogonality of increments

E[M2
n] = E[M2

n−1] + E[(Mn −Mn−1)
2].

On {Zn−1 = k}

E[(Mn −Mn−1)
2 | Fn−1] = m

−2nE[(Zn −mZn−1)
2 | Fn−1]

= m
−2nE[(

k�

i=1

X(i, n)−mk)2 | Fn−1]

= m
−2n

kσ
2

= m
−2n

Zn−1σ
2
.

Hence
E[M2

n] = E[M2
n−1] +m

−n−1
σ
2
.

Since E[M2
0 ] = 1,

E[M2
n] = 1 + σ

2
n+1�

i=2

m
−i
,

which is uniformly bounded when m > 1. So Mn converges in L
2. Finally by

(FATOU)
E|M∞| ≤ sup �Mn�1 ≤ sup �Mn�2 < +∞

and
|E[Mn]− E[M∞]| ≤ �Mn −M∞�1 ≤ �Mn −M∞�2,

implies the convergence of expectations.
In a homework problem, we will show that under the assumptions of the previ-

ous theorem
{M∞ = 0} = {Zn = 0, for some n},

and
P[M∞ = 0] = π,

the probability of extinction.

EX 7.8 (Geometric Offspring) Assume

0 < p < 1, q = 1− p, pi = pq
i
, ∀i ≥ 0, m =

q

p
.

Then

f(s) =
p

1− sq
, π = min{p

q
, 1}.
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• Case m �= 1. If G is a 2× 2 matrix, denote

G(s) =
G11s+G12

G21s+G22
.

Then G(H(s)) = (GH)(s). By diagonalization,

�
0 p

−q 1

�n

= (q − p)−1

�
1 p

1 q

��
p
n 0
0 q

n

��
q −p

−1 1

�

leading to

fn(s) =
pm

n(1− s) + qs− p

qmn(1− s) + qs− p
.

In particular, when m < 1 we have π = lim fn(0) = 1. On the other hand,

if m > 1, we have by (DOM) for λ ≥ 0

E[exp(−λM∞)] = lim
n

fn(exp(−λ/m
n))

=
pλ+ q − p

qλ+ q − p

= π + (1− π)
(1− π)

λ+ (1− π)
.

The first term corresponds to a point mass at 0 and the second term corre-

sponds to an exponential with mean 1/(1− π).

• Case m = 1. By induction

fn(s) =
n− (n− 1)s

n+ 1− ns
,

so that

P[Zn > 0] = 1− fn(0) =
1

n+ 1
,

and

E[e−λZn/n |Zn > 0] =
fn(e−λ/n)− fn(0)

1− fn(0)
→ 1

1 + λ
,

which is the Laplace transform of an eponential mean 1. This is consistent

with E[Zn] = 1.
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1 Lp
convergence theorem

Recall:

LEM 8.1 (Markov’s inequality) Let Z ≥ 0 be a RV. Then for c > 0

cP[Z ≥ c] ≤ E[Z;Z ≥ c] ≤ E[Z].

MGs provide a useful generalization.

LEM 8.2 (Doob’s submartingale inequality) Let Z ≥ 0 a subMG. Then for c >
0

cP[ sup
1≤k≤n

Zk ≥ c] ≤ E[Zn; sup
1≤k≤n

Zk ≥ c] ≤ E[Zn].

Proof: Divide F = {sup1≤k≤n Zk ≥ c} according to the first time Z crosses c:

F = F0 ∪ · · · ∪ Fn,

where
Fk = {Z0 < c} ∩ · · · ∩ {Zk−1 < c} ∩ {Zk ≥ c}.

Since Fk ∈ Fk and E[Zn | Fk] ≥ Zk,

cP[Fk] ≤ E[Zk;Fk] ≤ E[Zn;Fk].

Sum over k.

EX 8.3 (Kolmogorov’s inequality) Let X1, . . . be independent RVs with E[Xk] =
0 and Var[Xk] < +∞. Define Sn =

�
k≤nXk. Then for c > 0

P[max
k≤n

|Sk| ≥ c] ≤ c−2Var[Sn].

1
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THM 8.4 (Doob’s Lp
inequality) Let p > 1 and p−1 + q−1 = 1. Let Z ≥ 0 a

subMG bounded in Lp. Define

Z∗ = sup
k≥0

Zk.

Then
�Z∗�p ≤ q sup

k
�Zk�p = q ↑ lim

k
�Zk�p.

and Z∗ ∈ Lp.

Proof: The last equality follows from (JENSEN). Let Z∗
n = supk≤n Zk. By

(MON) it suffices to prove:

LEM 8.5

E[(Z∗
n)

p] ≤ qpE[Zp
n].

Proof: Recall the formula: for Y ≥ 0 and p > 0

E[Y p] =

� ∞

0
pyp−1P[Y ≥ y]dy.

Then for K > 0

E[(Z∗
n ∧K)p] =

� ∞

0
pcp−1P[Z∗

n ∧K ≥ c]dc

≤
� ∞

0
pcp−2E[Zn;Z

∗
n ∧K ≥ c]dc

= E
�
Zn

�
p

p− 1

�� ∞

0
(p− 1)cp−2P[Z∗

n ∧K ≥ c]dc

�

= E[qZn(Z
∗
n ∧K)p−1]

≤ qE[Zp
n]

1/pE[(Z∗
n ∧K)p]1/q.

Rearranging and using (MON) gives the result.

THM 8.6 (Lp
convergence) Let M be a MG bounded in Lp for p > 1. Then

Mn → M∞ a.s. and in Lp.

Proof: Note that |Mn| is a subMG bounded in Lp. In particular, it is bounded in
L1 and Mn → M∞ a.s. From the previous theorem,

|Mn −M∞|p ≤ (2 sup
k

|Mk|)p ∈ L1,

and by (DOM)
E|Mn −M∞|p → 0.
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1 Review: Random series

Recall:

THM 9.1 (Three-Series Thm) Let {Xn} be independent. For K > 0, let Yn =
Xn {|Xn| ≤ K}. Then

�
nXn converges a.s. if and only if:

1.
�

n P[|Xn| > K] < +∞

2.
�

n E[Yn] converges

3.
�

nVar[Yn] < +∞

We will see a MG generalization of this result.

2 Angle-brackets process

THM 9.2 (Doob decomposition) Let X be an adapted process in L1. Then

• X has an a.s. unique decomposition

X = X0 +M +A, (∗)

where M is a MG and A is predictable with M0 = A0 = 0.

• X is a subMG if and only if An ↑ a.s.

Proof: Suppose (∗) holds. Observe

E[Xn−Xn−1 | Fn−1] = E[Mn−Mn−1 | Fn−1]+E[An−An−1 | Fn−1] = An−An−1,

so that
An =

�

k≤n

E[Xk −Xk−1 | Fk−1].

1
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This proves uniqueness—that is, if there is a decomposition such that M is a MG
then A has to be of the previous form. Using this equation as definition gives first
claim—by the same equation, M will be a MG. Second claim is now obvious.

LEM 9.3 If M is a MG and φ is convex with E[|φ(Mn)|] < +∞, then φ(Mn) is
a subMG.

Proof: Using (cJENSEN)

E[φ(Mn) | Fn−1] ≥ φ(E[Mn | Fn−1]) = φ(Mn−1).

DEF 9.4 (Angle-brackets process) Let M be a MG in L2 with M0 = 0. Then
M2 is a subMG with decomposition

M2 ≡ N + �M�,

where �M�n ↑ a.s. Moreover M is bounded in L2 if and only if E[�M�∞] < ∞.
Finally note

�M�n =
�

k

E[M2
k −M2

k−1 | Fk−1] =
�

k

E[(Mk −Mk−1)
2 | Fk−1].

We finally come to our main theorem.

THM 9.5 Let M be a MG in L2. Then

1. limnMn(ω) exists for a.e. ω s.t. �M�∞ < ∞.

2. If further |Mn −Mn−1| ≤ K a.s. ∀n then �M�∞(ω) < +∞ for a.e. ω s.t.
limnMn(ω) exists.

Proof: Proof of 1. Observe that

{�M�∞ < ∞} = ∪k{S(k) = +∞},

where
S(k) = inf{n : �M�n+1 > k},

defines a stopping time. It suffices to prove:

LEM 9.6 �MS(k)� = �M�S(k).
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Indeed, E[�M�S(k)] ≤ k < +∞, hence E[�MS(k)�] < +∞ and the MG MS(k) is
bounded in L2:

lim
n

MS(k)
n exists a.s.

Since S(k) = +∞ for some k we have proved the first claim. It remains to prove
the lemma. Note that

(M2 − �M�)S(k) = (MS(k))2 − �M�S(k),

is a MG. By the uniqueness of Doob’s decomposition, it suffices to show that
�M�S(k) is predictable. Let B ∈ B. Then

{�M�S(k)n ∈ B} = E1 ∪ E2,

where
E1 = ∪1≤r≤n−1{S(k) = r, �M�r ∈ B} ∈ Fn−1,

and
E2 = {S(k) ≤ n− 1}c ∩ {�M�n ∈ B} ∈ Fn−1.

That concludes the proof of the first claim.
Proof of 2. (Sketch.) Proof is similar. Enough to prove that supn |Mn(ω)| <

+∞ implies �M�∞ < +∞ a.s. Observe

{sup
n

|Mn(ω)| < +∞} = ∪c{T (c) = +∞},

where
T (c) = inf{n : |Mn| > c},

defines a stopping time. By the above lemma,

E[(MT (c)
n )2 − �M�T (c)

n ] = 0,

so that
E[�M�T (c)

n ] ≤ (c+K)2.

Since T (c) = +∞ for some c , this proves the second claim.
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3 Applications

THM 9.7 (A strong law for MGs in L2
) Let M be a MG in L2 with M0 = 0.

Then
Mn

�M�n
→ 0, a.s. on {�M�∞ = +∞}.

Proof: Note that (1 + �M�)−1 is bounded and predictable so that

Wn = ((1 + �M�)−1 •M)n =
n�

k=1

Mk −Mk−1

1 + �M�k
,

is a MG. Note that

E[(Wn −Wn−1)
2 | Fn−1]

= (1 + �M�n)−2E[(Mn −Mn−1)
2 | Fn−1]

= (1 + �M�n)−2(�M�n − �M�n−1)

≤ (1 + �M�n−1)
−1(1 + �M�n)−1((1 + �M�n)− (1 + �M�n−1))

= (1 + �M�n−1)
−1 − (1 + �M�n)−1.

In particular, �W �∞ ≤ 1 < +∞ so that Wn converges a.s.

LEM 9.8 (Kronecker’s Lemma) If bn ↑ +∞ then

�

n

xn
bn

converges =⇒
�

n xn
bn

→ 0.

Then on {�M�∞ = +∞}, we have Mn/(1+ �M�n) → 0 and the result follows.

THM 9.9 (Levy’s extension of Borel-Cantelli) Suppose Ek is adapted. Define

Zn =
n�

k=1

Ek ,

and

Yn =
n�

k=1

P[Ek | Fk−1].

