Lecture 10 : Uniform integrability

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Wil91, Chapter 13], [Dur10, Section 4.5].

1 Uniform Integrability

LEM 10.1 *Let* $Y \in L^1$. $\forall \varepsilon > 0$, $\exists K > 0$ *s.t.*

$$
\mathbb{E}[|Y|;|Y|>K] < \varepsilon.
$$

Proof: Immediate by (MON) to $\mathbb{E}[|Y|; |Y| \leq K]$.

DEF 10.2 (Uniform Integrability) *A collection* $\mathcal C$ *of RVs on* $(\Omega, \mathcal F, \mathbb P)$ *is uniformly integrable (UI) if:* $\forall \varepsilon > 0$, $\exists K > +\infty$ *s.t.*

 $\mathbb{E}[|X|;|X|>K]<\varepsilon, \qquad \forall X\in\mathcal{C}.$

THM 10.3 (Necessary and Sufficient Condition for L^1 Convergence) $\text{Let } \{X_n\} \in$ L^1 and $X \in L^1$. Then $X_n \to X$ in L^1 if and only if:

- $X_n \to X$ *in prob*
- $\{X_n\}$ *is UI.*

Before giving the proof, we look at a few examples.

EX 10.4 (L^1 -bddness is not sufficient) Let C is UI and $X \in \mathcal{C}$. Note that

 $\mathbb{E}[X] \leq \mathbb{E}[|X|;|X| \geq K] + \mathbb{E}[|X|;|X| < K] \leq \varepsilon + K < +\infty,$

so UI implies L 1 *-bddness. But the opposite is not true by our last example.*

EX 10.5 (L^p **-bdd RVs**) *Let* C *be* L^p *-bdd and* $X \in C$ *. Then*

$$
\mathbb{E}[|X|;|X| > K] \le \mathbb{E}[K^{1-p}|X|^p;|X| > K]| \le K^{1-p}A \to 0,
$$

as $K \to +\infty$ *.*

EX 10.6 (Dominated RVs) *Assume* ∃ $Y \in L^1$ *s.t.* $|X| \leq Y \forall X \in \mathcal{C}$ *. Then*

 $\mathbb{E}[|X|;|X|>K] \leq \mathbb{E}[Y;|X|>K] \leq \mathbb{E}[Y;Y>K],$

and apply lemma above.

2 Proof of main theorem

Proof: We start with the if part. Fix $\varepsilon > 0$. We want to show that for n large enough:

$$
\mathbb{E}|X_n - X| \le \varepsilon.
$$

Let $\phi_K(x) = \text{sgn}(x)[|x| \wedge K]$. Then,

$$
\mathbb{E}|X_n - X| \leq \mathbb{E}|\phi_K(X_n) - X_n| + \mathbb{E}|\phi_K(X) - X| + \mathbb{E}|\phi_K(X_n) - \phi_K(X)|
$$

$$
\leq \mathbb{E}[|X_n|; |X_n| > K] + \mathbb{E}[|X|; |X| > K] + \mathbb{E}|\phi_K(X_n) - \phi_K(X)|.
$$

1st term $\leq \varepsilon/3$ by UI and 2nd term $\leq \varepsilon/3$ by lemma above. Check, by case analysis, that

$$
|\phi_K(x) - \phi_K(y)| \le |x - y|,
$$

so $\phi_K(X_n) \to_P \phi_K(X)$. By bounded convergence for convergence in probability, the claim is proved.

LEM 10.7 (Bounded convergence theorem (convergence in probability version)) *Let* $X_n \leq K < +\infty$ $\forall n$ *and* $X_n \rightarrow_P X$ *. Then*

$$
\mathbb{E}|X_n - X| \to 0.
$$

Proof:(Sketch) By

$$
\mathbb{P}[|X| \ge K + m^{-1}] \le \mathbb{P}[|X_n - X| \ge m^{-1}],
$$

it follows that $\mathbb{P}[|X| \leq K] = 1$. Fix $\varepsilon > 0$

$$
\mathbb{E}|X_n - X| = \mathbb{E}[|X_n - X|; |X_n - X| > \varepsilon/2] + \mathbb{E}[|X_n - X|; |X_n - X| \le \varepsilon/2]
$$

$$
\le 2K\mathbb{P}[|X_n - X| > \varepsilon/2] + \varepsilon/2 < \varepsilon,
$$

for n large enough.

Proof of only if part. Suppose $X_n \to X$ in L^1 . We know that L^1 implies convergence in probability. So the first claim follows.

For the second claim, if $n \geq N$ (large enough),

$$
\mathbb{E}|X_n - X| \leq \varepsilon.
$$

We can choose K large enough so that

$$
\mathbb{E}[|X_n|;|X_n|>K]<\varepsilon,
$$

 $\forall n \leq N$. So only need to worry about $n > N$. To use L^1 convergence, natural to write

$$
\mathbb{E}[|X_n|;|X_n|>K] \le \mathbb{E}[|X_n - X|;|X_n|>K] + \mathbb{E}[|X|;|X_n|>K].
$$

First term $\leq \varepsilon$. The issue with the second term is that we cannot apply the lemma because the event involves X_n rather than X . In fact, a stronger version exists:

LEM 10.8 (Absolute continuity) Let $X \in L^1$. $\forall \varepsilon > 0$, $\exists \delta > 0$, s.t. $\mathbb{P}[F] < \delta$ *implies*

$$
\mathbb{E}[|X|; F] < \varepsilon.
$$

Proof: Argue by contradiction. Suppose there is ε and F_n s.t. $\mathbb{P}[F_n] \leq 2^{-n}$ and

$$
\mathbb{E}[|X|; F_n] \ge \varepsilon.
$$

By BC,

$$
\mathbb{P}[H] \equiv \mathbb{P}[F_n \text{ i.o.}] = 0.
$$

By (DOM) ,

$$
\mathbb{E}[|X|;H] \ge \varepsilon,
$$

a contradiction.

To conclude note that

$$
\mathbb{P}[|X_n| > K] \leq \frac{\mathbb{E}|X_n|}{K} \leq \frac{\sup_{n \geq N} \mathbb{E}|X_n|}{K} \leq \frac{\sup_{n \geq N} \mathbb{E}|X| + \mathbb{E}|X_n - X|}{K} < \delta,
$$

uniformly in n for K large enough. We are done.

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

 \blacksquare

 \blacksquare