Lecture 13 : Stationary Stochastic Processes

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Var01, Chapter 6], [Dur10, Section 6.1], [Bil95, Chapter 24].

1 Stationary stochastic processes

DEF 13.1 (Stationary stochastic process) *A real-valued process* $\{X_n\}_{n\geq 0}$ *is stationary if for every* k, m

$$
(X_m, \ldots, X_{m+k}) \sim (X_0, \ldots, X_k).
$$

EX 13.2 *IID sequences are stationary.*

1.1 Stationary Markov chains

1.1.1 Markov chains

DEF 13.3 (Discrete-time finite-space MC) Let *A* be a finite space, μ a distribu*tion on* A *and* $\{p(i, j)\}_{i,j\in A}$ *a transition matrix on* E. Let $(X_n)_{n\geq 0}$ be a process *with distribution*

$$
\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] = \mu(x_0) p(x_0, x_1) \cdots p(x_{n-1}, n_n),
$$

for all $n \geq 0$ *and* $x_0, \ldots, x_n \in A$.

EX 13.4 (RW on a graph) *Let* $G = (V, E)$ *be a finite, undirected graph. Define*

$$
p(i,j) = \frac{\mathbb{1}\{(i,j) \in E\}}{|\{N(i)\}|},
$$

where

$$
N(i) = \{ j : (i, j) \in E \}.
$$

This defines a RW on a graph as the finite MC with the above transition matrix (for each µ*, an arbitrary distribution on* V *). More generally, any finite MC can be seen as a RW on a weighted directed graph.*

EX 13.5 (Asymmetric SRW on an interval) *Let* $(S_n)_{n\geq 0}$ *be an asymmetric SRW with parameter* $1/2 < p < 1$ *. Let* $a < 0 < b$ *,* $N = T_a \wedge T_b$ *. Then* $(X_n)_{n \geq 0} =$ $(S_{N\wedge n})_{n\geq 0}$ *is a Markov chain.*

1.1.2 Stationarity

DEF 13.6 (Stationary Distribution) *A probability measure* π *on* A *is a stationary distribution if*

$$
\sum_i \pi(i) p(i,j) = \pi(j),
$$

for all $i, j \in A$ *. In other words, if* $X_0 \sim \pi$ *then* $X_1 \sim \pi$ *and in fact* $X_n \sim \pi$ *for all* $n \geq 0$.

EX 13.7 (RW on a graph) *In the RW on a graph example above, define*

$$
\pi(i) = \frac{|N(i)|}{2|E|}.
$$

Then

$$
\sum_{i \in V} \pi(i) p(i, j) = \sum_{i:(i,j) \in E} \frac{|N(i)|}{2|E|} \frac{1}{|N(i)|} = \frac{1}{2|E|} |N(j)| = \pi(j),
$$

so that π *is a stationary distribution.*

EX 13.8 (ASRW on interval) *In the ASRW on* [a, b], $\pi = \delta_a$ and $\pi = \delta_b$ as well *as all mixtures are stationary.*

EX 13.9 (Stationary Markov chain) *Let* X *be a MC on* A *(countable) with transition matrix* $\{p_{ij}\}_{i,j\in A}$ *and stationary distribution* $\pi > 0$ *. Then* X *started at* π *is a stationary stochastic process. Indeed, by definition of* π *and induction*

$$
X_0 \sim X_n,
$$

for all $n > 0$ *. Then for all* m *, k by definition of MCs*

$$
(X_0,\ldots,X_k)\sim (X_m,\ldots,X_{m+k}).
$$

1.2 Abstract setting

EX 13.10 (A canonical example) *Let* $(\Omega, \mathcal{F}, \mathbb{P})$ *be a probability space. A map* $T : \Omega \to \Omega$ *is said to be measure-preserving (for* \mathbb{P} *) if for all* $A \in \mathcal{F}$ *,*

$$
(\mathbb{P}[\omega : T\omega \in A] = \mathbb{P}[T^{-1}A] = \mathbb{P}[A].
$$

If $X \in \mathcal{F}$ then $X_n(\omega) = X(T^n \omega)$, $n \geq 0$, defines a stationary sequence. Indeed, *for all* $B \in \mathcal{B}(\mathbb{R}^{k+1})$

$$
\mathbb{P}[(X_0,\ldots,X_k)(\omega) \in B] = \mathbb{P}[(X_0,\ldots,X_k)(T^m\omega) \in B]
$$