Then

1. Y∞ < ∞ =⇒ Z∞ < ∞

2. Y∞ = +∞ =⇒ Zn/Yn → 1
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Note that the previous theorem implies the classical BC lemmas. For 1, note that
E[Y∞] =

�
k P[Ek]. For 2, note that by independence P[Ek | Fk−1] = P[Ek].

Proof: Z is a subMG, Y is predictable and M = Z−Y is a MG. The proof relies
on computing �M�. Note

�M�n =
n�

k=1

E[(Mk −Mk−1)
2 | Fk−1]

=
n�

k=1

E[( Ek − P[Ek | Fk−1])
2 | Fk−1]

=
n�

k=1

E[ Ek − P[Ek | Fk−1]
2 | Fk−1]

=
n�

k=1

[P[Ek | Fk−1]− P[Ek | Fk−1]
2]

≤ Yn.

We are ready to prove the statements.

1. Y∞ < +∞. Then �M�∞ < +∞ and Mn converges. Hence, Z = M + Y
also converges.

2. Y∞ = +∞. Assume first that �M�∞ < +∞. Then Mn converges and

Zn

Yn
=

Mn + Yn
Yn

→ 1.

On the other hand, if �M�∞ = +∞ the strong law for L2 MGs gives
Mn/�M�n → 0 so that Mn/Yn → 0 and Zn/Yn → 1.
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1 Uniform Integrability

LEM 10.1 Let Y ∈ L
1. ∀ε > 0, ∃K > 0 s.t.

E[|Y |; |Y | > K] < ε.

Proof: Immediate by (MON) to E[|Y |; |Y | ≤ K].

DEF 10.2 (Uniform Integrability) A collection C of RVs on (Ω,F ,P) is uniformly
integrable (UI) if: ∀ε > 0, ∃K > +∞ s.t.

E[|X|; |X| > K] < ε, ∀X ∈ C.

THM 10.3 (Necessary and Sufficient Condition for L
1

Convergence) Let {Xn} ∈
L
1 and X ∈ L

1. Then Xn → X in L
1 if and only if:

• Xn → X in prob

• {Xn} is UI.

Before giving the proof, we look at a few examples.

EX 10.4 (L
1
-bddness is not sufficient) Let C is UI and X ∈ C. Note that

E|X| ≤ E[|X|; |X| ≥ K] + E[|X|; |X| < K] ≤ ε+K < +∞,

so UI implies L1-bddness. But the opposite is not true by our last example.

EX 10.5 (L
p
-bdd RVs) Let C be L

p-bdd and X ∈ C. Then

E[|X|; |X| > K] ≤ E[K1−p|X|p; |X| > K|] ≤ K
1−p

A → 0,

as K → +∞.

EX 10.6 (Dominated RVs) Assume ∃Y ∈ L
1 s.t. |X| ≤ Y ∀X ∈ C. Then

E[|X|; |X| > K] ≤ E[Y ; |X| > K] ≤ E[Y ;Y > K],

and apply lemma above.

1
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2 Proof of main theorem

Proof: We start with the if part. Fix ε > 0. We want to show that for n large
enough:

E|Xn −X| ≤ ε.

Let φK(x) = sgn(x)[|x| ∧K]. Then,

E|Xn −X| ≤ E|φK(Xn)−Xn|+ E|φK(X)−X|+ E|φK(Xn)− φK(X)|
≤ E[|Xn|; |Xn| > K] + E[|X|; |X| > K] + E|φK(Xn)− φK(X)|.

1st term ≤ ε/3 by UI and 2nd term ≤ ε/3 by lemma above. Check, by case
analysis, that

|φK(x)− φK(y)| ≤ |x− y|,

so φK(Xn) →P φK(X). By bounded convergence for convergence in probability,
the claim is proved.

LEM 10.7 (Bounded convergence theorem (convergence in probability version))

Let Xn ≤ K < +∞ ∀n and Xn →P X . Then

E|Xn −X| → 0.

Proof:(Sketch) By

P[|X| ≥ K +m
−1] ≤ P[|Xn −X| ≥ m

−1],

it follows that P[|X| ≤ K] = 1. Fix ε > 0

E|Xn −X| = E[|Xn −X|; |Xn −X| > ε/2] + E[|Xn −X|; |Xn −X| ≤ ε/2]

≤ 2KP[|Xn −X| > ε/2] + ε/2 < ε,

for n large enough.
Proof of only if part. Suppose Xn → X in L

1. We know that L1 implies
convergence in probability. So the first claim follows.

For the second claim, if n ≥ N (large enough),

E|Xn −X| ≤ ε.

We can choose K large enough so that

E[|Xn|; |Xn| > K] < ε,
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∀n ≤ N . So only need to worry about n > N . To use L
1 convergence, natural to

write

E[|Xn|; |Xn| > K] ≤ E[|Xn −X|; |Xn| > K] + E[|X|; |Xn| > K].

First term ≤ ε. The issue with the second term is that we cannot apply the lemma
because the event involves Xn rather than X . In fact, a stronger version exists:

LEM 10.8 (Absolute continuity) Let X ∈ L
1. ∀ε > 0, ∃δ > 0, s.t. P[F ] < δ

implies
E[|X|;F ] < ε.

Proof: Argue by contradiction. Suppose there is ε and Fn s.t. P[Fn] ≤ 2−n and

E[|X|;Fn] ≥ ε.

By BC,
P[H] ≡ P[Fn i.o.] = 0.

By (DOM) ,
E[|X|;H] ≥ ε,

a contradiction.
To conclude note that

P[|Xn| > K] ≤ E|Xn|
K

≤
supn≥N E|Xn|

K
≤

supn≥N E|X|+ E|Xn −X|
K

< δ,

uniformly in n for K large enough. We are done.
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1 UI MGs

THM 11.1 (Convergence of UI MGs) Let M be UI MG. Then

Mn → M∞,

a.s. and in L1. Moreover,

Mn = E[M∞ | Fn], ∀n.

Proof: UI implies L1-bddness so we have Mn → M∞ a.s. By necessary and
sufficient condition, we also have L1 convergence.

Now note that for all r ≥ n and F ∈ Fn, we know E[Mr | Fn] = Mn or

E[Mr;F ] = E[Mn;F ],

by definition of CE. We can take a limit by L1 convergence. More precisely

|E[Mr;F ]− E[M∞;F ]| ≤ E[|Mr −M∞|;F ] ≤ E[|Mr −M∞|] → 0,

as r → ∞. So plugging above

E[M∞;F ] = E[Mn;F ],

and E[M∞ | Fn] = Mn.

2 Applications I

THM 11.2 (Levy’s upward thm) Let Z ∈ L1 and define Mn = E[Z | Fn]. Then
M is a UI MG and

Mn → M∞ = E[Z | F∞],

a.s. and in L1.

1
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Proof: M is a MG by (TOWER). We first show it is UI:

LEM 11.3 Let X ∈ L1(Ω,F ,P). Then

{E[X | G] : G is a sub-σ-field of F},

is UI.

Proof: We use the absolute continuity lemma again. Let Y = E[X | G] ∈ G. Since
{|Y | > K} ∈ G,

E[|Y |; |Y | > K] = E[|E[X | G]|; |Y | > K]

≤ E[E[|X| | G]; |Y | > K]

= E[|X|; |Y | > K].

By Markov

P[|Y | > K] ≤ E|Y |
K

≤ E|X|
K

≤ δ,

for K large enough (uniformly in G). And we are done.
In particular, we have convergence a.s. and in L1 to M∞ ∈ F∞.
Let Y = E[Z | F∞] ∈ F∞. By dividing into negative and positive parts, we

assume Z ≥ 0. We want to show, for F ∈ F∞,

E[Z;F ] = E[M∞;F ].

By Uniqueness Lemma, it suffices to prove equality for all Fn. If F ∈ Fn ⊆ F∞,
then by (TOWER)

E[Z;F ] = E[Y ;F ] = E[Mn;F ] = E[M∞;F ].

THM 11.4 (Levy’s 0− 1 law) Let A ∈ F∞. Then

P[A | Fn] → A.

Proof: Immediate.

COR 11.5 (Kolmogorov’s 0− 1 law) Let X1, X2, . . . be iid RVs. Recall that the
tail σ-field is

T = ∩nTn = ∩nσ(Xn+1, Xn+2, . . .).

If A ∈ T then P[A] ∈ {0, 1}.
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Proof: Since A ∈ Tn is independent of Fn,

P[A | Fn] = P[A],

∀n. By Levy’s law,
P[A] = A ∈ {0, 1}.

3 Applications II

THM 11.6 (Levy’s Downward Thm) Let Z ∈ L1(Ω,F ,P) and {G−n}n≥0 a col-
lection of σ-fields s.t.

G−∞ = ∩kG−k ⊆ · · · ⊆ G−n ⊆ · · · ⊆ G−1 ⊆ F .

Define
M−n = E[Z | G−n].

Then
M−n → M−∞ = E[Z | G−∞]

a.s. and in L1.

Proof: We apply the same argument as in the Martingale Convergence Thm. Let
α < β ∈ Q and

Λα,β = {ω : lim infX−n < α < β < lim supX−n}.

Note that

Λ ≡ {ω : Xn does not converge}
= {ω : lim infX−n < lim supX−n}
= ∪α<β∈QΛα,β .

Let UN [α, β] be the number of upcrossings of [α, β] between time −N and −1.
Then by the Upcrossing Lemma applied to the MG M−N , . . . ,M−1

(β − α)EUN [α, β] ≤ |α|+ E|M−1| ≤ |α|+ E|Z|.

By (MON)
UN [α, β] ↑ U∞[α, β],
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and
(β − α)EU∞[α, β] ≤ |α|+ E|Z| < +∞,

so that
P[U∞[α, β] = ∞] = 0.

Since
Λα,β ⊆ {U∞[α, β] = ∞},

we have P[Λα,β ] = 0. By countability, P[Λ] = 0. Therefore we have convergence
a.s.

By lemma in previous class, M is UI and hence we have L1 convergence as
well.

Finally, for all G ∈ G−∞ ⊆ G−n,

E[Z;G] = E[M−n;G].

Take the limit n → +∞ and use L1 convergence.
An application:

THM 11.7 (Strong Law; Martingale Proof) Let X1, X2, . . . be iid RVs with E[X1] =
µ and E|X1| < +∞. Let Sn =

�
i≤nXn. Then

n−1Sn → µ,

a.s. and in L1.

Proof: Let

G−n = σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .),

and note that, for 1 ≤ i ≤ n,

E[X1 | G−n] = E[X1 |Sn] = E[Xi |Sn] = E[n−1Sn |Sn] = n−1Sn,

by symmetry. By Levy’s Downward Thm

n−1Sn → E[X1 | G−∞],

a.s. and in L1. Note that G−n ⊆ En and G−∞ ⊆ E so that G−∞ is trivial and we
must have E[X1 | G−∞] = µ.
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4 Further material

DEF 11.8 Let X1, X2, . . . be iid RVs. Let En be the σ-field generated by events
invariant under permutations of the Xs that leave Xn+1, Xn+2, . . . unchanged. The
exchangeable σ-field is E = ∩mEm.

THM 11.9 (Hewitt-Savage 0-1 law) Let X1, X2, . . . be iid RVs. If A ∈ E then
P[A] ∈ {0, 1}.

