Lecture 16 : Subadditive Ergodic Theorem
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References: [Durl0, Section 6.4].

1 Subadditivity
DEF 16.1 A sequence {7, }n>0 is subadditive if for all m,n:

Ymitn < Yo+ Ym-

THM 16.2 (Limit of Subadditive Sequences) If vy is subadditive then

ry—n—>inf7—m.
n m m

Proof: Clearly
lim inf In > inf ’y—m.
n n m m

So STS
lim sup Jn < inf Jm
n N m m
Fix m and write n = km + £ with 0 < ¢ < m. Applying the subadditivity
repeatedly, we have

Y < kym + e,
so that
Tn (P N m e
n — \km+£{¢/) m n

and the result follows by taking n — +oc.
|

EX 16.3 (Longest common subsequence) Ler {X,,} and {Y,,} be stationary se-
quences and let L,, ,, be the longest common subsequence on indices m < k < n.
Clearly

LO,m + Lm,n < L0,7’L7

and v, = —E[Ly ) is subadditive.
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2 Statement of Subadditive Ergodic Theorem

THM 16.4 (Subadditive Ergodic Theorem) Suppose { X, » to<m<n satisfy:
1. Xom + Xmn > Xop.
2. { Xk (n41)ks 1 > 1} is a stationary sequence for each k.
3. The distribution of { X, ym+k, k > 1} does not depend on m.
4. IEXafl < oo and for each n, EXo,, > ~yon where vy > —o0.
Then
e limEXy,,/n = inf,, EXq,,/m = 1.
e X =lim X, /n exists a.s. and in L' soEX =~.

o [f all stationary sequences in 2. are ergodic then X = y a.s.

Proof: See [Durl0]. [ |

3 Examples

EX 16.5 (Age-dependent continuous-time branching process) Start with one in-
dividual. Each individual dies independently after time T' ~ F' and at that point
produces K ~ {py} offsprings (both with finite means). Let X, be the time of
birth of the first individual from generation m and X, ,, the time to the birth of
the first descendant of that individual in generation n. We check the conditions:

1. Clearly
XO,m + Xm,n > XO,n-

2. {Xnk,(n+1)k}n is IID because we are looking at the descendants of a single
individual (the first born) over k generations which are not overlapping.

3. The distribution of { Xy, m+k } 1 IS independent of m for the same reason.
4. By nonnegativity and the finite mean of F', condition 4. is satisfied.

So we can apply the thm. By the IID remark above in 2. we get that the limit is
trivial. See [DurlQ] for a characterization of the limit.
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EX 16.6 (First-passage percolation) Consider 7% as a graph with edges connect-
ing x,y € Z% if ||z — y|l1 = 1. Assign to each edge a nonnegative random
variable T(e) corresponding to the time it takes to traverse e (in either direction).
Define t(x,y) (the passage time) as the minimum time to go from x to y. Let
Xmn = t(mu, nu) where u = (1,0, - - ,0). We check the conditions:

1. Clearly

Xom + Xmm > Xon
2. { Xk, (nt1)k }n is Stationary by translational symmetry.
3. The distribution of { Xy, m+k } is independent of m for the same reason.
4. By nonnegativity and the finite mean of 7, condition 4. is satisfied.

So we can apply the theorem. Enumerating the edges in some order, one can prove
(check!) that the limit is tail-measurable and, by the IID assumption, is trivial.
See [Durl0] for a characterization of the limit.
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