Lecture 11 : UI MGs

MATH275B - Winter 2012

Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Dur10, Section 4.5].

1 UI MGs

THM 11.1 (Convergence of UI MGs) Let M be UI MG. Then

$$M_n \to M_\infty,$$

a.s. and in L^1 . Moreover,

$$M_n = \mathbb{E}[M_\infty \,|\, \mathcal{F}_n], \qquad \forall n.$$

Proof: UI implies L^1 -bddness so we have $M_n \to M_\infty$ a.s. By necessary and sufficient condition, we also have L^1 convergence.

Now note that for all $r \ge n$ and $F \in \mathcal{F}_n$, we know $\mathbb{E}[M_r \mid \mathcal{F}_n] = M_n$ or

 $\mathbb{E}[M_r; F] = \mathbb{E}[M_n; F],$

by definition of CE. We can take a limit by L^1 convergence. More precisely

$$|\mathbb{E}[M_r; F] - \mathbb{E}[M_{\infty}; F]| \le \mathbb{E}[|M_r - M_{\infty}|; F] \le \mathbb{E}[|M_r - M_{\infty}|] \to 0,$$

as $r \to \infty$. So plugging above

$$\mathbb{E}[M_{\infty}; F] = \mathbb{E}[M_n; F],$$

and $\mathbb{E}[M_{\infty} | \mathcal{F}_n] = M_n$.

2 Applications I

THM 11.2 (Levy's upward thm) Let $Z \in L^1$ and define $M_n = \mathbb{E}[Z | \mathcal{F}_n]$. Then M is a UI MG and

$$M_n \to M_\infty = \mathbb{E}[Z \mid \mathcal{F}_\infty],$$

a.s. and in L^1 .

Proof: M is a MG by (TOWER). We first show it is UI:

LEM 11.3 Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Then

$$\{\mathbb{E}[X | \mathcal{G}] : \mathcal{G} \text{ is a sub-}\sigma\text{-field of } \mathcal{F}\},\$$

is UI.

Proof: We use the absolute continuity lemma again. Let $Y = \mathbb{E}[X | \mathcal{G}] \in \mathcal{G}$. Since $\{|Y| > K\} \in \mathcal{G}$,

$$\begin{split} \mathbb{E}[|Y|;|Y| > K] &= \mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}]|;|Y| > K] \\ &\leq \mathbb{E}[\mathbb{E}[|X| \mid \mathcal{G}];|Y| > K] \\ &= \mathbb{E}[|X|;|Y| > K]. \end{split}$$

By Markov

$$\mathbb{P}[|Y| > K] \le \frac{\mathbb{E}|Y|}{K} \le \frac{\mathbb{E}|X|}{K} \le \delta,$$

for K large enough (uniformly in \mathcal{G}). And we are done.

In particular, we have convergence a.s. and in L^1 to $M_{\infty} \in \mathcal{F}_{\infty}$.

Let $Y = \mathbb{E}[Z | \mathcal{F}_{\infty}] \in \mathcal{F}_{\infty}$. By dividing into negative and positive parts, we assume $Z \ge 0$. We want to show, for $F \in \mathcal{F}_{\infty}$,

$$\mathbb{E}[Z;F] = \mathbb{E}[M_{\infty};F].$$

By Uniqueness Lemma, it suffices to prove equality for all \mathcal{F}_n . If $F \in \mathcal{F}_n \subseteq \mathcal{F}_\infty$, then by (TOWER)

$$\mathbb{E}[Z;F] = \mathbb{E}[Y;F] = \mathbb{E}[M_n;F] = \mathbb{E}[M_\infty;F].$$

THM 11.4 (Levy's 0 - 1 law) Let $A \in \mathcal{F}_{\infty}$. Then

$$\mathbb{P}[A \,|\, \mathcal{F}_n] \to \mathbb{1}_A.$$

Proof: Immediate.

COR 11.5 (Kolmogorov's 0 - 1 **law)** Let X_1, X_2, \ldots be iid RVs. Recall that the tail σ -field is

$$\mathcal{T} = \bigcap_n \mathcal{T}_n = \bigcap_n \sigma(X_{n+1}, X_{n+2}, \ldots).$$

If $A \in \mathcal{T}$ then $\mathbb{P}[A] \in \{0, 1\}$.

