Lecture 1 : Overview. Conditional Expectation I.

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Wil91, Sections 0, 4.8, 9], [Dur10, Section 5.1].

1 Stochastic processes

The course MATH 275B is an introduction to stochastic processes.

DEF 1.1 *A* stochastic process (SP) *is a collection* $\{X_t\}_{t\in\mathcal{T}}$ *of* (E,\mathcal{E}) *-valued random variables on a triple* (Ω, F, P)*, where* T *is an arbitrary* index set*. For a fixed* $\omega \in \Omega$, $\{X_t(\omega) : t \in \mathcal{T}\}\$ is called a sample path.

EX 1.2 *When* $\mathcal{T} = \mathbb{N}$ *or* $\mathcal{T} = \mathbb{Z}_+$ *we have a* discrete-time SP. For instance,

- X_1, X_2, \ldots *iid RVs*
- $\{S_n\}_{n\geq 1}$ where $S_n = \sum_{i\leq n} X_i$ with X_i as above

EX 1.3 *When* $\mathcal{T} = \mathbb{R}_+$ *, we have a* continuous-time SP. For instance,

• $N_t = \sup\{n \geq 1 : S_n \leq t\}$ *where* S_n *is as above with nonnegative* X_i *s*

In general, T does not need to represent time.

EX 1.4 *When* T *is finite, we have a* random vector*. Although seemingly simple, this example encapsulates many non-trivial SPs. For instance,*

• Let $V = \{1, ..., n\}$ and $E = \{e = (u, v) : u \neq v \in V\}$. Consider iid RVs $X(e)$, $e \in E$, distributed according to Bernoulli(p) for $0 \le p \le 1$. Then $G_p = (V, E_p)$ *, where* $E_p = \{e \in E : X(e) = 1\}$ *, is called an* Erdos-Renyi random graph*.*

2 A Preview of Things to Come

Two main themes:

- 1. Beyond independence
- 2. Sample path properties

Here are a few important examples of processes and questions we will answer about them.

2.1 Random walks

DEF 1.5 *A* random walk (RW) *on* \mathbb{R}^d *is an SP of the form:*

$$
S_n = \sum_{i \le n} X_i, \ n \ge 1
$$

where the X_i s are iid in \mathbb{R}^d .

EX 1.6 *When* $d = 1$ *, recall from MATH 275A that*

- *SLLN*: $n^{-1}S_n \to \mathbb{E}[X_1]$ *a.s. when* $\mathbb{E}|X_1| < +\infty$
- *CLT:*

$$
\frac{S_n - n \mathbb{E}[X_1]}{\sqrt{n \text{Var}[X_1]}} \Rightarrow N(0, 1),
$$

when $\mathbb{E}[X_1^2] < \infty$.

These are examples of limit theorems. Sample path properties, on the other hand, involve properties of the sequence $S_1(\omega), S_2(\omega), \ldots$. For instance, let $A \subset \mathbb{R}^d$

- $\mathbb{P}[S_n \in A \text{ for some } n \geq 1]$?
- $\mathbb{P}[S_n \in A \text{ i.o.}]$?
- $\mathbb{E}[T_A]$? where $T_A = \inf\{n \geq 1 : S_n \in A\}$

2.2 Branching processes

DEF 1.7 *A* branching process *is an SP of the form:*

• Let $X(i, n)$, $i \geq 1$, $n \geq 1$, be an array of iid \mathbb{Z}_{+} -valued RVs with finite mean $\mu = \mathbb{E}[X(1,1)] < +\infty$ and $\mathbb{P}[X(1,1) = 0] > 0$

• $Z_0 = 1$ *, and inductively,*

$$
Z_n = \sum_{1 \le i \le Z_{n-1}} X(i, n)
$$

EX 1.8 *Typical questions about branching processes are:*

- *Extinction:* $\mathbb{P}[Z_n = 0 \text{ for some } n \geq 1]$?
- *Exponential growth:* $M_n = \mu^{-n} Z_n \rightarrow ?$
- *Limit of expectations:* when μ < 1 we have $\mathbb{E}[M_n] = 1$ for all n yet $\mathbb{E}[M_{\infty}]=0$

2.3 Markov chains

The two previous examples are special cases of a large class of SPs.

DEF 1.9 *A* discrete-time countable-space Markov chain(MC) *is an SP of the form:*

- E *countable state space*
- μ *initial distribution, that is,* $\mu_i \geq 0$, $i \in E$ *, and* $\sum_{i \in E} \mu_i = 1$
- $\{p_{ij}\}_{i,j\in E}$ *transition matrix, that is,* $p_{ij} \geq 0$ *,* $i,j \in E$ *, and* $\sum_{j\in E} p_{ij} = 1$ *for all* $i \in E$
- Let $Y(i, n)$, $i \in E$, $n \geq 1$, be an array of iid RVs distributed according to p_i .
- *Define the process recursively by* $Z_0 = 0$ *, and,*

$$
Z_n = Y(Z_{n-1}, n)
$$

3 Review of undergraduate conditional probability

3.1 Conditional probability

For two events A, B , the conditional probability of A given B is defined as

$$
\mathbb{P}[A | B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]},
$$

where we assume $\mathbb{P}[B] > 0$.

3.2 Conditional expectation

Let X and Z be RVs taking values x_1, \ldots, x_m and z_1, \ldots, z_n resp. The conditional expectation of X given $Z = z_j$ is given as

$$
y_j \equiv \mathbb{E}[X \mid Z = z_j] = \sum_i x_i \mathbb{P}[X = x_i \mid Z = z_j].
$$

We assume $\mathbb{P}[Z = z_j] > 0$.

As motivation for the general definition, we make the following observations:

• We can think of the conditional expectation as a RV $Y \equiv \mathbb{E}[X | Z]$ defined as follows:

$$
Y(\omega) = y_j, \text{ on } G_j \equiv \{ \omega : Z(\omega) = z_j \}.
$$

- Then Y is G-measurable where $\mathcal{G} = \sigma(Z)$.
- On sets in G , the expectation of Y agrees with the expectation of X, that is,

$$
\mathbb{E}[Y; G_j] = y_j \mathbb{P}[G_j]
$$

=
$$
\sum_i x_i \mathbb{P}[X = x_i | Z = z_j] \mathbb{P}[Z = z_j]
$$

=
$$
\sum_i x_i \mathbb{P}[X = x_i, Z = z_j]
$$

=
$$
\mathbb{E}[X; G_j].
$$

This is also true for all $G \in \mathcal{G}$ by summation.

4 Conditional expectation: definition, existence, uniqueness

4.1 Definition

DEF&THM 1.10 Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. Then there *exists a (a.s.)* unique $Y \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbb{P})$ *s.t.*

$$
\mathbb{E}[Y;G] = \mathbb{E}[X;G], \,\forall G \in \mathcal{G}.
$$

Such Y is called a version of $\mathbb{E}[X | \mathcal{G}]$ *.*

Further reading

Kolmogorov's extension theorem [Dur10, Section A.3]. Radon-Nikodym theorem [Dur10, Section A.4].

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.