
Lecture 14 : Ergodic Theorem

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Var01, Chapter 6], [Dur10, Section 6.2], [SS05, Section 6.5].

Previous class

In view of the canonical example in the previous lecture, we assume that we have
(Ω,F ,P), f ∈ F , T a measure-preserving transformation, and we let Xn(ω) =
f(Tnω) for all n ≥ 0.

We are interested in the convergence of empirical averages

n−1Sn(ω) = n−1
n−1∑
m=0

Xm(ω) = n−1
n−1∑
m=0

f(Tmω).

1 Invariant sets

EX 14.1 Let Ω = {a, b, c, d, e} and F = 2Ω. Take f = 1A for some set A ∈ F .

1. Suppose T = (a, b, c, d, e). For T to be measure-preserving we require
P[a] = P[b] = · · · so that P[a] = 1/5 is the only possibility. (It is easy to
see that T is indeed measure-preserving because the number of elements of
Ω is invariant under T .) In that case, it is immediate that

n−1Sn → P[A] = E[f ].

2. Suppose T = (a, b, c)(d, e). Let Ω1 = {a, b, c}, F1 = 2Ω1 , Ω2 = {d, e} and
F2 = 2Ω2 . For T to be measure-preserving we need P[a] = P[b] = P[c] =
α/3 and P[d] = P[e] = β/2. (Any choice of α, β with α + β = 1 works
because the number of elements of Ω1 and Ω2 is invariant under T .) Take
A = {a, d}. Then n−1Sn → 1/3 with probability α (i.e. if ω ∈ Ω1) and
n−1Sn → 1/2 with probability β. Denoting f̂ this limit, we note

E[f̂ ] = P[A] = E[f ],

but f̂ is not constant if α, β 6= 0. However, it is completely determined by
whether ω ∈ Ω1 or ω ∈ Ω2.
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DEF 14.2 A set A ∈ F is invariant if

({ω : Tω ∈ A} =)T−1A = A,

up to a null set. It is nontrivial if 0 < P[A] < 1. The set of all invariant sets
forms a σ-field I. The transformation T is said ergodic if I is trivial, that is, all
invariant sets are trivial. A function g is invariant if g(Tω) = g(ω) a.s. Note that
g is invariant iff g ∈ I. (Exercise 6.1.1 in [Dur10].)

2 Ergodic Theorem

It will be convenient to think of T as an operator of functions

Uf(ω) = f(Tω),

in which case Umf(ω) = f(Tmω) and we define

Anf = n−1(I + · · ·+ Un−1)f.

LEM 14.3 If g ∈ L1 then
E[Ug] = E[g].

Moreover if g, g′ ∈ L2 then
‖Ug‖ = ‖g‖,

and
〈Ug′, Ug〉 = 〈g′, g〉.

Proof: Start from indicators.

THM 14.4 Let f ∈ L1. Then there is f̂ ∈ I s.t.

Anf → f̂ ≡ E[f | I], a.s and in L1.

EX 14.5 (IID RVs) Let Xn(ω) = ωn are iid rvs. If A is invariant then {ω : ω ∈
A} = {ω : Tω ∈ A} ∈ σ(X1, . . .) and by induction

A ∈ ∩n≥0σ(Xn, . . .) = T ,

where T is the tail σ-field. Thus I ⊆ T . Since T is trivial by Kolmogorov’s 0− 1
law, so is I. Therefore T is ergodic and E[f | I] = E[f ]. Applying the ergodic thm
to f = X0 ∈ L1 we get

n−1
n−1∑
m=0

Xm(ω)→ E[X0],

that is, we recover the SLLN.
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3 L2 Ergodic Theorem

THM 14.6 Let f ∈ L2. Then there is f̂ ∈ I s.t.

Anf → f̂ ≡ E[f | I], in L2.

Proof: Let
H0 = {f ∈ L2 : Uf = f a.s.},

and note that Anf = f for f ∈ H0. We need the following lemma from basic
Hilbert space theory (see [SS05, Lemma 6.5.2]).

LEM 14.7 The following hold:

1. H0 = {f ∈ L2 : U∗f = f a.s.}.

2. H⊥0 = Range(I − U).

Proof: See e.g. [SS05].
For ε > 0, write f = f0 + f1 where f0 ∈ H0 and ‖f1 − f ′1‖2 < ε s.t.

f ′1 = (I − U)g′1. Then

Anf0 = f0, and Anf
′
1 =

1

n
(I − Un)g′1,

so that

‖Anf − f0‖2 = ‖n−1(I − Un)g′1 +An(f1 − f ′1)‖2

≤ (‖g′1‖2 + ‖Ung′1‖2)n−1 + n−1
n−1∑
m=0

‖Um(f1 − f ′1)‖2

= 2‖g′1‖2n−1 + n−1
n−1∑
m=0

‖f1 − f ′1‖2

→ ε.
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