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[A]− P[A ∩A] = P[A]− P[A]P[A] = P[A](1− P[A]).

Since A ∈ E and A ∈ F∞, it suffices to show that E is independent of Fn for every
n (by the π-λ theorem).

WTS: for every bounded φ, B ∈ E ,

E[φ(X1, . . . , Xk);B] = E[φ(X1, . . . , Xk)]E[B] = E[E[φ(X1, . . . , Xk)];B],

or equivalently

Y = E[φ(X1, . . . , Xk) | E ] = E[φ(X1, . . . , Xk)].

It suffices to show that Y is independent of Fk. Indeed, by the L2 characterization
of conditional expectation and independence,

0 = E[(φ(X1, . . . , Xk)− Y )Y ] = E[φ(X1, . . . , Xk)]E[Y ]− E[Y 2] = −Var[Y ],

and Y is constant.

1. Since φ is bounded, it is integrable and Levy’s Downward Thm implies

E[φ(X1, . . . , Xk) | En] → E[φ(X1, . . . , Xk) | E ].

2. Define
An(φ) =

1

(n)k

�

1≤i1 �=···�=ik≤n

φ(Xi1 , . . . , Xik),

where (n)k = n(n− 1) · · · (n− k + 1). Note by symmetry

An(φ) = E[An(φ) | En] = E[φ(X1, . . . , Xk) | En] → E[φ(X1, . . . , Xk) | E ].
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3. However, note that

1

(n)k

�

1∈i
φ(Xi1 , . . . , Xik) ≤

k(n− 1)k−1

(n)k
supφ =

k

n
supφ → 0,

so that the limit of An(φ) is independent of X1 and

E[φ(X1, . . . , Xk) | E ] ∈ σ(X2, . . .),

and by induction

Y = E[φ(X1, . . . , Xk) | E ] ∈ σ(Xk+1, . . .).
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1 Review: Stopping times

Recall:

DEF 13.1 A random variable T : Ω → Z+ ≡ {0, 1, . . . ,+∞} is called a stop-
ping time if

{T = n} ∈ Fn, ∀n ∈ Z+.

EX 13.2 Let {An} be an adapted process and B ∈ B. Then

T = inf{n ≥ 0 : An ∈ B},

is a stopping time.

THM 13.3 (Optional Stopping Thm) Let {Mn} be a MG and T be a stopping
time. Then MT is integrable and

E[MT ] = E[X0].

if one of the following holds:

1. T is bounded.

2. M is bounded and T is a.s. finite.

3. E[T ] < +∞ and M has bounded increments.

4. M is UI.

1
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2 The σ-field FT

DEF 13.4 (FT ) Let T be a stopping time. Denote by FT the set of all events F
such that ∀n ∈ Z+

F ∩ {T = n} ∈ Fn.

The following two lemmas clarify the definition:

LEM 13.5 FT = Fn if T ≡ n, FT = F∞ if T ≡ ∞ and FT ⊆ F∞ for any T .

Proof: In the first case, note F∩{T = k} is empty if k �= n and is F if k = n. So if
F ∈ FT then F = F∩{T = n} ∈ Fn and if F ∈ Fn then F = F∩{T = n} ∈ Fn.
Moreover ∅ ∈ Fn so we have proved both inclusions. This works also for n = ∞.
For the third claim note

F = ∪k∈Z+
F ∩ {T = n} ∈ F∞.

LEM 13.6 If X is adapted and T is a stopping time then XT ∈ FT (where we
assume that X∞ ∈ F∞, e.g., X∞ = lim infXn).

Proof: For B ∈ B

{XT ∈ B} ∩ {T = n} = {Xn ∈ B} ∩ {T = n} ∈ Fn.

LEM 13.7 If S, T are stopping times then FS∧T ⊆ FT .

Proof: Let F ∈ FS∧T . Note that

F ∩ {T = n} = ∪k≤n[(F ∩ {S ∧ T = k}) ∩ {T = n}] ∈ Fn.

3 Optional Sampling Theorem (OST)

THM 13.8 (Optional Sampling Theorem) If M is a UI MG and S, T are stop-
ping times with S ≤ T a.s. then E|MT | < +∞ and

E[MT | FS ] = MS .
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Proof: Since M is UI, ∃M∞ ∈ L1 s.t. Mn → M∞ a.s. and in L1. We prove a
more general claim:

LEM 13.9
E[M∞ | FT ] = MT .

Indeed, we then get the theorem by (TOWER) and (JENSEN).
Proof:(Lemma) Wlog we assume M∞ ≥ 0 so that Mn = E[M∞ | Fn] ≥ 0 ∀n.
Let F ∈ FT . Then (trivially)

E[M∞;F ∩ {T = ∞}] = E[MT ;F ∩ {T = ∞}]

so STS
E[M∞;F ∩ {T < +∞}] = E[MT ;F ∩ {T < +∞}].

In fact, by (MON), STS

E[M∞;F ∩ {T ≤ k}] = E[MT ;F ∩ {T ≤ k}] = E[MT∧k;F ∩ {T ≤ k}],

∀k. To conclude we make two observations:

1. F ∩ {T ≤ k} ∈ FT∧k. Indeed if n ≤ k

F ∩ {T ≤ k} ∩ {T ∧ k = n} = F ∩ {T = n} ∈ Fn,

and if n > k
= ∅ ∈ Fn.

2. E[M∞ | FT∧k] = MT∧k. Since E[M∞ | Fk] = Mk, STS E[Mk | FT∧k] =

MT∧k. But note that if G ∈ FT∧k

E[Mk;G] =
�

l≤k

E[Mk;G∩{T∧k = l}] =
�

l≤k

E[Ml;G∩{T∧k = l}] = E[MT∧k;G]

since G ∩ {T ∧ k = l} ∈ Fl.

4 Example: Biased RW

DEF 13.10 The asymmetric simple RW with parameter 1/2 < p < 1 is the pro-
cess {Sn}n≥0 with S0 = 0 and Sn =

�
k≤nXk where the Xks are iid in {−1,+1}

s.t. P[X1 = 1] = p. Let q = 1− p. Let φ(x) = (q/p)x and ψn(x) = x− (p− q)n.
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THM 13.11 Let {Sn} as above. Let a < 0 < b. Define Tx = inf{n ≥ 0 : Sn =
x}. Then

1. We have
P[Ta < Tb] =

φ(b)− φ(0)

φ(b)− φ(a)
.

In particular, P[Ta < +∞] = 1/φ(a) and P[Tb < ∞] = 1.

2. We have
E[Tb] =

b

2p− 1
.

Proof: There are two MGs here:

E[φ(Sn) | Fn−1] = p(q/p)Sn−1+1 + q(q/p)Sn−1−1 = φ(Sn−1),

and

E[ψn(Sn) | Fn−1] = p[Sn−1+1−(p−q)(n)]+q[Sn−1−1−(p−q)(n)] = ψn−1(Sn−1).

Let N = Ta ∧ Tb. Now note that φ(SN∧n) is a bounded MG and therefore
applying the MG property at time n and taking limits as n → ∞ (using (DOM))

φ(0) = E[φ(SN )] = P[Ta < Tb]φ(a) + P[Ta > Tb]φ(b),

where we need to prove that N < +∞ a.s. Indeed, since (b− a) +1-steps always
take us out of (a, b),

P[Tb > n(b− a)] ≤ (1− qb−a)n,

so that
E[Tb] =

�

k≥0

P[Tb > k] ≤
�

n

(b− a)(1− qb−a)n < +∞.

In particular Tb < +∞ a.s. and N < +∞ a.s. Rearranging the formula above
gives the first result. (For the second part of the first result, take b → +∞ and use
monotonicity.)

For the third one, note that Tb ∧ n is bounded so that

0 = E[STb∧n − (p− q)(Tb ∧ n)].

By (MON), E[Tb ∧ n] ↑ E[Tb]. Finally, using

P[− inf
n

Sn ≥ −a] = P[Ta < +∞],

and the fact that − infn Sn ≥ 0 shows that E[− infn Sn] < +∞. Hence, we can
use (DOM) with |STb∧n| ≤ max{b,− infn Sn}.
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1 Stationary stochastic processes

DEF 13.1 (Stationary stochastic process) A real-valued process {Xn}n≥0 is sta-
tionary if for every k,m

(Xm, . . . , Xm+k) ∼ (X0, . . . , Xk).

EX 13.2 IID sequences are stationary.

1.1 Stationary Markov chains

1.1.1 Markov chains

DEF 13.3 (Discrete-time finite-space MC) Let A be a finite space, µ a distribu-
tion on A and {p(i, j)}i,j∈A a transition matrix on E. Let (Xn)n≥0 be a process
with distribution

P[X0 = x0, . . . , Xn = xn] = µ(x0)p(x0, x1) · · · p(xn−1, nn),

for all n ≥ 0 and x0, . . . , xn ∈ A.

EX 13.4 (RW on a graph) Let G = (V,E) be a finite, undirected graph. Define

p(i, j) =
{(i, j) ∈ E}
|{N(i)}| ,

where
N(i) = {j : (i, j) ∈ E}.

This defines a RW on a graph as the finite MC with the above transition matrix (for
each µ, an arbitrary distribution on V ). More generally, any finite MC can be seen
as a RW on a weighted directed graph.

EX 13.5 (Asymmetric SRW on an interval) Let (Sn)n≥0 be an asymmetric SRW
with parameter 1/2 < p < 1. Let a < 0 < b, N = Ta ∧ Tb. Then (Xn)n≥0 =
(SN∧n)n≥0 is a Markov chain.

1
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1.1.2 Stationarity

DEF 13.6 (Stationary Distribution) A probability measure π on A is a stationary
distribution if �

i

π(i)p(i, j) = π(j),

for all i, j ∈ A. In other words, if X0 ∼ π then X1 ∼ π and in fact Xn ∼ π for all
n ≥ 0.

EX 13.7 (RW on a graph) In the RW on a graph example above, define

π(i) =
|N(i)|
2|E| .

Then
�

i∈V
π(i)p(i, j) =

�

i:(i,j)∈E

|N(i)|
2|E|

1

|N(i)| =
1

2|E| |N(j)| = π(j),

so that π is a stationary distribution.

EX 13.8 (ASRW on interval) In the ASRW on [a, b], π = δa and π = δb as well
as all mixtures are stationary.

EX 13.9 (Stationary Markov chain) Let X be a MC on A (countable) with tran-
sition matrix {pij}i,j∈A and stationary distribution π > 0. Then X started at π is
a stationary stochastic process. Indeed, by definition of π and induction

X0 ∼ Xn,

for all n ≥ 0. Then for all m, k by definition of MCs

(X0, . . . , Xk) ∼ (Xm, . . . , Xm+k).

1.2 Abstract setting

EX 13.10 (A canonical example) Let (Ω,F ,P) be a probability space. A map
T : Ω → Ω is said to be measure-preserving (for P) if for all A ∈ F ,

(P[ω : Tω ∈ A] =)P[T−1A] = P[A].

