Lecture 1 : Overview. Conditional Expectation I.

MATH275B - Winter 2012

Lecturer: Sebastien Roch

References: [Wil91, Sections 0, 4.8, 9], [Dur10, Section 5.1].

1 Stochastic processes

The course MATH 275B is an introduction to stochastic processes.

DEF 1.1 A stochastic process (SP) is a collection $\{X_t\}_{t \in \mathcal{T}}$ of (E, \mathcal{E}) -valued random variables on a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathcal{T} is an arbitrary index set. For a fixed $\omega \in \Omega$, $\{X_t(\omega) : t \in \mathcal{T}\}$ is called a sample path.

EX 1.2 When $\mathcal{T} = \mathbb{N}$ or $\mathcal{T} = \mathbb{Z}_+$ we have a discrete-time SP. For instance,

- X_1, X_2, \ldots iid RVs
- $\{S_n\}_{n\geq 1}$ where $S_n = \sum_{i\leq n} X_i$ with X_i as above

EX 1.3 When $\mathcal{T} = \mathbb{R}_+$, we have a continuous-time SP. For instance,

• $N_t = \sup\{n \ge 1 : S_n \le t\}$ where S_n is as above with nonnegative X_i s

In general, \mathcal{T} does not need to represent time.

EX 1.4 When T is finite, we have a random vector. Although seemingly simple, this example encapsulates many non-trivial SPs. For instance,

• Let $V = \{1, ..., n\}$ and $E = \{e = (u, v) : u \neq v \in V\}$. Consider iid RVs X(e), $e \in E$, distributed according to Bernoulli(p) for $0 \le p \le 1$. Then $G_p = (V, E_p)$, where $E_p = \{e \in E : X(e) = 1\}$, is called an Erdos-Renyi random graph.

2 A Preview of Things to Come

Two main themes:

- 1. Beyond independence
- 2. Sample path properties

Here are a few important examples of processes and questions we will answer about them.

2.1 Random walks

DEF 1.5 A random walk (RW) on \mathbb{R}^d is an SP of the form:

$$S_n = \sum_{i \le n} X_i, \ n \ge 1$$

where the X_i s are iid in \mathbb{R}^d .

EX 1.6 When d = 1, recall from MATH 275A that

- SLLN: $n^{-1}S_n \to \mathbb{E}[X_1]$ a.s. when $\mathbb{E}|X_1| < +\infty$
- *CLT*:

$$\frac{S_n - n\mathbb{E}[X_1]}{\sqrt{n\mathrm{Var}[X_1]}} \Rightarrow N(0, 1),$$

when $\mathbb{E}[X_1^2] < \infty$.

These are examples of limit theorems. Sample path properties, on the other hand, involve properties of the sequence $S_1(\omega), S_2(\omega), \ldots$ For instance, let $A \subset \mathbb{R}^d$

- $\mathbb{P}[S_n \in A \text{ for some } n \ge 1]$?
- $\mathbb{P}[S_n \in A \text{ i.o.}]?$
- $\mathbb{E}[T_A]$? where $T_A = \inf\{n \ge 1 : S_n \in A\}$

2.2 Branching processes

DEF 1.7 A branching process is an SP of the form:

• Let X(i, n), $i \ge 1$, $n \ge 1$, be an array of iid \mathbb{Z}_+ -valued RVs with finite mean $\mu = \mathbb{E}[X(1, 1)] < +\infty$ and $\mathbb{P}[X(1, 1) = 0] > 0$

• $Z_0 = 1$, and inductively,

$$Z_n = \sum_{1 \le i \le Z_{n-1}} X(i,n)$$

EX 1.8 Typical questions about branching processes are:

- *Extinction*: $\mathbb{P}[Z_n = 0 \text{ for some } n \ge 1]$?
- Exponential growth: $M_n = \mu^{-n} Z_n \rightarrow ?$
- Limit of expectations: when $\mu < 1$ we have $\mathbb{E}[M_n] = 1$ for all n yet $\mathbb{E}[M_{\infty}] = 0$

2.3 Markov chains

The two previous examples are special cases of a large class of SPs.

DEF 1.9 A discrete-time countable-space Markov chain(MC) is an SP of the form:

- *E* countable state space
- μ initial distribution, that is, $\mu_i \ge 0$, $i \in E$, and $\sum_{i \in E} \mu_i = 1$
- $\{p_{ij}\}_{i,j\in E}$ transition matrix, that is, $p_{ij} \ge 0$, $i, j \in E$, and $\sum_{j\in E} p_{ij} = 1$ for all $i \in E$
- Let Y(i, n), $i \in E$, $n \ge 1$, be an array of iid RVs distributed according to p_i .
- Define the process recursively by $Z_0 = 0$, and,

$$Z_n = Y(Z_{n-1}, n)$$

3 Review of undergraduate conditional probability

3.1 Conditional probability

For two events A, B, the conditional probability of A given B is defined as

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]},$$

where we assume $\mathbb{P}[B] > 0$.

3.2 Conditional expectation

Let X and Z be RVs taking values x_1, \ldots, x_m and z_1, \ldots, z_n resp. The conditional expectation of X given $Z = z_i$ is given as

$$y_j \equiv \mathbb{E}[X \mid Z = z_j] = \sum_i x_i \mathbb{P}[X = x_i \mid Z = z_j].$$

We assume $\mathbb{P}[Z = z_i] > 0$.

As motivation for the general definition, we make the following observations:

• We can think of the conditional expectation as a RV $Y \equiv \mathbb{E}[X \mid Z]$ defined as follows:

$$Y(\omega) = y_j$$
, on $G_j \equiv \{\omega : Z(\omega) = z_j\}$.

- Then Y is \mathcal{G} -measurable where $\mathcal{G} = \sigma(Z)$.
- On sets in \mathcal{G} , the expectation of Y agrees with the expectation of X, that is,

$$\mathbb{E}[Y;G_j] = y_j \mathbb{P}[G_j]$$

= $\sum_i x_i \mathbb{P}[X = x_i | Z = z_j] \mathbb{P}[Z = z_j]$
= $\sum_i x_i \mathbb{P}[X = x_i, Z = z_j]$
= $\mathbb{E}[X;G_j].$

This is also true for all $G \in \mathcal{G}$ by summation.

4 Conditional expectation: definition, existence, uniqueness

4.1 Definition

DEF&THM 1.10 Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. Then there exists a (a.s.) unique $Y \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$ s.t.

$$\mathbb{E}[Y;G] = \mathbb{E}[X;G], \ \forall G \in \mathcal{G}.$$

Such Y is called a version of $\mathbb{E}[X | \mathcal{G}]$.

Further reading

Kolmogorov's extension theorem [Dur10, Section A.3]. Radon-Nikodym theorem [Dur10, Section A.4].

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.