Lecture 17 : Brownian motion: Definition

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Dur10, Section 3.9, 8.1], [Lig10, Section 1.2-1.4], [MP10, Section 1.1, Appendix 12].

1 Random vectors

We first develop general tools to study multivariate distributions.

DEF 17.1 (Characteristic function) *The CF of a random vector* $X = (X_1, \ldots, X_d)$ *is given by, for* $t \in \mathbb{R}^d$,

$$
\phi_X(t) = \mathbb{E}\left[\exp\left(i(t_1X_1 + \cdots + t_dX_d)\right)\right].
$$

As in the one-dimensional case, we have an inversion formula:

THM 17.2 (Inversion formula) Let μ be the probability measure corresponding to the random vector (X_1, \ldots, X_d) , that is, for all $B \in \mathcal{B}(\mathbb{R}^d)$,

$$
\mu(B) = \mathbb{P}[(X_1,\ldots,X_d) \in B].
$$

If $A = [a_1, b_1] \times \cdots \times [a_d, b_d]$ *with* $\mu(\partial A) = 0$ *then*

$$
\mu(A) = \lim_{T \to +\infty} (2\pi)^{-d} \int_{[-T,T]^d} \prod_{j=1}^d \psi_j(t_j) \phi(t) \mathrm{d}t,
$$

where

$$
\psi_j(s) = \frac{\exp(-isa_j) - \exp(-isb_j)}{is}.
$$

Proof: Follows from the one-dimensional inversion formula. See [Dur10, Theorem 3.9.3]. \blacksquare

An important application of the previous formula is:

THM 17.3 *The RVs* X_1, \ldots, X_d *are independent if and only if*

$$
\phi_X(t) = \prod_{j=1}^d \phi_{X_j}(t_j),
$$

for all $t \in \mathbb{R}^d$ *where* $X = (X_1, \ldots, X_d)$ *.*

Proof: The "only if" part is obvious. The inversion formula and Fubini's theorem gives the "if" part. П

DEF 17.4 *A sequence of random vectors* X_n *converges weakly to* X_∞ *, denoted* $X_n \Rightarrow X_\infty$ *, if*

$$
\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X_{\infty})],
$$

for all bounded continuous functions f*. The portmanteau theorem gives equivalent characterizations.*

In terms of CFs, we have:

THM 17.5 (Convergence theorem) *Let* X_n , $1 \le n \le \infty$ *, be random vectors with CFs* ϕ_n *. A necessary and sufficient condition for* $X_n \Rightarrow X_\infty$ *is that*

$$
\phi_n(t) \to \phi_\infty(t),
$$

for all $t \in \mathbb{R}^d$.

Proof: Follows from the one-dimensional result. See [Dur10, Theorem 3.9.4]. ■ We require one last definition:

DEF 17.6 (Covariance) Let $X = (X_1, \ldots, X_d)$ be a random vector with mean $\mu = \mathbb{E}[X]$ *. The* covariance of X *is the* $d \times d$ *matrix* Γ *with entries*

$$
\Gamma_{ij} = \text{Cov}[X_i, X_j] = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)].
$$

2 Multivariate Gaussian distribution

Recall:

DEF 17.7 (Gaussian distribution) *A* standard Gaussian *is a RV* Z *with CF*

$$
\phi_Z(t) = \exp\left(-t^2/2\right),\,
$$

and density

$$
f_Z(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).
$$

In particular, Z *has mean* 0 *and variance* 1*. More generally,*

$$
X = \sigma Z + \mu,
$$

is a Gaussian RV with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$.

We will need a multivariate generalization of the standard Gaussian.

DEF 17.8 (Multivariate Gaussian) *A* d*-dimensional standard Gaussian is a random vector* $X = (X_1, \ldots, X_d)$ *where the* X_i *s are independent standard Gaussians. In particular,* X *has mean* 0 *and covariance matrix* I*. More generally, a random vector* $X = (X_1, \ldots, X_d)$ *is Gaussian if there is a vector b, a d* \times *r matrix* A *and an* r*-dimensional standard Gaussian* Y *such that*

$$
X = AY + b.
$$

Then X has mean $\mu = b$ and covariance matrix $\Gamma = AA^T$. The CF of X is given *by*

$$
\phi_X(t) = \exp\left(i\sum_{j=1}^d t_j \mu_j - \frac{1}{2}\sum_{j,k=1}^d t_j t_k \Gamma_{jk}\right).
$$

From the CF and the theorems above, we get the following:

COR 17.9 (Independence) *Let* $X = (X_1, \ldots, X_d)$ *be a multivariate Gaussian. Then the* X_i *s are independent if and only if* $\Gamma_{ij} = 0$ *for all* $i \neq j$ *, that is, if they are* uncorrelated*.*

COR 17.10 (Convergence) Let X_n be a sequence of random vectors with means μ_n *and covariances* Γ_n *such that* $X_n \to X_\infty$ *a.s.,* $\mu_u \to \mu_\infty$ *, and* $\Gamma_n \to \Gamma_\infty$ *. Then* X_{∞} *is a multivariate Gaussian with mean* μ_{∞} *and covariance matrix* Γ_{∞} *.*

COR 17.11 (Linear combinations) The random vector (X_1, \ldots, X_d) is multi*variate Gaussian if and only if all linear combinations of its components are Gaussian.*

Finally:

THM 17.12 (Multivariate CLT) *Let* X_1, X_2, \ldots *be IID random vectors with means* μ and finite covariance matrix Γ . Let $S_n = \sum_{j=1}^n X_j$, Then

$$
\frac{S_n - n\mu}{\sqrt{n}} \Rightarrow Z,
$$

where Z *is a multivariate Gaussian with mean* 0 *and covariance matrix* Γ*.*

Proof: Follows easily from one-dimensional result. See [Dur10, Theorem 3.9.6].

3 Gaussian processes

DEF 17.13 (Gaussian process) *A continuous-time stochastic process* $\{X(t)\}_{t\geq0}$ *is a* Gaussian process *if for all* $n \geq 1$ *and* $0 \leq t_1 < \cdots < t_n < +\infty$ *the random vector*

$$
(X(t_1),\ldots,X(t_n)),
$$

is multivariate Gaussian. The mean and covariance functions of X are $\mathbb{E}[X(t)]$ *and* $Cov[X(s), X(t)]$ *respectively.*

4 Definition of Brownian motion

DEF 17.14 (Brownian motion: Definition I) *The continuous-time stochastic process* $X = \{X(t)\}_{t>0}$ *is a* standard Brownian motion *if* X *is a Gaussian process with almost surely continuous paths, that is,*

$$
\mathbb{P}[X(t) \text{ is continuous in } t] = 1,
$$

such that $X(0) = 0$ *,*

$$
\mathbb{E}[X(t)] = 0,
$$

and

$$
Cov[X(s), X(t)] = s \wedge t
$$

More generally, $B = \sigma X + x$ *is a* Brownian motion started at *x*.

Further reading

Multivariate CLT in [Dur10, Section 2.9].

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Lig10] Thomas M. Liggett. *Continuous time Markov processes*, volume 113 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2010. An introduction.

[MP10] Peter Mörters and Yuval Peres. *Brownian motion*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.