Lecture 11: UI MGs

Proof: Since $A \in \mathcal{T}_n$ is independent of \mathcal{F}_n ,

$$\mathbb{P}[A \,|\, \mathcal{F}_n] = \mathbb{P}[A],$$

 $\forall n.$ By Levy's law,

$$\mathbb{P}[A] = \mathbb{1}_A \in \{0, 1\}.$$

3 Applications II

THM 11.6 (Levy's Downward Thm) Let $Z \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\{\mathcal{G}_{-n}\}_{n \ge 0}$ a collection of σ -fields s.t.

$$\mathcal{G}_{-\infty} = \cap_k \mathcal{G}_{-k} \subseteq \cdots \subseteq \mathcal{G}_{-n} \subseteq \cdots \subseteq \mathcal{G}_{-1} \subseteq \mathcal{F}.$$

Define

$$M_{-n} = \mathbb{E}[Z \,|\, \mathcal{G}_{-n}].$$

Then

$$M_{-n} \to M_{-\infty} = \mathbb{E}[Z \mid \mathcal{G}_{-\infty}]$$

a.s. and in L^1 .

Proof: We apply the same argument as in the Martingale Convergence Thm. Let $\alpha < \beta \in \mathbb{Q}$ and

$$\Lambda_{\alpha,\beta} = \{ \omega : \liminf X_{-n} < \alpha < \beta < \limsup X_{-n} \}.$$

Note that

$$\Lambda \equiv \{\omega : X_n \text{ does not converge}\} \\ = \{\omega : \liminf X_{-n} < \limsup X_{-n}\} \\ = \bigcup_{\alpha < \beta \in \mathbb{Q}} \Lambda_{\alpha,\beta}.$$

Let $U_N[\alpha, \beta]$ be the number of upcrossings of $[\alpha, \beta]$ between time -N and -1. Then by the Upcrossing Lemma applied to the MG M_{-N}, \ldots, M_{-1}

$$(\beta - \alpha) \mathbb{E} U_N[\alpha, \beta] \le |\alpha| + \mathbb{E} |M_{-1}| \le |\alpha| + \mathbb{E} |Z|.$$

By (MON)

$$U_N[\alpha,\beta] \uparrow U_\infty[\alpha,\beta],$$

and

$$(\beta - \alpha) \mathbb{E} U_{\infty}[\alpha, \beta] \le |\alpha| + \mathbb{E}|Z| < +\infty,$$

so that

$$\mathbb{P}[U_{\infty}[\alpha,\beta]=\infty]=0.$$

Since

$$\Lambda_{\alpha,\beta} \subseteq \{U_{\infty}[\alpha,\beta] = \infty\},\$$

we have $\mathbb{P}[\Lambda_{\alpha,\beta}] = 0$. By countability, $\mathbb{P}[\Lambda] = 0$. Therefore we have convergence a.s.

By lemma in previous class, ${\cal M}$ is UI and hence we have L^1 convergence as well.

Finally, for all $G \in \mathcal{G}_{-\infty} \subseteq \mathcal{G}_{-n}$,

$$\mathbb{E}[Z;G] = \mathbb{E}[M_{-n};G].$$

Take the limit $n \to +\infty$ and use L^1 convergence.

An application:

THM 11.7 (Strong Law; Martingale Proof) Let X_1, X_2, \ldots be iid RVs with $\mathbb{E}[X_1] = \mu$ and $\mathbb{E}|X_1| < +\infty$. Let $S_n = \sum_{i \leq n} X_n$. Then

$$n^{-1}S_n \to \mu,$$

a.s. and in L^1 .

