
Lecture 11 : UI MGs

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Dur10, Section 4.5].

1 UI MGs

THM 11.1 (Convergence of UI MGs) Let M be UI MG. Then

Mn →M∞,

a.s. and in L1. Moreover,

Mn = E[M∞ | Fn], ∀n.

Proof: UI implies L1-bddness so we have Mn → M∞ a.s. By necessary and
sufficient condition, we also have L1 convergence.

Now note that for all r ≥ n and F ∈ Fn, we know E[Mr | Fn] = Mn or

E[Mr;F ] = E[Mn;F ],

by definition of CE. We can take a limit by L1 convergence. More precisely

|E[Mr;F ]− E[M∞;F ]| ≤ E[|Mr −M∞|;F ] ≤ E[|Mr −M∞|]→ 0,

as r →∞. So plugging above

E[M∞;F ] = E[Mn;F ],

and E[M∞ | Fn] = Mn.

2 Applications I

THM 11.2 (Levy’s upward thm) Let Z ∈ L1 and define Mn = E[Z | Fn]. Then
M is a UI MG and

Mn →M∞ = E[Z | F∞],

a.s. and in L1.
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Proof: M is a MG by (TOWER). We first show it is UI:

LEM 11.3 Let X ∈ L1(Ω,F ,P). Then

{E[X | G] : G is a sub-σ-field of F},

is UI.

Proof: We use the absolute continuity lemma again. Let Y = E[X | G] ∈ G. Since
{|Y | > K} ∈ G,

E[|Y |; |Y | > K] = E[|E[X | G]|; |Y | > K]

≤ E[E[|X| | G]; |Y | > K]

= E[|X|; |Y | > K].

By Markov

P[|Y | > K] ≤ E|Y |
K
≤ E|X|

K
≤ δ,

for K large enough (uniformly in G). And we are done.
In particular, we have convergence a.s. and in L1 to M∞ ∈ F∞.
Let Y = E[Z | F∞] ∈ F∞. By dividing into negative and positive parts, we

assume Z ≥ 0. We want to show, for F ∈ F∞,

E[Z;F ] = E[M∞;F ].

By Uniqueness Lemma, it suffices to prove equality for all Fn. If F ∈ Fn ⊆ F∞,
then by (TOWER)

E[Z;F ] = E[Y ;F ] = E[Mn;F ] = E[M∞;F ].

THM 11.4 (Levy’s 0− 1 law) Let A ∈ F∞. Then

P[A | Fn]→ 1A.

Proof: Immediate.

COR 11.5 (Kolmogorov’s 0− 1 law) Let X1, X2, . . . be iid RVs. Recall that the
tail σ-field is

T = ∩nTn = ∩nσ(Xn+1, Xn+2, . . .).

If A ∈ T then P[A] ∈ {0, 1}.
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Proof: Since A ∈ Tn is independent of Fn,

P[A | Fn] = P[A],

∀n. By Levy’s law,
P[A] = 1A ∈ {0, 1}.

3 Applications II

THM 11.6 (Levy’s Downward Thm) Let Z ∈ L1(Ω,F ,P) and {G−n}n≥0 a col-
lection of σ-fields s.t.

G−∞ = ∩kG−k ⊆ · · · ⊆ G−n ⊆ · · · ⊆ G−1 ⊆ F .

Define
M−n = E[Z | G−n].

Then
M−n →M−∞ = E[Z | G−∞]

a.s. and in L1.

Proof: We apply the same argument as in the Martingale Convergence Thm. Let
α < β ∈ Q and

Λα,β = {ω : lim inf X−n < α < β < lim supX−n}.

Note that

Λ ≡ {ω : Xn does not converge}
= {ω : lim inf X−n < lim supX−n}
= ∪α<β∈QΛα,β.

Let UN [α, β] be the number of upcrossings of [α, β] between time −N and −1.
Then by the Upcrossing Lemma applied to the MG M−N , . . . ,M−1

(β − α)EUN [α, β] ≤ |α|+ E|M−1| ≤ |α|+ E|Z|.