If X ∈ F then Xn(ω) = X(Tnω), n ≥ 0, defines a stationary sequence. Indeed,
for all B ∈ B(Rk+1)

P[(X0, . . . , Xk)(ω) ∈ B] = P[(X0, . . . , Xk)(T
mω) ∈ B]

= P[(Xm, . . . , Xm+k)(ω) ∈ B].
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Kolmogorov’s extension theorem indicates that all real-valued stationary stochas-

tic processes can be realized in the framework of the previous example.

THM 13.11 (Kolmogorov Extension Theorem) Suppose we are given probabil-
ity measure µn on (Rn,B(Rn)) s.t.

µn+1((a0, b0]× · · · × (an, bn]× R) = µn((a0, b0]× · · · × (an, bn]),

for all n and (n+1)-dimensional rectangles. Then there exists a unique probability
measure P on (RZ+ ,RZ+) with marginals µn.

EX 13.12 (Revisiting stationary processes) Let X̃ be a stationary process on R.
Then by the previous theorem, we can realize X̃ on RZ+ as

Xn(ω) = ωn.

The corresponding measure-preserving transformation is the shift

Tω = (ω1, . . .).

In particular, Xn(ω) = X0(Tnω).

EX 13.13 Returning the previous example:

1. The only invariant sets are ∅,Ω so that I is trivial and T is ergodic.

2. Both Ω1 and Ω2 are invariant so that if α, β �= 0 we have that T is not er-
godic. Further, note that f̂ is measurable with respect to I = {∅,Ω1,Ω2,Ω},
that is, f̂ is invariant.

Next time, we will prove the ergodic theorem:

THM 13.14 Let f ∈ L1. Then there is f̂ ∈ I s.t.

n−1Sn → f̂ ,

a.s and in L1. In the ergodic case, f̂ = E[f ].

EX 13.15 (IID RVs) Let Xn(ω) = ωn are iid rvs. If A is invariant then {ω : ω ∈
A} = {ω : Tω ∈ A} ∈ σ(X1, . . .) and by induction

A ∈ ∩n≥0σ(Xn, . . .) = T ,

where T is the tail σ-field. Thus I ⊆ T . Since T is trivial by Kolmogorov’s 0− 1
law, so is I. Therefore T is ergodic and E[f | I] = E[f ]. Applying the ergodic thm
to f = X0 ∈ L1 we get

n−1
n−1�

m=0

Xm(ω) → E[X0],

that is, we recover the SLLN.
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Previous class

In view of the canonical example in the previous lecture, we assume that we have

(Ω,F ,P), f ∈ F , T a measure-preserving transformation, and we let Xn(ω) =
f(Tn

ω) for all n ≥ 0.

We are interested in the convergence of empirical averages

n
−1

Sn(ω) = n
−1

n−1�

m=0

Xm(ω) = n
−1

n−1�

m=0

f(Tm
ω).

1 Invariant sets

EX 14.1 Let Ω = {a, b, c, d, e} and F = 2Ω. Take f = A for some set A ∈ F .

1. Suppose T = (a, b, c, d, e). For T to be measure-preserving we require

P[a] = P[b] = · · · so that P[a] = 1/5 is the only possibility. (It is easy to

see that T is indeed measure-preserving because the number of elements of

Ω is invariant under T .) In that case, it is immediate that

n
−1

Sn → P[A] = E[f ].

2. Suppose T = (a, b, c)(d, e). Let Ω1 = {a, b, c}, F1 = 2Ω1 , Ω2 = {d, e} and

F2 = 2Ω2 . For T to be measure-preserving we need P[a] = P[b] = P[c] =
α/3 and P[d] = P[e] = β/2. (Any choice of α, β with α + β = 1 works

because the number of elements of Ω1 and Ω2 is invariant under T .) Take

A = {a, d}. Then n
−1

Sn → 1/3 with probability α (i.e. if ω ∈ Ω1) and

n
−1

Sn → 1/2 with probability β. Denoting f̂ this limit, we note

E[f̂ ] = P[A] = E[f ],

but f̂ is not constant if α, β �= 0. However, it is completely determined by

whether ω ∈ Ω1 or ω ∈ Ω2.

1
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DEF 14.2 A set A ∈ F is invariant if

({ω : Tω ∈ A} =)T−1
A = A,

up to a null set. It is nontrivial if 0 < P[A] < 1. The set of all invariant sets

forms a σ-field I. The transformation T is said ergodic if I is trivial, that is, all

invariant sets are trivial. A function g is invariant if g(Tω) = g(ω) a.s. Note that

g is invariant iff g ∈ I. (Exercise 6.1.1 in [Dur10].)

2 Ergodic Theorem

It will be convenient to think of T as an operator of functions

Uf(ω) = f(Tω),

in which case U
m
f(ω) = f(Tm

ω) and we define

Anf = n
−1(I + · · ·+ U

n−1)f.

LEM 14.3 If g ∈ L
1

then

E[Ug] = E[g].
Moreover if g, g

� ∈ L
2

then

�Ug� = �g�,
and

�Ug
�
, Ug� = �g�, g�.

Proof: Start from indicators.

THM 14.4 Let f ∈ L
1
. Then there is f̂ ∈ I s.t.

Anf → f̂ ≡ E[f | I], a.s and in L
1
.

EX 14.5 (IID RVs) Let Xn(ω) = ωn are iid rvs. If A is invariant then {ω : ω ∈
A} = {ω : Tω ∈ A} ∈ σ(X1, . . .) and by induction

A ∈ ∩n≥0σ(Xn, . . .) = T ,

where T is the tail σ-field. Thus I ⊆ T . Since T is trivial by Kolmogorov’s 0− 1
law, so is I. Therefore T is ergodic and E[f | I] = E[f ]. Applying the ergodic thm

to f = X0 ∈ L
1

we get

n
−1

n−1�

m=0

Xm(ω) → E[X0],

that is, we recover the SLLN.
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3 L2
Ergodic Theorem

THM 14.6 Let f ∈ L
2
. Then there is f̂ ∈ I s.t.

Anf → f̂ ≡ E[f | I], in L
2
.

Proof: Let

H0 = {f ∈ L
2 : Uf = f a.s.},

and note that Anf = f for f ∈ H0. We need the following lemma from basic

Hilbert space theory (see [SS05, Lemma 6.5.2]).

LEM 14.7 The following hold:

1. H0 = {f ∈ L
2 : U∗

f = f a.s.}.

2. H
⊥
0 = Range(I − U).

Proof: See e.g. [SS05].

For ε > 0, write f = f0 + f1 where f0 ∈ H0 and �f1 − f
�
1�2 < ε s.t.

f
�
1 = (I − U)g�1. Then

Anf0 = f0, and Anf
�
1 =

1

n
(I − U

n)g�1,

so that

�Anf − f0�2 = �n−1(I − U
n)g�1 +An(f1 − f

�
1)�2

≤ (�g�1�2 + �Un
g
�
1�2)n−1 + n

−1
n−1�

m=0

�Um(f1 − f
�
1)�2

= 2�g�1�2n−1 + n
−1

n−1�

m=0

�f1 − f
�
1�2

→ ε.
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1 Proof of Ergodic Theorem

We assume we have (Ω,F ,P), f ∈ F , T a measure-preserving transformation,
and we let Xn(ω) = f(Tn

ω) for all n ≥ 0. It will be convenient to think of T as
an operator of functions

Uf(ω) = f(Tω),

in which case U
m
f(ω) = f(Tm

ω) and we define

Anf = n
−1(I + · · ·+ U

n−1)f.

Recall:

LEM 15.1 If g, g� ∈ L
2 then

�Ug
�
, Ug� = �g�, g�.

THM 15.2 Let f ∈ L
1. Then there is f̂ ∈ I s.t.

Anf → f̂ ≡ E[f | I], a.s and in L
1.

Proof: We first show a.s. convergence to a limit. We proceed as in the L
2 case.

Fix ε and let
f = F +H = f0 + (I − U)g�1 +H,

where �H�1 < ε includes both the L1 and closure error terms. We show that AnF

converges a.s. Note that

AnF (ω) = f0(ω) + n
−1(I − U

n)g�1(ω) = f0(ω) +
g
�
1(ω)

n
− g

�
1(T

n
ω)

n
.

To deal with the last term, note that

�

n

g
�
1(T

n
ω)2

n2

1
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converges because its norm is bounded by �g�1�22
�

n 1/n
2
< ∞. To conclude let

Eα = {lim
N

sup
m,n≥N

|Anf −Amf | > α}.

Note that

P[Eα] ≤ P[lim
N

sup
m,n≥N

|AnH −AmH| > α] ≤ P[2 sup
N

|ANH| > α].

To conclude the proof of a.s. convergence, we need the following inequality which
is similar to Doob’s inequality.

LEM 15.3 (Wiener’s Maximal Inequality) For f ∈ L
1 and � > 0,

P
�
sup
j≥0

|Ajf | ≥ �

�
≤ 1

�
E|f |.

Proof: The proof is based on the so-called maximal ergodic lemma.

LEM 15.4 (Maximal Ergodic Lemma) Let

f
∗
n = sup

1≤j≤n
f + · · ·+ U

j−1
f.

Then for all n ≥ 0
E[f ; {f∗

n ≥ 0}] ≥ 0.

Apply the maximal ergodic lemma to |f | − � and take n → ∞.
Applying the lemma we have

P[Eα] ≤ P[2 sup
N

|ANH| > α] ≤ 2

α
E|H| < 2ε

α
,

so that P[Eα] = 0 for all α.
It is clear that the limit satisfies f̂(ω) = f̂(Tω). In fact, by the density of L2

in L
1, writing f = gr + hr with gr ∈ L

2 and �hr�1 < 1/r, we have f̂ = ĝr + ĥr

and for G ∈ I

E[f̂ ;G] = E[ĝr;G] + E[ĥr;G] = E[gr;G] + E[ĥr;G] → E[f ;G],

where we used the L
2 Ergodic Theorem and

E|ĥr| ≤ lim inf
n

E|Anhr| ≤ lim inf
n

n
−1

n−1�

m=0

E|Um
hr| = E|hr| = 1/r,
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by (FATOU).
A truncation argument gives the L

1 convergence (see [Dur10]). Let

f
�
M = f |f |≤M ,

and f
��
M = f − f

�
M . By the ergodic theorem and the bounded convergence theorem

E
�����
1

n

n−1�

m=0

f
�
M (Tm

ω)− E[f �
M | I]

����� → 0.

By stationarity and (cJENSEN),

E
�����
1

n

n−1�

m=0

f
��
M (Tm

ω)− E[f ��
M | I]

����� ≤ 2E|f ��
M | → 0,

as M → +∞ by (DOM). The result follows.

2 Applications

Going back to Markov chains:

DEF 15.5 Let
Ti = inf{n ≥ 1 : Xn = i},

and
fij = Pi[Tj < +∞].

A chain is irreducible if fij > 0 for all i, j ∈ A. A state i is recurrent if fii = 1
and is positive recurrent if Ei[Ti] < +∞.

LEM 15.6 If X is irreducible and finite, then every state is positive recurrent.

THM 15.7 Let X be an irreducible and positive recurrent MC. Then there exists
a unique stationary distribution π. In fact,

π(i) =
1

Ei[Ti]
> 0.