Proof: Let

$$\mathcal{G}_{-n} = \sigma(S_n, S_{n+1}, S_{n+2}, \ldots) = \sigma(S_n, X_{n+1}, X_{n+2}, \ldots)$$

and note that, for $1 \leq i \leq n$,

$$\mathbb{E}[X_1 | \mathcal{G}_{-n}] = \mathbb{E}[X_1 | S_n] = \mathbb{E}[X_i | S_n] = \mathbb{E}[n^{-1}S_n | S_n] = n^{-1}S_n,$$

by symmetry. By Levy's Downward Thm

$$n^{-1}S_n \to \mathbb{E}[X_1 \mid \mathcal{G}_{-\infty}],$$

a.s. and in L^1 . Note that $\mathcal{G}_{-n} \subseteq \mathcal{E}_n$ and $\mathcal{G}_{-\infty} \subseteq \mathcal{E}$ so that $\mathcal{G}_{-\infty}$ is trivial and we must have $\mathbb{E}[X_1 | \mathcal{G}_{-\infty}] = \mu$.

4 Further material

DEF 11.8 Let X_1, X_2, \ldots be iid RVs. Let \mathcal{E}_n be the σ -field generated by events invariant under permutations of the Xs that leave X_{n+1}, X_{n+2}, \ldots unchanged. The exchangeable σ -field is $\mathcal{E} = \bigcap_m \mathcal{E}_m$.

THM 11.9 (Hewitt-Savage 0-1 law) Let X_1, X_2, \ldots be iid RVs. If $A \in \mathcal{E}$ then $\mathbb{P}[A] \in \{0, 1\}$.

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we then have

$$0 = \mathbb{P}[A] - \mathbb{P}[A \cap A] = \mathbb{P}[A] - \mathbb{P}[A]\mathbb{P}[A] = \mathbb{P}[A](1 - \mathbb{P}[A]).$$

Since $A \in \mathcal{E}$ and $A \in \mathcal{F}_{\infty}$, it suffices to show that \mathcal{E} is independent of \mathcal{F}_n for every n (by the π - λ theorem).

WTS: for every bounded $\phi, B \in \mathcal{E}$,

$$\mathbb{E}[\phi(X_1,\ldots,X_k);B] = \mathbb{E}[\phi(X_1,\ldots,X_k)]\mathbb{E}[B] = \mathbb{E}[\mathbb{E}[\phi(X_1,\ldots,X_k)];B],$$

or equivalently

$$Y = \mathbb{E}[\phi(X_1, \dots, X_k) \,|\, \mathcal{E}] = \mathbb{E}[\phi(X_1, \dots, X_k)].$$

It suffices to show that Y is independent of \mathcal{F}_k . Indeed, by the L^2 characterization of conditional expectation and independence,

$$0 = \mathbb{E}[(\phi(X_1, \dots, X_k) - Y)Y] = \mathbb{E}[\phi(X_1, \dots, X_k)]\mathbb{E}[Y] - \mathbb{E}[Y^2] = -\operatorname{Var}[Y],$$

and Y is constant.

1. Since ϕ is bounded, it is integrable and Levy's Downward Thm implies

$$\mathbb{E}[\phi(X_1,\ldots,X_k) \,|\, \mathcal{E}_n] \to \mathbb{E}[\phi(X_1,\ldots,X_k) \,|\, \mathcal{E}].$$

2. Define

$$A_n(\phi) = \frac{1}{(n)_k} \sum_{1 \le i_1 \ne \dots \ne i_k \le n} \phi(X_{i_1}, \dots, X_{i_k}),$$

where $(n)_k = n(n-1)\cdots(n-k+1)$. Note by symmetry

$$A_n(\phi) = \mathbb{E}[A_n(\phi) | \mathcal{E}_n] = \mathbb{E}[\phi(X_1, \dots, X_k) | \mathcal{E}_n] \to \mathbb{E}[\phi(X_1, \dots, X_k) | \mathcal{E}].$$

3. However, note that

$$\frac{1}{(n)_k} \sum_{1 \in \mathbf{i}} \phi(X_{i_1}, \dots, X_{i_k}) \le \frac{k(n-1)_{k-1}}{(n)_k} \sup \phi = \frac{k}{n} \sup \phi \to 0,$$

so that the limit of $A_n(\phi)$ is independent of X_1 and

$$\mathbb{E}[\phi(X_1,\ldots,X_k)\,|\,\mathcal{E}]\in\sigma(X_2,\ldots),$$

and by induction

$$Y = \mathbb{E}[\phi(X_1, \dots, X_k) \,|\, \mathcal{E}] \in \sigma(X_{k+1}, \dots).$$

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.