Lecture 13 : UI MGs: Optional Sampling Thm

MATH275B - Winter 2012

Lecturer: Sebastien Roch

References: [Wil91, Appendix to Chapter 14], [Dur10, Section 4.7].

1 Review: Stopping times

Recall:

DEF 13.1 A random variable $T : \Omega \to \overline{\mathbb{Z}}_+ \equiv \{0, 1, \dots, +\infty\}$ is called a stopping time *if*

$$\{T=n\}\in\mathcal{F}_n,\ \forall n\in\overline{\mathbb{Z}}_+.$$

EX 13.2 Let $\{A_n\}$ be an adapted process and $B \in \mathcal{B}$. Then

$$T = \inf\{n \ge 0 : A_n \in B\},\$$

is a stopping time.

THM 13.3 (Optional Stopping Thm) Let $\{M_n\}$ be a MG and T be a stopping time. Then M_T is integrable and

$$\mathbb{E}[M_T] = \mathbb{E}[X_0].$$

if one of the following holds:

- 1. T is bounded.
- 2. M is bounded and T is a.s. finite.
- 3. $\mathbb{E}[T] < +\infty$ and M has bounded increments.
- 4. *M* is UI.

2 The σ -field \mathcal{F}_T

DEF 13.4 (\mathcal{F}_T) Let T be a stopping time. Denote by \mathcal{F}_T the set of all events F such that $\forall n \in \mathbb{Z}_+$

$$F \cap \{T = n\} \in \mathcal{F}_n.$$

The following two lemmas clarify the definition:

LEM 13.5 $\mathcal{F}_T = \mathcal{F}_n$ if $T \equiv n$, $\mathcal{F}_T = \mathcal{F}_\infty$ if $T \equiv \infty$ and $\mathcal{F}_T \subseteq \mathcal{F}_\infty$ for any T.

Proof: In the first case, note $F \cap \{T = k\}$ is empty if $k \neq n$ and is F if k = n. So if $F \in \mathcal{F}_T$ then $F = F \cap \{T = n\} \in \mathcal{F}_n$ and if $F \in F_n$ then $F = F \cap \{T = n\} \in F_n$. Moreover $\emptyset \in \mathcal{F}_n$ so we have proved both inclusions. This works also for $n = \infty$. For the third claim note

$$F = \bigcup_{k \in \overline{\mathbb{Z}}_+} F \cap \{T = n\} \in \mathcal{F}_{\infty}.$$

LEM 13.6 If X is adapted and T is a stopping time then $X_T \in \mathcal{F}_T$ (where we assume that $X_{\infty} \in \mathcal{F}_{\infty}$, e.g., $X_{\infty} = \liminf X_n$).

Proof: For $B \in \mathcal{B}$

$${X_T \in B} \cap {T = n} = {X_n \in B} \cap {T = n} \in \mathcal{F}_n$$

LEM 13.7 If S, T are stopping times then $\mathcal{F}_{S \wedge T} \subseteq \mathcal{F}_T$.

Proof: Let $F \in \mathcal{F}_{S \wedge T}$. Note that

$$F \cap \{T = n\} = \bigcup_{k \le n} [(F \cap \{S \land T = k\}) \cap \{T = n\}] \in \mathcal{F}_n.$$

3 Optional Sampling Theorem (OST)

THM 13.8 (Optional Sampling Theorem) If M is a UI MG and S, T are stopping times with $S \leq T$ a.s. then $\mathbb{E}|M_T| < +\infty$ and

$$\mathbb{E}[M_T \,|\, \mathcal{F}_S] = M_S.$$

Proof: Since M is UI, $\exists M_{\infty} \in \mathcal{L}^1$ s.t. $M_n \to M_{\infty}$ a.s. and in \mathcal{L}^1 . We prove a more general claim:

LEM 13.9

$$\mathbb{E}[M_{\infty} \,|\, \mathcal{F}_T] = M_T.$$

Indeed, we then get the theorem by (TOWER) and (JENSEN). **Proof:**(Lemma) Wlog we assume $M_{\infty} \ge 0$ so that $M_n = \mathbb{E}[M_{\infty} | \mathcal{F}_n] \ge 0 \forall n$. Let $F \in \mathcal{F}_T$. Then (trivially)

$$\mathbb{E}[M_{\infty}; F \cap \{T = \infty\}] = \mathbb{E}[M_T; F \cap \{T = \infty\}]$$

so STS

$$\mathbb{E}[M_{\infty}; F \cap \{T < +\infty\}] = \mathbb{E}[M_T; F \cap \{T < +\infty\}].$$

