Lecture 13 : Stationary Stochastic Processes

MATH275B - Winter 2012

Lecturer: Sebastien Roch

References: [Var01, Chapter 6], [Dur10, Section 6.1], [Bil95, Chapter 24].

1 Stationary stochastic processes

DEF 13.1 (Stationary stochastic process) A real-valued process $\{X_n\}_{n\geq 0}$ is stationary if for every k, m

$$(X_m,\ldots,X_{m+k})\sim(X_0,\ldots,X_k)$$

EX 13.2 IID sequences are stationary.

1.1 Stationary Markov chains

1.1.1 Markov chains

DEF 13.3 (Discrete-time finite-space MC) Let A be a finite space, μ a distribution on A and $\{p(i, j)\}_{i,j\in A}$ a transition matrix on E. Let $(X_n)_{n\geq 0}$ be a process with distribution

$$\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mu(x_0)p(x_0, x_1)\cdots p(x_{n-1}, n_n),$$

for all $n \ge 0$ and $x_0, \ldots, x_n \in A$.

EX 13.4 (RW on a graph) Let G = (V, E) be a finite, undirected graph. Define

$$p(i,j) = \frac{\mathbb{1}\{(i,j) \in E\}}{|\{N(i)\}|},$$

where

$$N(i) = \{ j : (i, j) \in E \}.$$

This defines a RW on a graph as the finite MC with the above transition matrix (for each μ , an arbitrary distribution on V). More generally, any finite MC can be seen as a RW on a weighted directed graph.

EX 13.5 (Asymmetric SRW on an interval) Let $(S_n)_{n\geq 0}$ be an asymmetric SRW with parameter 1/2 . Let <math>a < 0 < b, $N = T_a \wedge T_b$. Then $(X_n)_{n\geq 0} = (S_{N\wedge n})_{n\geq 0}$ is a Markov chain.

1.1.2 Stationarity

DEF 13.6 (Stationary Distribution) A probability measure π on A is a stationary distribution if

$$\sum_i \pi(i) p(i,j) = \pi(j),$$

for all $i, j \in A$. In other words, if $X_0 \sim \pi$ then $X_1 \sim \pi$ and in fact $X_n \sim \pi$ for all $n \ge 0$.

EX 13.7 (RW on a graph) In the RW on a graph example above, define

$$\pi(i) = \frac{|N(i)|}{2|E|}.$$

Then

$$\sum_{i \in V} \pi(i)p(i,j) = \sum_{i:(i,j) \in E} \frac{|N(i)|}{2|E|} \frac{1}{|N(i)|} = \frac{1}{2|E|} |N(j)| = \pi(j),$$

so that π is a stationary distribution.

EX 13.8 (ASRW on interval) In the ASRW on [a, b], $\pi = \delta_a$ and $\pi = \delta_b$ as well as all mixtures are stationary.

EX 13.9 (Stationary Markov chain) Let X be a MC on A (countable) with transition matrix $\{p_{ij}\}_{i,j\in A}$ and stationary distribution $\pi > 0$. Then X started at π is a stationary stochastic process. Indeed, by definition of π and induction

$$X_0 \sim X_n$$

for all $n \ge 0$. Then for all m, k by definition of MCs

$$(X_0,\ldots,X_k)\sim (X_m,\ldots,X_{m+k}).$$

1.2 Abstract setting

EX 13.10 (A canonical example) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A map $T : \Omega \to \Omega$ is said to be measure-preserving (for \mathbb{P}) if for all $A \in \mathcal{F}$,

$$(\mathbb{P}[\omega : T\omega \in A] =)\mathbb{P}[T^{-1}A] = \mathbb{P}[A].$$

If $X \in \mathcal{F}$ then $X_n(\omega) = X(T^n \omega)$, $n \ge 0$, defines a stationary sequence. Indeed, for all $B \in \mathcal{B}(\mathbb{R}^{k+1})$

$$\mathbb{P}[(X_0, \dots, X_k)(\omega) \in B] = \mathbb{P}[(X_0, \dots, X_k)(T^m \omega) \in B]$$
$$= \mathbb{P}[(X_m, \dots, X_{m+k})(\omega) \in B].$$

Kolmogorov's extension theorem indicates that all real-valued stationary stochastic processes can be realized in the framework of the previous example.

THM 13.11 (Kolmogorov Extension Theorem) Suppose we are given probability measure μ_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ s.t.

 $\mu_{n+1}((a_0, b_0] \times \cdots \times (a_n, b_n] \times \mathbb{R}) = \mu_n((a_0, b_0] \times \cdots \times (a_n, b_n]),$

for all n and (n+1)-dimensional rectangles. Then there exists a unique probability measure \mathbb{P} on $(\mathbb{R}^{\mathbb{Z}_+}, \mathcal{R}^{\mathbb{Z}_+})$ with marginals μ_n .

EX 13.12 (Revisiting stationary processes) Let \tilde{X} be a stationary process on \mathbb{R} . Then by the previous theorem, we can realize \tilde{X} on $\mathbb{R}^{\mathbb{Z}_+}$ as

$$X_n(\omega) = \omega_n$$

The corresponding measure-preserving transformation is the shift

$$T\omega = (\omega_1, \ldots).$$

In particular, $X_n(\omega) = X_0(T^n\omega)$.

EX 13.13 Returning the previous example:

- 1. The only invariant sets are \emptyset , Ω so that \mathcal{I} is trivial and T is ergodic.
- 2. Both Ω_1 and Ω_2 are invariant so that if $\alpha, \beta \neq 0$ we have that T is not ergodic. Further, note that \hat{f} is measurable with respect to $\mathcal{I} = \{\emptyset, \Omega_1, \Omega_2, \Omega\}$, that is, \hat{f} is invariant.

Next time, we will prove the ergodic theorem:

THM 13.14 Let $f \in L^1$. Then there is $\hat{f} \in \mathcal{I}$ s.t.

$$n^{-1}S_n \to \hat{f},$$

a.s and in L^1 . In the ergodic case, $\hat{f} = \mathbb{E}[f]$.

EX 13.15 (IID RVs) Let $X_n(\omega) = \omega_n$ are iid rvs. If A is invariant then $\{\omega : \omega \in A\} = \{\omega : T\omega \in A\} \in \sigma(X_1, ...)$ and by induction

$$A \in \cap_{n > 0} \sigma(X_n, \ldots) = \mathcal{T},$$

where \mathcal{T} is the tail σ -field. Thus $\mathcal{I} \subseteq \mathcal{T}$. Since \mathcal{T} is trivial by Kolmogorov's 0-1 law, so is \mathcal{I} . Therefore T is ergodic and $\mathbb{E}[f | \mathcal{I}] = \mathbb{E}[f]$. Applying the ergodic thm to $f = X_0 \in L^1$ we get

$$n^{-1}\sum_{m=0}^{n-1}X_m(\omega)\to \mathbb{E}[X_0],$$

that is, we recover the SLLN.

References

- [Bil95] Patrick Billingsley. *Probability and measure*. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1995.
- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Var01] S. R. S. Varadhan. Probability theory, volume 7 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 2001.