Lecture 19 : Brownian motion: Construction

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Durl0, Section 8.1], [Ligl0, Section 1.5], [MP10, Section 1.1].

1 Definition of Brownian motion

Recall:

DEF 19.1 (Brownian motion: Definition I) The continuous-time stochastic pro-
cess X = {X(t)}+>0 is a standard Brownian motion if X is a Gaussian process
with almost surely continuous paths, that is,

P[X (t) is continuous int] = 1,

such that X (0) = 0,

and

Cov[X(s), X(t)] =sAt.
More generally, B = 0 X + x is a Brownian motion started at x.

From the properties of the multivariate Gaussian, we get the following equivalent
definition. We begin with a general definition.

DEF 19.2 (Stationary independent increments) An SP {X (t)}+>0 has station-
ary increments if the distribution of X (t) — X (s) depends only on t — s for all
0 < s < t. It has independent increments if the RVs { X (t;11—X (t;)),1 < j < n}
are independent whenever 0 < t; <tg < --- <tpandn > 1.

DEF 19.3 (Brownian motion: Definition II) The continuous-time stochastic pro-
cess X = {X(t)}+>0 is a standard Brownian motion if X has almost surely con-
tinuous paths and stationary independent increments such that X (s +t) — X (s) is
Gaussian with mean 0 and variance t.
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2 Construction of Brownian motion

Given that standard Brownian motion is defined in terms of finite-dimensional dis-
tributions, it is tempting to attempt to construct it by using Kolmogorov’s Extension
Theorem.

THM 19.4 (Kolmogorov’s Extension Theorem: Uncountable Case) Let
Qo ={w : [0,00) = R},
and Fq be the o-field generated by the finite-dimensional sets
{w :w(ti) € 4;,1 <i<n},
for A; € B. There is a unique probability measure v on (2o, Fy) so that
v({w : w(0) = 0}) = 1
and whenever 0 < t1 < --- < t, withn > 1 we have
v({w : w(ti) € Ai}) = oy, 10 (A1 X - X Ap),

where the latter is the finite-dimensional distribution of standard Brownian motion.

See [Durl0]. The only problem with this approach is that the event
C = {w : w(t) is continuous in ¢},

is not in Fy. See Exercise 8.1.1 in [DurlO].

Instead, we proceed as follows. There are several constructions of Brownian
motion. We present Lévy’s contruction, as described in [MP10]. See [Durl0]
and [Lig10] for further constructions.

THM 19.5 (Existence) Standard Brownian motion B = {B(t) }+>¢ exists.

Proof: We first construct B on [0, 1]. The idea is to construct the process on dyadic
points and extend it linearly. Let

D, ={k27" : 0<k <2"},

and

Note that D is countable and consider {Z; };cp a collection of independent stan-
dard Gaussians. We define B(d) for d € D,, by induction. First take B(0) = 0
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and B(1) = Z;. Note that B(1) — B(0) is Gaussian with variance 1. Then for
d € D,\D,,—1 we let

Bd—2")+B(d+2")  Z
B(d) = 5 T Stz

By construction, B(d) is independent of {Z; : ¢ € D\D,,}. Moreover, as a linear
combination of zero-mean Gaussians, B(d) is a zero-mean Gaussian.

We claim that the differences B(d) — B(d — 27"), for all d € D, \{0}, are
independent Gaussians with variance 27" .

e We first argue about neighboring increments. Note that, for d € D,,\D,,_1,

. Bd+27")-Bd-2" Z4
B -2 = )2 ( )+2'2(n1)/2’
and
. B(d+2™") — B(d—2" Z4
B(d+2) - B(d) = 2 )2 ( )_2.2<n—1>/2’

are Gaussians and they are independent by the following lemma. By induc-
tion the differences above are Gaussians with variance 2~("~1) and indepen-
dent of Z,.

LEM 19.6 If (X1, X32) is a standard Gaussian then so is %(Xl + X9, X1—
Xs).

e More generally, the two intervals are separated by d € D;. Take a minimal
such j. Then, by induction, the increments over the intervals [d — 277, d] and
[d, d+277] are independent. Moreover, the increments over the two intervals
of length 27" of interest (included in the above intervals) are constructed
from B(d) — B(d — 277), respectively B(d + 277) — B(d), using a disjoint
set of variables {Z; : t € D, }. That proves the claim by induction.

We now interpolate linearly between dyadic points. More precisely, let
Zl) t= 17
R)=30,  t=0,
linearly, in between.

and forn > 1
2-(t)/27, € D,\Dp_1,
Fn(t) =10, t € Dy,

linearly, in between.
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We then have for d € D,,

n

B(d) =) Fi(d) =) _ Fi(d).
i =0

=0

We want to show that the resulting process is continuous on [0, 1]. We claim
that the series

o
B(t) =) Fu(t),
n=0
is uniformly convergent. From a bound on Gaussian tails we saw last quarter,

P[|Z4| > cv/n] < exp (—c*n/2)

so that for c large enough

> PEd € Dn,|Zal = cv/n] < D (2" +1)exp (—*n/2)
n=0 n=0
< Ho0.

By BC, there is N (random) such that |Z4| < ¢y/n forall d € D,, withn > N. In
particular, for n > N we have

[Fploe < ey/n2 (/2]

from which we get the claim.

To show that B(t) has the correct finite-dimensional distributions, note that this
is the case for D by the above argument. Since D is dense in [0, 1] the result holds
on [0, 1] by taking limits and using the convergence theorem for Gaussians from
the previous lecture.

Finally, we extend the process to [0, +00) by gluing together independent
copies of B(t). ]

Further reading

Other constructions in [Durl0, Section8.1] and [Lig10, Section 1.5].
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