EX 15.8 (MCs) Let X be a MC on S.

• In the ASRW on [a, b] the invariant sets are {a} and {b} and therefore T is
not ergodic if π has positive mass on both of them.
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• On the other hand, assume X is irreducible and positive recurrent with sta-
tionary distribution π > 0. Let A ∈ I and note that A ◦ Tn = A. Then
by the Markov property,

E[ A | Fn] = E[ A ◦ Tn | Fn] = h(Xn),

where h(x) = Ex[ A]. By Levy’s 0−1 law the LHS → A. By irreducibility
and recurrence, any y ∈ S is visited i.o. and we must have Ex[ A] ≡ h(x) ≡
0 or 1. Therefore P[A] ∈ {0, 1} and I is trivial. Then applying the Ergodic
Theorem to f(ω) = g(X0(ω)) where

�

y

|g(y)|π(y) < +∞,

we then have

n
−1

n−1�

m=0

g(Xm(ω)) →
�

y

π(y)g(y).

• Note finally that the RW on a bipartite graph shows that, even in the irre-
ducible recurrent case, I may be smaller than T .

Further reading

See a different proof in [Dur10, Section 6.2].

References

[Dur10] Rick Durrett. Probability: theory and examples. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, fourth edition, 2010.

[SS05] Elias M. Stein and Rami Shakarchi. Real analysis. Princeton Lectures in
Analysis, III. Princeton University Press, Princeton, NJ, 2005. Measure
theory, integration, and Hilbert spaces.

[Var01] S. R. S. Varadhan. Probability theory, volume 7 of Courant Lecture Notes
in Mathematics. New York University Courant Institute of Mathematical
Sciences, New York, 2001.



Lecture 16 : Subadditive Ergodic Theorem

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Dur10, Section 6.4].

1 Subadditivity

DEF 16.1 A sequence {γn}n≥0 is subadditive if for all m,n:

γm+n ≤ γn + γm.

THM 16.2 (Limit of Subadditive Sequences) If γ is subadditive then

γn
n

→ inf
m

γm
m

.

Proof: Clearly

lim inf
n

γn
n

≥ inf
m

γm
m

.

So STS

lim sup
n

γn
n

≤ inf
m

γm
m

.

Fix m and write n = km + � with 0 ≤ � < m. Applying the subadditivity

repeatedly, we have

γn ≤ kγm + γ�,

so that

γn
n

≤
�

km

km+ �

�
γm
m

+
γ�
n
,

and the result follows by taking n → +∞.

EX 16.3 (Longest common subsequence) Let {Xn} and {Yn} be stationary se-
quences and let Lm,n be the longest common subsequence on indices m < k ≤ n.
Clearly

L0,m + Lm,n ≤ L0,n,

and γn = −E[L0,n] is subadditive.

1
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2 Statement of Subadditive Ergodic Theorem

THM 16.4 (Subadditive Ergodic Theorem) Suppose {Xm,n}0≤m<n satisfy:

1. X0,m +Xm,n ≥ X0,n.

2. {Xnk,(n+1)k, n ≥ 1} is a stationary sequence for each k.

3. The distribution of {Xm,m+k, k ≥ 1} does not depend on m.

4. EX+
0,1 < ∞ and for each n, EX0,n ≥ γ0n where γ0 > −∞.

Then

• limEX0,n/n = infm EX0,m/m ≡ γ.

• X = limX0,n/n exists a.s. and in L1 so EX = γ.

• If all stationary sequences in 2. are ergodic then X = γ a.s.

Proof: See [Dur10].

3 Examples

EX 16.5 (Age-dependent continuous-time branching process) Start with one in-
dividual. Each individual dies independently after time T ∼ F and at that point
produces K ∼ {pk}k offsprings (both with finite means). Let X0,m be the time of
birth of the first individual from generation m and Xm,n, the time to the birth of
the first descendant of that individual in generation n. We check the conditions:

1. Clearly
X0,m +Xm,n ≥ X0,n.

2. {Xnk,(n+1)k}n is IID because we are looking at the descendants of a single
individual (the first born) over k generations which are not overlapping.

3. The distribution of {Xm,m+k}k is independent of m for the same reason.

4. By nonnegativity and the finite mean of F , condition 4. is satisfied.

So we can apply the thm. By the IID remark above in 2. we get that the limit is
trivial. See [Dur10] for a characterization of the limit.
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EX 16.6 (First-passage percolation) Consider Zd as a graph with edges connect-
ing x, y ∈ Zd if �x − y�1 = 1. Assign to each edge a nonnegative random
variable τ(e) corresponding to the time it takes to traverse e (in either direction).
Define t(x, y) (the passage time) as the minimum time to go from x to y. Let
Xm,n = t(mu, nu) where u = (1, 0, · · · , 0). We check the conditions:

1. Clearly
X0,m +Xm,n ≥ X0,n

2. {Xnk,(n+1)k}n is stationary by translational symmetry.

3. The distribution of {Xm,m+k}k is independent of m for the same reason.

4. By nonnegativity and the finite mean of τ , condition 4. is satisfied.

So we can apply the theorem. Enumerating the edges in some order, one can prove
(check!) that the limit is tail-measurable and, by the IID assumption, is trivial.
See [Dur10] for a characterization of the limit.
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1 Random vectors

We first develop general tools to study multivariate distributions.

DEF 17.1 (Characteristic function) The CF of a random vector X = (X1, . . . , Xd)
is given by, for t ∈ Rd,

φX(t) = E [exp (i(t1X1 + · · ·+ tdXd))] .

As in the one-dimensional case, we have an inversion formula:

THM 17.2 (Inversion formula) Let µ be the probability measure corresponding
to the random vector (X1, . . . , Xd), that is, for all B ∈ B(Rd),

µ(B) = P[(X1, . . . , Xd) ∈ B].

If A = [a1, b1]× · · · × [ad, bd] with µ(∂A) = 0 then

µ(A) = lim
T→+∞

(2π)−d
�

[−T,T ]d

d�

j=1

ψj(tj)φ(t)dt,

where
ψj(s) =

exp(−isaj)− exp(−isbj)

is
.

Proof: Follows from the one-dimensional inversion formula. See [Dur10, Theo-
rem 3.9.3].

An important application of the previous formula is:

THM 17.3 The RVs X1, . . . , Xd are independent if and only if

φX(t) =
d�

j=1

φXj (tj),

for all t ∈ Rd where X = (X1, . . . , Xd).

1
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Proof: The “only if” part is obvious. The inversion formula and Fubini’s theorem
gives the “if” part.

DEF 17.4 A sequence of random vectors Xn converges weakly to X∞, denoted
Xn ⇒ X∞, if

E[f(Xn)] → E[f(X∞)],

for all bounded continuous functions f . The portmanteau theorem gives equivalent
characterizations.

In terms of CFs, we have:

THM 17.5 (Convergence theorem) Let Xn, 1 ≤ n ≤ ∞, be random vectors with
CFs φn. A necessary and sufficient condition for Xn ⇒ X∞ is that

φn(t) → φ∞(t),

for all t ∈ Rd.

Proof: Follows from the one-dimensional result. See [Dur10, Theorem 3.9.4].
We require one last definition:

DEF 17.6 (Covariance) Let X = (X1, . . . , Xd) be a random vector with mean
µ = E[X]. The covariance of X is the d× d matrix Γ with entries

Γij = Cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)].

2 Multivariate Gaussian distribution

Recall:

DEF 17.7 (Gaussian distribution) A standard Gaussian is a RV Z with CF

φZ(t) = exp
�
−t2/2

�
,

and density

fZ(x) =
1√
2π

exp
�
−x2/2

�
.

In particular, Z has mean 0 and variance 1. More generally,

X = σZ + µ,

is a Gaussian RV with mean µ ∈ R and variance σ2 > 0.
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We will need a multivariate generalization of the standard Gaussian.

DEF 17.8 (Multivariate Gaussian) A d-dimensional standard Gaussian is a ran-
dom vector X = (X1, . . . , Xd) where the Xis are independent standard Gaus-
sians. In particular, X has mean 0 and covariance matrix I . More generally, a
random vector X = (X1, . . . , Xd) is Gaussian if there is a vector b, a d× r matrix
A and an r-dimensional standard Gaussian Y such that

X = AY + b.

Then X has mean µ = b and covariance matrix Γ = AAT . The CF of X is given
by

φX(t) = exp



i
d�

j=1

tjµj −
1

2

d�

j,k=1

tjtkΓjk



 .

From the CF and the theorems above, we get the following:

COR 17.9 (Independence) Let X = (X1, . . . , Xd) be a multivariate Gaussian.
Then the Xis are independent if and only if Γij = 0 for all i �= j, that is, if they are
uncorrelated.

COR 17.10 (Convergence) Let Xn be a sequence of random vectors with means
µn and covariances Γn such that Xn → X∞ a.s., µu → µ∞, and Γn → Γ∞. Then
X∞ is a multivariate Gaussian with mean µ∞ and covariance matrix Γ∞.

COR 17.11 (Linear combinations) The random vector (X1, . . . , Xd) is multi-
variate Gaussian if and only if all linear combinations of its components are Gaus-
sian.

Finally:

THM 17.12 (Multivariate CLT) Let X1, X2, . . . be IID random vectors with means
µ and finite covariance matrix Γ. Let Sn =

�n
j=1Xj , Then

Sn − nµ√
n

⇒ Z,

where Z is a multivariate Gaussian with mean 0 and covariance matrix Γ.

Proof: Follows easily from one-dimensional result. See [Dur10, Theorem 3.9.6].
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3 Gaussian processes

DEF 17.13 (Gaussian process) A continuous-time stochastic process {X(t)}t≥0

is a Gaussian process if for all n ≥ 1 and 0 ≤ t1 < · · · < tn < +∞ the random
vector

(X(t1), . . . , X(tn)),

is multivariate Gaussian. The mean and covariance functions of X are E[X(t)]
and Cov[X(s), X(t)] respectively.

4 Definition of Brownian motion

DEF 17.14 (Brownian motion: Definition I) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X is a Gaussian process
with almost surely continuous paths, that is,

P[X(t) is continuous in t] = 1,

such that X(0) = 0,
E[X(t)] = 0,

and
Cov[X(s), X(t)] = s ∧ t.

More generally, B = σX + x is a Brownian motion started at x.

Further reading

Multivariate CLT in [Dur10, Section 2.9].
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1 Definition of Brownian motion

Recall:

DEF 19.1 (Brownian motion: Definition I) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X is a Gaussian process
with almost surely continuous paths, that is,

P[X(t) is continuous in t] = 1,

such that X(0) = 0,
E[X(t)] = 0,

and
Cov[X(s), X(t)] = s ∧ t.

More generally, B = σX + x is a Brownian motion started at x.

From the properties of the multivariate Gaussian, we get the following equivalent
definition. We begin with a general definition.

DEF 19.2 (Stationary independent increments) An SP {X(t)}t≥0 has station-
ary increments if the distribution of X(t) − X(s) depends only on t − s for all
0 ≤ s ≤ t. It has independent increments if the RVs {X(tj+1−X(tj)), 1 ≤ j < n}
are independent whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1.