By (MON)
UN [α, β] ↑ U∞[α, β],
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and
(β − α)EU∞[α, β] ≤ |α|+ E|Z| < +∞,

so that
P[U∞[α, β] =∞] = 0.

Since
Λα,β ⊆ {U∞[α, β] =∞},

we have P[Λα,β] = 0. By countability, P[Λ] = 0. Therefore we have convergence
a.s.

By lemma in previous class, M is UI and hence we have L1 convergence as
well.

Finally, for all G ∈ G−∞ ⊆ G−n,

E[Z;G] = E[M−n;G].

Take the limit n→ +∞ and use L1 convergence.
An application:

THM 11.7 (Strong Law; Martingale Proof) LetX1, X2, . . . be iid RVs with E[X1] =
µ and E|X1| < +∞. Let Sn =

∑
i≤nXn. Then

n−1Sn → µ,

a.s. and in L1.

Proof: Let

G−n = σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .),

and note that, for 1 ≤ i ≤ n,

E[X1 | G−n] = E[X1 |Sn] = E[Xi |Sn] = E[n−1Sn |Sn] = n−1Sn,

by symmetry. By Levy’s Downward Thm

n−1Sn → E[X1 | G−∞],

a.s. and in L1. Note that G−n ⊆ En and G−∞ ⊆ E so that G−∞ is trivial and we
must have E[X1 | G−∞] = µ.
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4 Further material

DEF 11.8 Let X1, X2, . . . be iid RVs. Let En be the σ-field generated by events
invariant under permutations of the Xs that leaveXn+1, Xn+2, . . . unchanged. The
exchangeable σ-field is E = ∩mEm.

THM 11.9 (Hewitt-Savage 0-1 law) Let X1, X2, . . . be iid RVs. If A ∈ E then
P[A] ∈ {0, 1}.

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[A]− P[A ∩A] = P[A]− P[A]P[A] = P[A](1− P[A]).

SinceA ∈ E andA ∈ F∞, it suffices to show that E is independent of Fn for every
n (by the π-λ theorem).

WTS: for every bounded φ, B ∈ E ,

E[φ(X1, . . . , Xk);B] = E[φ(X1, . . . , Xk)]E[B] = E[E[φ(X1, . . . , Xk)];B],

or equivalently

Y = E[φ(X1, . . . , Xk) | E ] = E[φ(X1, . . . , Xk)].

It suffices to show that Y is independent of Fk. Indeed, by the L2 characterization
of conditional expectation and independence,

0 = E[(φ(X1, . . . , Xk)− Y )Y ] = E[φ(X1, . . . , Xk)]E[Y ]− E[Y 2] = −Var[Y ],

and Y is constant.

1. Since φ is bounded, it is integrable and Levy’s Downward Thm implies

E[φ(X1, . . . , Xk) | En]→ E[φ(X1, . . . , Xk) | E ].

2. Define
An(φ) =

1

(n)k

∑
1≤i1 6=···6=ik≤n

φ(Xi1 , . . . , Xik),

where (n)k = n(n− 1) · · · (n− k + 1). Note by symmetry

An(φ) = E[An(φ) | En] = E[φ(X1, . . . , Xk) | En]→ E[φ(X1, . . . , Xk) | E ].
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3. However, note that

1

(n)k

∑
1∈i

φ(Xi1 , . . . , Xik) ≤ k(n− 1)k−1
(n)k

supφ =
k

n
supφ→ 0,

so that the limit of An(φ) is independent of X1 and

E[φ(X1, . . . , Xk) | E ] ∈ σ(X2, . . .),

and by induction

Y = E[φ(X1, . . . , Xk) | E ] ∈ σ(Xk+1, . . .).

References

[Dur10] Rick Durrett. Probability: theory and examples. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, fourth edition, 2010.

[Wil91] David Williams. Probability with martingales. Cambridge Mathematical
Textbooks. Cambridge University Press, Cambridge, 1991.