In fact, by (MON), STS

$$\mathbb{E}[M_{\infty}; F \cap \{T \le k\}] = \mathbb{E}[M_T; F \cap \{T \le k\}] = \mathbb{E}[M_{T \land k}; F \cap \{T \le k\}],$$

 $\forall k$. To conclude we make two observations:

1.
$$F \cap \{T \leq k\} \in \mathcal{F}_{T \wedge k}$$
. Indeed if $n \leq k$
 $F \cap \{T \leq k\} \cap \{T \wedge k = n\} = F \cap \{T = n\} \in \mathcal{F}_n$,

and if n > k

$$= \emptyset \in \mathcal{F}_n$$

2. $\mathbb{E}[M_{\infty} | \mathcal{F}_{T \wedge k}] = M_{T \wedge k}.$ Since $\mathbb{E}[M_{\infty} | \mathcal{F}_{k}] = M_{k}$, STS $\mathbb{E}[M_{k} | \mathcal{F}_{T \wedge k}] = M_{T \wedge k}$. But note that if $G \in \mathcal{F}_{T \wedge k}$

$$\mathbb{E}[M_k;G] = \sum_{l \le k} \mathbb{E}[M_k;G \cap \{T \land k = l\}] = \sum_{l \le k} \mathbb{E}[M_l;G \cap \{T \land k = l\}] = \mathbb{E}[M_{T \land k};G]$$

since $G \cap \{T \land k = l\} \in \mathcal{F}_l$.

4 Example: Biased RW

DEF 13.10 The asymmetric simple RW with parameter $1/2 is the process <math>\{S_n\}_{n\geq 0}$ with $S_0 = 0$ and $S_n = \sum_{k\leq n} X_k$ where the X_k s are iid in $\{-1, +1\}$ s.t. $\mathbb{P}[X_1 = 1] = p$. Let q = 1 - p. Let $\phi(x) = (q/p)^x$ and $\psi_n(x) = x - (p - q)n$.

THM 13.11 Let $\{S_n\}$ as above. Let a < 0 < b. Define $T_x = \inf\{n \ge 0 : S_n = x\}$. Then

1. We have

$$\mathbb{P}[T_a < T_b] = \frac{\phi(b) - \phi(0)}{\phi(b) - \phi(a)}.$$

In particular, $\mathbb{P}[T_a < +\infty] = 1/\phi(a)$ and $\mathbb{P}[T_b < \infty] = 1.$

2. We have

$$\mathbb{E}[T_b] = \frac{b}{2p-1}.$$

Proof: There are two MGs here:

$$\mathbb{E}[\phi(S_n) \mid \mathcal{F}_{n-1}] = p(q/p)^{S_{n-1}+1} + q(q/p)^{S_{n-1}-1} = \phi(S_{n-1}),$$

and

$$\mathbb{E}[\psi_n(S_n) \mid \mathcal{F}_{n-1}] = p[S_{n-1} + 1 - (p-q)(n)] + q[S_{n-1} - 1 - (p-q)(n)] = \psi_{n-1}(S_{n-1}).$$

Let $N = T_a \wedge T_b$. Now note that $\phi(S_{N \wedge n})$ is a bounded MG and therefore applying the MG property at time n and taking limits as $n \to \infty$ (using (DOM))

$$\phi(0) = \mathbb{E}[\phi(S_N)] = \mathbb{P}[T_a < T_b]\phi(a) + \mathbb{P}[T_a > T_b]\phi(b),$$

where we need to prove that $N < +\infty$ a.s. Indeed, since (b - a) + 1-steps always take us out of (a, b),

$$\mathbb{P}[T_b > n(b-a)] \le (1-q^{b-a})^n,$$

so that

$$\mathbb{E}[T_b] = \sum_{k \ge 0} \mathbb{P}[T_b > k] \le \sum_n (b-a)(1-q^{b-a})^n < +\infty.$$

In particular $T_b < +\infty$ a.s. and $N < +\infty$ a.s. Rearranging the formula above gives the first result. (For the second part of the first result, take $b \to +\infty$ and use monotonicity.)

For the third one, note that $T_b \wedge n$ is bounded so that

$$0 = \mathbb{E}[S_{T_b \wedge n} - (p - q)(T_b \wedge n)].$$

By (MON), $\mathbb{E}[T_b \wedge n] \uparrow \mathbb{E}[T_b]$. Finally, using

$$\mathbb{P}[-\inf_n S_n \ge -a] = \mathbb{P}[T_a < +\infty],$$

and the fact that $-\inf_n S_n \ge 0$ shows that $\mathbb{E}[-\inf_n S_n] < +\infty$. Hence, we can use (DOM) with $|S_{T_b \land n}| \le \max\{b, -\inf_n S_n\}$.

4

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.