DEF 19.3 (Brownian motion: Definition II) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X has almost surely con-
tinuous paths and stationary independent increments such that X(s+ t)−X(s) is
Gaussian with mean 0 and variance t.

1
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2 Construction of Brownian motion

Given that standard Brownian motion is defined in terms of finite-dimensional dis-
tributions, it is tempting to attempt to construct it by using Kolmogorov’s Extension
Theorem.

THM 19.4 (Kolmogorov’s Extension Theorem: Uncountable Case) Let

Ω0 = {ω : [0,∞) → R},

and F0 be the σ-field generated by the finite-dimensional sets

{ω : ω(ti) ∈ Ai, 1 ≤ i ≤ n},

for Ai ∈ B. There is a unique probability measure ν on (Ω0,F0) so that

ν({ω : ω(0) = 0}) = 1

and whenever 0 ≤ t1 < · · · < tn with n ≥ 1 we have

ν({ω : ω(ti) ∈ Ai}) = µt1,...,tn(A1 × · · · ×An),

where the latter is the finite-dimensional distribution of standard Brownian motion.

See [Dur10]. The only problem with this approach is that the event

C = {ω : ω(t) is continuous in t},

is not in F0. See Exercise 8.1.1 in [Dur10].
Instead, we proceed as follows. There are several constructions of Brownian

motion. We present Lévy’s contruction, as described in [MP10]. See [Dur10]
and [Lig10] for further constructions.

THM 19.5 (Existence) Standard Brownian motion B = {B(t)}t≥0 exists.

Proof: We first construct B on [0, 1]. The idea is to construct the process on dyadic
points and extend it linearly. Let

Dn = {k2−n : 0 ≤ k ≤ 2n},

and
D = ∪∞

n=0Dn.

Note that D is countable and consider {Zt}t∈D a collection of independent stan-
dard Gaussians. We define B(d) for d ∈ Dn by induction. First take B(0) = 0
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and B(1) = Z1. Note that B(1) − B(0) is Gaussian with variance 1. Then for
d ∈ Dn\Dn−1 we let

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2(n+1)/2
.

By construction, B(d) is independent of {Zt : t ∈ D\Dn}. Moreover, as a linear
combination of zero-mean Gaussians, B(d) is a zero-mean Gaussian.

We claim that the differences B(d) − B(d − 2−n), for all d ∈ Dn\{0}, are
independent Gaussians with variance 2−n .

• We first argue about neighboring increments. Note that, for d ∈ Dn\Dn−1,

B(d)−B(d− 2−n) =
B(d+ 2−n)−B(d− 2−n)

2
+

Zd

2 · 2(n−1)/2
,

and

B(d+ 2−n)−B(d) =
B(d+ 2−n)−B(d− 2−n)

2
− Zd

2 · 2(n−1)/2
,

are Gaussians and they are independent by the following lemma. By induc-
tion the differences above are Gaussians with variance 2−(n−1) and indepen-
dent of Zd.

LEM 19.6 If (X1, X2) is a standard Gaussian then so is 1√
2
(X1+X2, X1−

X2).

• More generally, the two intervals are separated by d ∈ Dj . Take a minimal
such j. Then, by induction, the increments over the intervals [d−2−j , d] and
[d, d+2−j ] are independent. Moreover, the increments over the two intervals
of length 2−n of interest (included in the above intervals) are constructed
from B(d)−B(d− 2−j), respectively B(d+ 2−j)−B(d), using a disjoint
set of variables {Zt : t ∈ Dn}. That proves the claim by induction.

We now interpolate linearly between dyadic points. More precisely, let

F0(t) =






Z1, t = 1,

0, t = 0,

linearly, in between.

and for n ≥ 1

Fn(t) =






2−(n+1)/2Zt, t ∈ Dn\Dn−1,

0, t ∈ Dn−1,

linearly, in between.
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We then have for d ∈ Dn

B(d) =
n�

i=0

Fi(d) =
∞�

i=0

Fi(d).

We want to show that the resulting process is continuous on [0, 1]. We claim
that the series

B(t) =
∞�

n=0

Fn(t),

is uniformly convergent. From a bound on Gaussian tails we saw last quarter,

P[|Zd| ≥ c
√
n] ≤ exp

�
−c2n/2

�
,

so that for c large enough
∞�

n=0

P[∃d ∈ Dn, |Zd| ≥ c
√
n] ≤

∞�

n=0

(2n + 1) exp
�
−c2n/2

�

< +∞.

By BC, there is N (random) such that |Zd| < c
√
n for all d ∈ Dn with n > N . In

particular, for n > N we have

�Fn�∞ < c
√
n2−(n+1)/2,

from which we get the claim.
To show that B(t) has the correct finite-dimensional distributions, note that this

is the case for D by the above argument. Since D is dense in [0, 1] the result holds
on [0, 1] by taking limits and using the convergence theorem for Gaussians from
the previous lecture.

Finally, we extend the process to [0,+∞) by gluing together independent
copies of B(t).

Further reading

Other constructions in [Dur10, Section8.1] and [Lig10, Section 1.5].
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1 Invariance

We begin with some useful invariance properties. The following are immediate.

THM 19.1 (Time translation) Let s ≥ 0. If B(t) is a standard Brownian motion,

then so is X(t) = B(t+ s)−B(s).

THM 19.2 (Scaling invariance) Let a > 0. If B(t) is a standard Brownian mo-

tion, then so is X(t) = a−1B(a2t).

Proof: Sketch. We compute the variance of the increments:

Var[X(t)−X(s)] = Var[a−1(B(a2t)−B(a2s))]

= a−2(a2t− a2s)

= t− s.

THM 19.3 (Time inversion) If B(t) is a standard Brownian motion, then so is

X(t) =

�
0, t = 0,

tB(t−1), t > 0.

Proof: Sketch. We compute the covariance function for s < t:

Cov[X(s), X(t)] = Cov[sB(s−1), tB(t−1)]

= st
�
s−1 ∧ t−1

�

= s.

1
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It remains to check continuity at 0. Note that
�
lim
t↓0

B(t) = 0

�
=

�

m≥1

�

n≥1

{|B(t)| ≤ 1/m, ∀t ∈ Q ∩ (0, 1/n)} ,

and
�
lim
t↓0

X(t) = 0

�
=

�

m≥1

�

n≥1

{|X(t)| ≤ 1/m, ∀t ∈ Q ∩ (0, 1/n)} .

The RHSs have the same probability because the distributions on all finite-dimensional
sets —and therefore on the rationals—are the same. The LHS of the first one has
probability 1.

Typical applications of these are:

COR 19.4 For a < 0 < b, let

T (a, b) = inf {t ≥ 0 : B(t) ∈ {a, b}} .

Then

E[T (a, b)] = a2E[T (1, b/a)].

In particular, E[T (−b, b)] is a constant multiple of b2.

Proof: Let X(t) = a−1B(a2t). Then,

E[T (a, b)] = a2E[inf{t ≥ 0, : X(t) ∈ {1, b/a}}]
= a2E[T (1, b/a)].

COR 19.5 Almost surely,

t−1B(t) → 0.

Proof: Let X(t) be the time inversion of B(t). Then

lim
t→∞

B(t)

t
= lim

t→∞
X(1/t) = X(0) = 0.
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2 Modulus of continuity

By construction, B(t) is continuous a.s. In fact, we can prove more.

DEF 19.6 (Hölder continuity) A function f is said locally α-Hölder continuous
at x if there exists ε > 0 and c > 0 such that

|f(x)− f(y)| ≤ c|x− y|α,

for all y with |y − x| < ε. We refer to α as the Hölder exponent and to c as the

Hölder constant.

THM 19.7 (Holder continuity) If α < 1/2, then almost surely Brownian motion

is everywhere locally α-Hölder continuous.

Proof:

LEM 19.8 There exists a constant C > 0 such that, almost surely, for every suffi-

ciently small h > 0 and all 0 ≤ t ≤ 1− h,

|B(t+ h)−B(t)| ≤ C
�
h log(1/h).

Proof: Recall our construction of Brownian motion on [0, 1]. Let

Dn = {k2−n : 0 ≤ k ≤ 2n},

and
D = ∪∞

n=0Dn.

Note that D is countable and consider {Zt}t∈D a collection of independent stan-
dard Gaussians. Let

F0(t) =






Z1, t = 1,

0, t = 0,

linearly, in between.

and for n ≥ 1

Fn(t) =






2−(n+1)/2Zt, t ∈ Dn\Dn−1,

0, t ∈ Dn−1,

linearly, in between.

Finally

B(t) =
∞�

n=0

Fn(t).
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Each Fn is piecewise linear and its derivative exists almost everywhere. By
construction, we have

�F �
n�∞ ≤ �Fn�∞

2−n
.

Recall that there is N (random) such that |Zd| < c
√
n for all d ∈ Dn with n > N .

In particular, for n > N we have

�Fn�∞ < c
√
n2−(n+1)/2.

Using the mean-value theorem, assuming l > N ,

|B(t+ h)−B(t)| ≤
∞�

n=0

|Fn(t+ h)− Fn(t)|

≤
l�

n=0

h�F �
n�∞ +

∞�

n=l+1

2�Fn�∞,

≤ h
N�

n=0

�F �
n�∞ + ch

l�

n=N

√
n2n/2 + 2c

∞�

n=l+1

√
n2−n/2.

Take h small enough that the first term is smaller than
�
h log(1/h) and l defined

by 2−l < h ≤ 2−l+1 exceeds N . Then approximating the second and third terms
by their largest element gives the result.

We go back to the proof of the theorem. For each k, we can find an h(k) small
enough so that the result applies to the standard BMs

{B(k + t)−B(k) : t ∈ [0, 1]},

and
{B(k + 1− t)−B(k + 1) : t ∈ [0, 1]}.

Since there are countably many intervals [k, k+1), such h(k)’s exist almost surely
on all intervals simultaneously. Then note that for any α < 1/2, if t ∈ [k, k + 1)
and h < h(k) small enough,

|B(t+ h)−B(t)| ≤ C
�
h log(1/h) ≤ Chα(= Ch1/2(1/h)(1/2−α)).

This concludes the proof.
In fact:

THM 19.9 (Lévy’s modulus of continuity) Almost surely,

lim sup
h↓0

sup
0≤t≤1−h

|B(t+ h)−B(t)|�
2h log(1/h)

= 1.

For the proof, see [MP10].
This result is tight. See [MP10, Remark 1.21].
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3 Non-Monotonicity

THM 19.10 Almost surely, for all 0 < a < b < +∞, standard BM is not mono-

tone on the interval [a, b].

Proof: It suffices to look at intervals with rational endpoints because any general
non-degenerate interval of monotonicity must contain one of those. Since there are
countably many rational intervals, it suffices to prove that any particular one has
probability 0 of being monotone. Let [a, b] be such an interval. Note that for any
finite sub-division

a = a0 < a1 < · · · < an−1 < an = b,

the probability that each increment satisfies

B(ai)−B(ai−1) ≥ 0, ∀i = 1, . . . , n,

or the same with negative, is at most

2

�
1

2

�n

→ 0,

as n → ∞ by symmetry of Gaussians.
More generally, we can prove the following. For a proof see [Lig10].

