Lecture 14 : Ergodic Theorem

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Var01, Chapter 6], [Dur10, Section 6.2], [SS05, Section 6.5].

Previous class

In view of the canonical example in the previous lecture, we assume that we have $(\Omega, \mathcal{F}, \mathbb{P})$, $f \in \mathcal{F}$, T a measure-preserving transformation, and we let $X_n(\omega)$ = $f(T^n\omega)$ for all $n \geq 0$.

We are interested in the convergence of empirical averages

$$
n^{-1}S_n(\omega) = n^{-1} \sum_{m=0}^{n-1} X_m(\omega) = n^{-1} \sum_{m=0}^{n-1} f(T^m \omega).
$$

1 Invariant sets

EX 14.1 *Let* $\Omega = \{a, b, c, d, e\}$ *and* $\mathcal{F} = 2^{\Omega}$ *. Take* $f = \mathbb{1}_A$ *for some set* $A \in \mathcal{F}$ *.*

1. Suppose $T = (a, b, c, d, e)$ *. For* T *to be measure-preserving we require* $\mathbb{P}[a] = \mathbb{P}[b] = \cdots$ *so that* $\mathbb{P}[a] = 1/5$ *is the only possibility. (It is easy to see that* T *is indeed measure-preserving because the number of elements of* Ω *is invariant under* T*.) In that case, it is immediate that*

$$
n^{-1}S_n \to \mathbb{P}[A] = \mathbb{E}[f].
$$

2. Suppose $T = (a, b, c)(d, e)$ *. Let* $\Omega_1 = \{a, b, c\}$ *,* $\mathcal{F}_1 = 2^{\Omega_1}$ *,* $\Omega_2 = \{d, e\}$ *and* $\mathcal{F}_2 = 2^{\Omega_2}$. For T to be measure-preserving we need $\mathbb{P}[a] = \mathbb{P}[b] = \mathbb{P}[c] =$ $\alpha/3$ and $\mathbb{P}[d] = \mathbb{P}[e] = \beta/2$. (Any choice of α, β with $\alpha + \beta = 1$ works *because the number of elements of* Ω_1 *and* Ω_2 *is invariant under* T *.) Take* $A = \{a, d\}$. Then $n^{-1}S_n \to 1/3$ with probability α *(i.e. if* $\omega \in \Omega_1$ *)* and $n^{-1}S_n \rightarrow 1/2$ *with probability* β *. Denoting* \hat{f} *this limit, we note*

$$
\mathbb{E}[\hat{f}] = \mathbb{P}[A] = \mathbb{E}[f],
$$

but \hat{f} *is not constant if* $\alpha, \beta \neq 0$ *. However, it is completely determined by whether* $\omega \in \Omega_1$ *or* $\omega \in \Omega_2$ *.*

Lecture 14: Ergodic Theorem 2

DEF 14.2 *A set* $A \in \mathcal{F}$ *is* invariant *if*

$$
(\{\omega : T\omega \in A\} =)T^{-1}A = A,
$$

up to a null set. It is nontrivial if $0 < \mathbb{P}[A] < 1$ *. The set of all invariant sets forms a* σ*-field* I*. The transformation* T *is said* ergodic *if* I *is trivial, that is, all invariant sets are trivial. A function g is invariant if* $g(T\omega) = g(\omega)$ *a.s. Note that g is invariant iff* $g \in \mathcal{I}$ *. (Exercise 6.1.1 in [Dur10].)*

2 Ergodic Theorem

It will be convenient to think of T as an operator of functions

$$
Uf(\omega) = f(T\omega),
$$

in which case $U^m f(\omega) = f(T^m \omega)$ and we define

$$
A_n f = n^{-1}(I + \dots + U^{n-1})f.
$$

LEM 14.3 If $g \in L^1$ then

$$
\mathbb{E}[Ug] = \mathbb{E}[g].
$$

Moreover if $g, g' \in L^2$ *then*

$$
||Ug|| = ||g||,
$$

and

$$
\langle Ug', Ug\rangle = \langle g', g\rangle.
$$

Proof: Start from indicators.

THM 14.4 Let $f \in L^1$. Then there is $\hat{f} \in \mathcal{I}$ s.t.

$$
A_nf \to \hat{f} \equiv \mathbb{E}[f \,|\, \mathcal{I}], \text{ a.s and in } L^1.
$$

EX 14.5 (IID RVs) Let $X_n(\omega) = \omega_n$ are iid rvs. If A is invariant then $\{\omega : \omega \in$ A } = { ω : $T\omega \in A$ } $\in \sigma(X_1, \ldots)$ *and by induction*

$$
A\in \cap_{n\geq 0}\sigma(X_n,\ldots)=\mathcal{T},
$$

where $\mathcal T$ *is the tail* σ -field. Thus $\mathcal I \subseteq \mathcal T$. Since $\mathcal T$ *is trivial* by Kolmogorov's $0 - 1$ *law, so is I. Therefore T is ergodic and* $\mathbb{E}[f | \mathcal{I}] = \mathbb{E}[f]$ *. Applying the ergodic thm to* $f = X_0 \in L^1$ *we get*

$$
n^{-1} \sum_{m=0}^{n-1} X_m(\omega) \to \mathbb{E}[X_0],
$$

that is, we recover the SLLN.

 \blacksquare

Lecture 14: Ergodic Theorem 3

3 L^2 Ergodic Theorem

THM 14.6 Let $f \in L^2$. Then there is $\hat{f} \in \mathcal{I}$ s.t.

$$
A_nf \to \hat{f} \equiv \mathbb{E}[f \,|\, \mathcal{I}], \text{ in } L^2.
$$

Proof: Let

$$
H_0 = \{ f \in L^2 : Uf = f \text{ a.s.} \},
$$

and note that $A_n f = f$ for $f \in H_0$. We need the following lemma from basic Hilbert space theory (see [SS05, Lemma 6.5.2]).

LEM 14.7 *The following hold:*

1. $H_0 = \{ f \in L^2 : U^* f = f \text{ a.s.} \}.$

2.
$$
H_0^{\perp} = \overline{Range(I-U)}.
$$

Proof: See e.g. [SS05].

For $\varepsilon > 0$, write $f = f_0 + f_1$ where $f_0 \in H_0$ and $||f_1 - f'_1||_2 < \varepsilon$ s.t. $f'_1 = (I - U)g'_1$. Then

$$
A_n f_0 = f_0
$$
, and $A_n f'_1 = \frac{1}{n} (I - U^n) g'_1$,

so that

$$
||A_nf - f_0||_2 = ||n^{-1}(I - U^n)g_1' + A_n(f_1 - f_1')||_2
$$

\n
$$
\leq (||g_1'||_2 + ||U^ng_1'||_2)n^{-1} + n^{-1} \sum_{m=0}^{n-1} ||U^m(f_1 - f_1')||_2
$$

\n
$$
= 2||g_1'||_2n^{-1} + n^{-1} \sum_{m=0}^{n-1} ||f_1 - f_1'||_2
$$

\n
$$
\to \varepsilon.
$$

 \blacksquare

References

[Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.

- [SS05] Elias M. Stein and Rami Shakarchi. *Real analysis*. Princeton Lectures in Analysis, III. Princeton University Press, Princeton, NJ, 2005. Measure theory, integration, and Hilbert spaces.
- [Var01] S. R. S. Varadhan. *Probability theory*, volume 7 of *Courant Lecture Notes in Mathematics*. New York University Courant Institute of Mathematical Sciences, New York, 2001.