=
$$
\mathbb{P}[(X_m,\ldots,X_{m+k})(\omega) \in B].
$$

Kolmogorov's extension theorem indicates that all real-valued stationary stochastic processes can be realized in the framework of the previous example.

THM 13.11 (Kolmogorov Extension Theorem) *Suppose we are given probability measure* μ_n *on* $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ *s.t.*

 $\mu_{n+1}((a_0, b_0] \times \cdots \times (a_n, b_n] \times \mathbb{R}) = \mu_n((a_0, b_0] \times \cdots \times (a_n, b_n]),$

for all n *and* $(n+1)$ *-dimensional rectangles. Then there exists a unique probability* measure $\mathbb P$ on $(\mathbb R^{\mathbb Z_+}, \mathcal R^{\mathbb Z_+})$ with marginals μ_n .

EX 13.12 (Revisiting stationary processes) Let \tilde{X} be a stationary process on \mathbb{R} . *Then by the previous theorem, we can realize* \tilde{X} *on* $\mathbb{R}^{\mathbb{Z}_+}$ *as*

$$
X_n(\omega) = \omega_n.
$$

The corresponding measure-preserving transformation is the shift

$$
T\omega=(\omega_1,\ldots).
$$

In particular, $X_n(\omega) = X_0(T^n\omega)$ *.*

EX 13.13 *Returning the previous example:*

- *1. The only invariant sets are* \emptyset , Ω *so that* $\mathcal I$ *is trivial and* T *is ergodic.*
- 2. *Both* Ω_1 *and* Ω_2 *are invariant so that if* $\alpha, \beta \neq 0$ *we have that* T *is not ergodic. Further, note that* \hat{f} *is measurable with respect to* $\mathcal{I} = \{\emptyset, \Omega_1, \Omega_2, \Omega\}$ *, that is,* \hat{f} *is invariant.*

Next time, we will prove the ergodic theorem:

THM 13.14 Let $f \in L^1$. Then there is $\hat{f} \in \mathcal{I}$ s.t.

$$
n^{-1}S_n \to \hat{f},
$$

a.s and in L^1 *. In the ergodic case,* $\hat{f} = \mathbb{E}[f]$ *.*

EX 13.15 (IID RVs) Let $X_n(\omega) = \omega_n$ are iid rvs. If A is invariant then $\{\omega : \omega \in$ A } = { ω : $T\omega \in A$ } $\in \sigma(X_1,...)$ *and by induction*

$$
A\in \cap_{n\geq 0}\sigma(X_n,\ldots)=\mathcal{T},
$$

where $\mathcal T$ *is the tail* σ -field. Thus $\mathcal I \subseteq \mathcal T$. Since $\mathcal T$ *is trivial by Kolmogorov's* $0 - 1$ *law, so is I. Therefore T is ergodic and* $\mathbb{E}[f | \mathcal{I}] = \mathbb{E}[f]$ *. Applying the ergodic thm to* $f = X_0 \in L^1$ *we get*

$$
n^{-1} \sum_{m=0}^{n-1} X_m(\omega) \to \mathbb{E}[X_0],
$$

that is, we recover the SLLN.

References

- [Bil95] Patrick Billingsley. *Probability and measure*. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1995.
- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Var01] S. R. S. Varadhan. *Probability theory*, volume 7 of *Courant Lecture Notes in Mathematics*. New York University Courant Institute of Mathematical Sciences, New York, 2001.