THM 19.11 Almost surely, BM satisfies:

1. The set of times at which local maxima occur is dense.

2. Every local maximum is strict.

3. The set of local maxima is countable.

Proof: Part (3). We use part (2). If t is a strict local maximum, it must be in the set

+∞�

n=1

�
t : B(t, ω) > B(s, ω), ∀s, |s− t| < n−1

�
.

But for each n, the set must be countable because two such t’s must be separated
by n−1. So the union is countable.

Further reading

Other constructions in [Dur10, Section8.1] and [Lig10, Section 1.5]. Proof of mod-
ulus of continuity [MP10, Theorem 1.14].
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1 Previous class

THM 20.1 If α < 1/2, then almost surely Brownian motion is everywhere locally
α-Hölder continuous.

Recall:

THM 20.2 (Scaling invariance) Let a > 0. If B(t) is a standard Brownian mo-
tion, then so is X(t) = a−1B(a2t).

THM 20.3 (Time inversion) If B(t) is a standard Brownian motion, then so is

X(t) =

�
0, t = 0,

tB(t−1), t > 0.

LEM 20.4 (LLN) Almost surely, t−1B(t) → 0 as t → +∞.

2 Non-differentiability

So B(t) grows slower than t. But the following lemma shows that its limsup grows
faster than

√
t.

LEM 20.5 Almost surely

lim sup
n→+∞

B(n)√
n

= +∞.

Proof: By (FATOU),

P[B(n) > c
√
n i.o.] ≥ lim sup

n→+∞
P[B(n) > c

√
n] = lim sup

n→+∞
P[B(1) > c] > 0,

by the scaling property. Thinking of B(n) as the sum of Xn = B(n)−B(n− 1),
the event on the LHS is exchangeable and the Hewitt-Savage 0-1 law implies that
it has probability 1.

1
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DEF 20.6 (Upper and lower derivatives) For a function f , we define the upper
and lower right derivatives as

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h
,

and
D∗f(t) = lim inf

h↓0

f(t+ h)− f(t)

h
.

We begin with an easy first result.

THM 20.7 Fix t ≥ 0. Then almost surely Brownian motion is not differentiable at
t. Moreover, D∗B(t) = +∞ and D∗B(t) = −∞.

Proof: Consider the time inversion X . Then

D∗X(0) ≥ lim sup
n→+∞

X(n−1)−X(0)

n−1
= lim sup

n→+∞
B(n) = +∞,

by the lemma above. This proves the result at 0. Then note that X(s) = B(t+s)−
B(s) is a standard Brownian motion and differentiability of X at 0 is equivalent to
differentiability of B at t.

In fact, we can prove something much stronger.

THM 20.8 Almost surely, BM is nowhere differentiable. Furthermore, almost
surely, for all t

D∗B(t) = +∞,

or
D∗B(t) = −∞,

or both.

Proof: Suppose there is t0 such that the latter does not hold. By boundedness of
BM over [0, 1], we have

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤ M,

for some M < +∞. Assume t0 is in [(k − 1)2−n, k2−n] for some k, n. Then for
all 1 ≤ j ≤ 2n − k, in particular, for j = 1, 2, 3,

|B((k + j)2−n)−B((k + j − 1)2−n)|
≤ |B((k + j)2−n)−B(t0)|+ |B(t0)−B((k + j − 1)2−n)|
≤ M(2j + 1)2−n,
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by our assumption. Define the events

Ωn,k = {|B((k + j)2−n)−B((k + j − 1)2−n)| ≤ M(2j + 1)2−n, j = 1, 2, 3}.

It suffices to show that ∪2n−3
k=1 Ωn,k cannot happen for infinitely many n. Indeed,

P
�
∃t0 ∈ [0, 1], sup

h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤ M

�

≤ P
�
2n−3�

k=1

Ωn,k for infinitely many n

�

But by the independence of increments

P[Ωn,k] =
3�

j=1

P[|B((k + j)2−n)−B((k + j − 1)2−n)| ≤ M(2j + 1)2−n]

≤ P
�
|B(2−n)| ≤ 7M

2n

�3

= P
�����

1√
2−n

B

��√
2−n

�2����� ≤
7M√
2−n · 2n

�3

= P
�
|B(1)| ≤ 7M√

2n

�3

≤
�
7M√
2n

�3

,

because the density of a standard Gaussian is bounded by 1/2. Hence

P
�
2n−3�

k=1

Ωn,k

�
≤ 2n

�
7M√
2n

�3

= (7M)32−n/2,

which is summable. The result follows from BC.

3 Quadratic variation

Recall:

DEF 20.9 (Bounded variation) A function f : [0, t] → R is of bounded variation
if there is M < +∞ such that

k�

j=1

|f(tj)− f(tj−1)| ≤ M,



Lecture 20: Path properties II 4

for all k ≥ 1 and all partitions 0 = t0 < t1 < · · · < tk = t. Otherwise, we say
that it is of unbounded variation.

THM 20.10 (Quadratic variation) Suppose the sequence of partitions

0 = t(n)0 < t(n)1 < · · · < t(n)k(n) = t,

is nested, that is, at each step one or more partition points are added, and the mesh

∆(n) = sup
1≤j≤k(n)

{t(n)j − t(n)j−1},

converges to 0. Then, almost surely,

lim
n→+∞

k(n)�

j=1

(B(t(n)j )−B(t(n)j−1))
2 = t.

Proof: By considering subsequences, it suffices to consider the case where one
point is added at each step. Let

X−n =

k(n)�

j=1

(B(t(n)j )−B(t(n)j−1))
2.

Let
G−n = σ(X−n, X−n−1, . . .)

and

G−∞ =
∞�

k=1

G−k.

CLAIM 20.11 We claim that {X−n} is a reversed MG.

Proof: We want to show that

E[X−n+1 | G−n] = X−n.

In particular, this will imply by induction

X−n = E[X−1 | G−n].

Assume that, at step n, the new point s is added between the old points t1 < t2.
Write

X−n+1 = (B(t2)−B(t1))
2 +W,
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and
X−n = (B(s)−B(t1))

2 + (B(t2)−B(s))2 +W,

where W is independent of the other terms. We claim that

E[(B(t2)−B(t1))
2 | (B(s)−B(t1))

2 + (B(t2)−B(s))2]

= (B(s)−B(t1))
2 + (B(t2)−B(s))2,

which follows from the following lemma.

LEM 20.12 Let X,Z ∈ L2 be independent and assume Z is symmetric. Then

E[(X + Z)2 |X2 + Z2] = X2 + Z2.

Proof: By symmetry of Z,

E[(X + Z)2 |X2 + Z2] = E[(X − Z)2 |X2 + (−Z)2]

= E[(X − Z)2 |X2 + Z2].

Taking the difference we get

E[XZ |X2 + Z2] = 0.

The fact that X−n is a reversed MG follows from the argument above. (Exer-
cise.)

We return to the proof of the theorem. By Lévy’s Downward Theorem,

X−n → E[X−1 | G−∞],

almost surely. Note that E[X−1] = E[X−n] = t. Moreover, by (FATOU), the
variance of the limit

E[(E[X−1 | G−∞]− t)2] ≤ lim inf
n

E[(X−n − t)2]

≤ lim inf
n

Var




k(n)�

j=1

(B(t(n)j )−B(t(n)j−1))
2





= lim inf
n

3

k(n)�

j=1

(t(n)j − t(n)j−1)
2

≤ 3t lim inf
n

∆(n)

= 0.

So finally
E[X−1 | G−∞] = t.
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1 Filtrations

Recall:

DEF 21.1 (Filtration) A filtration is a family {F(t) : t ≥ 0} of sub-σ-fields such

that F(s) ⊆ F(t) for all s ≤ t.

We will consider two natural filtrations for BM.

DEF 21.2 Let {B(t)} be a BM. Then we denote

F
0(t) = σ(B(s) : 0 ≤ s ≤ t).

Moreover, we let

F
+(t) =

�

s>t

F
0(s).

Clearly F0(t) ⊆ F+(t). The latter has the advantage of being right-continuous,

that is, �

ε>0

F
+(t+ ε) = F

+(t).

DEF 21.3 (Germ field) The germ σ-field is F+(0).

EX 21.4 Let B(t) be a standard BM and define

T = inf{t > 0 : B(t) > 0}.

Then {T = 0} ∈ F+(0) since

{T = 0} =
�

n≥1

{∃0 < ε < n−1, B(ε) > 0}.

1
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2 Markov property

The basic Markov property for BM is the following.

THM 21.5 (Markov property I) Suppose that {B(t)} is a BM started at x. Let

s ≥ 0. Then the process {B(s + t) − B(s)}t≥0 is a BM started at 0 and is

independent of the process {B(t) : 0 ≤ s ≤ t}, that is, the σ-fields

σ(B(s+ t)−B(s) : t ≥ 0),

and

σ(B(t) : 0 ≤ t ≤ s),

are independent.

Proof: We have already proved that {B(s+ t)−B(s)}t≥0 is a BM started at 0.
Further, recall:

LEM 21.6 (Independence and π-systems) Suppose that G and H are sub-σ-algebras

and that I and J are π-systems (i.e., families of subsets stable under finite inter-

sections) such that

σ(I) = G, σ(J ) = H.

Then G and H are independent if and only if I and J are, i.e.,

P[I ∩ J ] = P[I]P[J ], ∀I ∈ I, J ∈ J .

Note that sets of the form

{ω : B(tj) ∈ Aj , 0 ≤ tj ≤ t, j = 1, . . . , n},

for Aj ∈ B are a π-system generating F0(t). Similarly for σ(B(s + t) − B(s) :
t ≥ 0). Therefore the independence statement immediately follows from the inde-
pendence of increments.

In fact, we can prove a stronger statement:

THM 21.7 (Markov property II) Suppose that {B(t)} is a BM started at x. Let

s ≥ 0. Then the process {B(s + t) − B(s)}t≥0 is a BM started at 0 and is

independent of F+(s).

Proof: By continuity,

B(t+ s)−B(s) = lim
n

B(sn + t)−B(sn),

for a strictly decreasing sequence {sn}n converging to s. But note that for any
0 ≤ t1 < · · · < tj

(B(t1 + sn)−B(sn), . . . , B(tj + sn)−B(sn)),

is independent of F+(s) ⊆ F0(sn) and so is the limit.
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3 Applications

As a first application, we get the following.

THM 21.8 (Blumenthal’s 0-1 law) For any x, the germ σ-field F+(0) of a BM

started at x is trivial.

Proof: Let

A ∈ F
+(0) ⊆ σ(B(t) : t ≥ 0) = σ(B(t)− x : t ≥ 0).

By the previous theorem, the two σ-fields above are independent and therefore A
is independent of itself, that is,

P[A] = P[A ∩A] = P[A]2,

or P[A] ∈ {0, 1}.
We come back to our example.

EX 21.9 Let B(t) be a standard BM and define

T = inf{t > 0 : B(t) > 0}.

Then {T = 0} ∈ F+(0) since

{T = 0} =
�

n≥1

{∃0 < ε < n−1, B(ε) > 0}.

Hence,

P[T = 0] ∈ {0, 1}.

We show that it is 1 by showing that it is positive. Note that

P[T ≤ t] ≥ P[B(t) > 0] =
1

2
,

for t > 0, by symmetry of the Gaussian. It also follows by continuity that

inf{t > 0 : B(t) = 0} = 0,

almost surely.

An immediate application of Blumenthal’s 0-1 law (by time inversion) is:

THM 21.10 (0-1 law for tail events) Let B(t) be a BM. Then the tail of B, that

is,

T =
�

t≥0

G(t) =
�

t≥0

σ(B(s) : s ≥ t),

is trivial.
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1 Stopping times

We first generalize stopping times to continuous time.

DEF 22.1 (Stopping time) A RV T with values in [0,+∞] is a stopping time with
respect to the filtration {F(t)}t≥0 if for all t ≥ 0,

{T ≤ t} ∈ F(t).

THM 22.2 If the filtration {F(t)}t≥0 is right-continuous in the previous defini-
tion, then an equivalent definition is obtained by using a strict inequality.

EX 22.3 Let G be an open set. Then

T = inf{t ≥ 0 : B(t) ∈ G},

is a stopping time with respect to {F+(t)}. Indeed, note

{T < t} =
�

s<t, s∈Q
{B(s) ∈ G} ∈ F+(t),

by continuity of paths and the fact that G is open.

To define the strong Markov property, we will need the following.

DEF 22.4 Let T be a stopping time with respect to {F+(t)}t≥0. Then we let

F+(T ) = {A : A ∩ {T ≤ t} ∈ F+(t), ∀t ≥ 0}.

The following lemma will be useful in extending properties about discrete-time
stopping times to continuous time.

LEM 22.5 The following hold:

1
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1. If Tn is a sequence of stopping times with respect to {F(t)} such that Tn ↑ T ,
then so is T .

2. Let T be a stopping time with respect to {F(t)}. Then the following are also
stopping times:

Tn = (m+ 1)2−n if m2−n ≤ T < (m+ 1)2−n.

EX 22.6 Let F be a closed set. Then

T = inf{t ≥ 0 : B(t) ∈ F},

is a stopping time with respect to {F+(t)}. See [Lig10] for a proof.

2 Strong Markov property

THM 22.7 (Strong Markov property) Let {B(t)}t≥0 be a BM and T , an almost
surely finite stopping time. Then the process

{B(T + t)−B(T ) : t ≥ 0},

is a BM started at 0 independent of F+(T ).

Proof: Let Tn be a discretization of T as above. Let

Bk(t) = B(t+ k2−n)−B(k2−n),

and
B∗(t) = B(t+ Tn)−B(Tn).

Suppose E ∈ F+(Tn). Then for every “finite-dimensional” event A we have, by
the Markov property and time translation invariance,

P[{B∗ ∈ A} ∩ E] =
+∞�

k=1

P[{Bk ∈ A} ∩ E ∩ {Tn = k2−n}]

=
+∞�

k=1

P[Bk ∈ A]P[E ∩ {Tn = k2−n}]

= P[B ∈ A]
+∞�

k=1

P[E ∩ {Tn = k2−n}]

= P[B ∈ A]P[E].

That is, B∗ is independent of F+(Tn). Since F+(T ) ⊆ F+(Tn), B∗ is also
independent of F+(T ). Moreover, Tn ↓ T so that by continuity {B(t + T ) −
B(T )}t≥0 is itself independent of F+(T ). The same argument shows that the
increments have the correct distribution.
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3 Applications

We discuss one application.

THM 22.8 (Reflection principle) Let {B(t)}t≥0 be a standard BM and T , a stop-
ping time. Then the process

B∗(t) = B(t) {t ≤ T}+ (2B(T )−B(t)) {t > T},

called BM reflected at T , is also a standard BM.

Proof: Follows immediately from the strong Markov property and symmetry.
A remarkable consequence is the following.

THM 22.9 Let {B(t)} be a standard BM and let

M(t) = max
0≤s≤t

B(s).

Then, if a > 0,

P[M(t) ≥ a] = 2P[B(t) ≥ a] = P[|B(t)| ≥ a].

Proof: Let
T = inf{t ≥ 0 : B(t) = a}.

Then we have the disjoint union

{M(t) ≥ a} = {B(t) ≥ a} ∪ {B(t) < a,M(t) ≥ a}
= {B(t) ≥ a} ∪ {B∗(t) > a}.
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1 Martingales

We first generalize MGs to continuous time.

DEF 23.1 (Continuous-time martingale) A real-valued SP {X(t)}t≥0 is a mar-
tingale with respect to a filtration {F(t)} if it is adapted, that is, X(t) ∈ F(t) for

all t ≥ 0, if E|X(t)| < +∞ for all t ≥ 0, and if

E[X(t) | F(s)] = X(s),

almost surely, for all 0 ≤ s ≤ t.

EX 23.2 Let {B(t)} be a standard BM. Then

E[B(t) | F+(s)] = E[B(t)−B(s) | F+(s)] +B(s)

= E[B(t)−B(s)] +B(s)

= B(s),

by the Markov property. Hence BM is a MG.

2 Optional stopping theorem

THM 23.3 (Optional stopping theorem) Suppose {X(t)}t≥0 is a continuous MG,

and 0 ≤ S ≤ T are stopping times. If the process {X(T ∧ t)}t≥0 is dominated by

an integrable RV X , then

E[X(T ) | F(S)] = X(S),

almost surely.

1
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Proof: Fix N and consider the discrete-time MG

Xn = X(T ∧ n2−N )

and the stopping times
S�
N = �2NS�+ 1

and
T �
N = �2NT �+ 1

with respect to the filtration
Gn = F(n2−N ).

The discrete-time optional stopping theorem gives

E[XT �
N
| GS�

N
] = XS�

N
,

which is equivalent to

E[X(T ∧ 2−NT �
N ) | F(2−NS�

N )] = E[X(T ) | F(2−NS�
N )] = X(T ∧ 2−NS�

N ).

For A ∈ F(S) ⊆ F(2−NS�
N ), by the definition of the conditional expectation

and the dominated convergence theorem,

E[X(T );A] = lim
N

E[E[X(T ) | F(2−NS�
N )];A]

= E[lim
N

X(T ∧ 2−NS�
N );A]

= E[X(S);A],

where we used continuity.

3 Applications

A typical application is Wald’s lemma.

THM 23.4 (Wald’s lemma for BM) Let {B(t)} be a standard BM and T a stop-

ping time with respect to {F+(t)} such that either:

1. E[T ] < +∞, or

2. {B(t ∧ T )} is dominated by an integrable RV.

Then E[B(T )] = 0.
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Proof: The result under the second condition follows immediately from the op-
tional stopping theorem with S = 0. We show that the first condition implies the
second one.

Assume E[T ] < +∞. Define

Mk = max
0≤t≤1

|B(t+ k)−B(k)|,

and

M =

�T ��

k=1

Mk,

and note that |B(t ∧ T )| ≤ M .
Then

E[M ] =
�

k

E[ {T > k − 1}Mk]

=
�

k

P[T > k − 1]E[Mk]

= E[M0]E[T + 1] < +∞

by our result on the maximum from the previous lecture.
We state without proof:

THM 23.5 (Wald’s second lemma) Let {B(t)} be a standard BM and T a stop-

ping time with respect to {F+(t)} such that E[T ] < +∞. Then

E[B(T )2] = E[T ].

Proof: The proof is based on the fact that B(t)2 − t is a MG. Consider

Tn = inf{t ≥ 0 : |B(t)| = n},

and take an appropriate limit. See [MP10] for details.
An immediate application of Wald’s lemma gives:

THM 23.6 Let {B(t)} be a standard BM. For a < 0 < b let

T = inf{t ≥ 0 : B(t) ∈ {a, b}}.

Then

P[B(T ) = a] =
b

|a|+ b
.

Moreover,

E[T ] = |a|b.
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1 Previous class

Recall:

THM 24.1 (Wald’s lemma for BM) Let {B(t)} be a standard BM and T a stop-
ping time with respect to {F+(t)} such that E[T ] < +∞. Then

E[B(T )] = 0.

THM 24.2 (Wald’s second lemma) Let {B(t)} be a standard BM and T a stop-
ping time with respect to {F+(t)} such that E[T ] < +∞. Then

E[B(T )2] = E[T ].

THM 24.3 Let {B(t)} be a standard BM. For a < 0 < b let

T = inf{t ≥ 0 : B(t) ∈ {a, b}}.

Then
P[B(T ) = a] =

b

|a|+ b
.

Moreover,
E[T ] = |a|b.

2 Skorokhod embedding

THM 24.4 (Skorokhod embedding) Suppose {B(t)}t is a standard BM and that
X is a RV with E[X] = 0 and E[X2] < +∞. Then there exists a stopping time T
with respect to {F+(t)}t such that B(T ) has the law of X and E[T ] = E[X2].

1
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The proof uses a binary splitting MG:

DEF 24.5 A {Xn}n is binary splitting if, whenever the event

A(x0, . . . , xn) = {X0 = x0, . . . , Xn = xn},

for some x0, . . . , xn, has positive probability, then the RV Xn+1 conditioned on
A(x0, . . . , xn) is supported on at most two values.

LEM 24.6 Let X be a RV with E[X2] < +∞. Then there is a binary splitting MG
{Xn}n such that Xn → X almost surely and in L2.

Proof:(of Lemma) The MG is defined recursively. Let

G0 = {∅,Ω},

and
X0 = E[X].

For n > 0, we let

ξn =

�
1, if X ≥ Xn

−1, if X < Xn,

and
Gn = σ(ξ0, . . . , ξn−1),

and
Xn = E[X | Gn].

Then {Xn}n is a binary splitting MG. It remains to prove the convergence claim.
By (cJENSEN)

E[X2
n] ≤ E[X2],

so {Xn}n is bounded in L2 and we have by Lévy’s upward theorem

Xn → X∞ = E[X | G∞],

almost surely and in L2, where

G∞ = σ

�
�

i

Gi

�
.

We need to show that X = X∞.
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CLAIM 24.7 Almost surely,

lim
n

ξn(X −Xn+1) = |X −X∞|.

We first finish the proof of the lemma. Note that

E[ξn(X −Xn+1)] = E[ξnE[X −Xn+1 | Gn+1]] = 0.

Since {ξn(X −Xn+1)}n is bounded in L2, the expectations converge and

E|X −X∞| = 0.

Finally we prove the claim. If X = X∞, both sides are 0. If X < X∞, then
for n large enough, X < Xn and ξn = −1 by construction and the result holds.
Similarly for the other case.
Proof:(of Theorem) Take a binary splitting MG as in the previous lemma. Since
Xn conditioned on A(x0, . . . , xn−1) is supported on two values, we can use the
stopping time from last time and we get a sequence of stopping times

T0 ≤ T1 ≤ · · · ≤ Tn ≤ · · · ↑ T

for some T such that
B(Tn) ∼ Xn,

and
E[Tn] = E[B(Tn)

2].

By (MON) and L2 convergence

E[T ] = lim
n

E[Tn] = lim
n

E[X2
n] = E[X].

By continuity of paths,
B(Tn) → B(T ), a.s.

and
B(T ) ∼ X.
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