
Lecture 19 : Brownian motion: Construction

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Dur10, Section 8.1], [Lig10, Section 1.5], [MP10, Section 1.1].

1 Definition of Brownian motion

Recall:

DEF 19.1 (Brownian motion: Definition I) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X is a Gaussian process
with almost surely continuous paths, that is,

P[X(t) is continuous in t] = 1,

such that X(0) = 0,
E[X(t)] = 0,

and
Cov[X(s), X(t)] = s ∧ t.

More generally, B = σX + x is a Brownian motion started at x.

From the properties of the multivariate Gaussian, we get the following equivalent
definition. We begin with a general definition.

DEF 19.2 (Stationary independent increments) An SP {X(t)}t≥0 has station-
ary increments if the distribution of X(t) − X(s) depends only on t − s for all
0 ≤ s ≤ t. It has independent increments if the RVs {X(tj+1−X(tj)), 1 ≤ j < n}
are independent whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1.

DEF 19.3 (Brownian motion: Definition II) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X has almost surely con-
tinuous paths and stationary independent increments such that X(s+ t)−X(s) is
Gaussian with mean 0 and variance t.
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2 Construction of Brownian motion

Given that standard Brownian motion is defined in terms of finite-dimensional dis-
tributions, it is tempting to attempt to construct it by using Kolmogorov’s Extension
Theorem.

THM 19.4 (Kolmogorov’s Extension Theorem: Uncountable Case) Let

Ω0 = {ω : [0,∞)→ R},

and F0 be the σ-field generated by the finite-dimensional sets

{ω : ω(ti) ∈ Ai, 1 ≤ i ≤ n},

for Ai ∈ B. There is a unique probability measure ν on (Ω0,F0) so that

ν({ω : ω(0) = 0}) = 1

and whenever 0 ≤ t1 < · · · < tn with n ≥ 1 we have

ν({ω : ω(ti) ∈ Ai}) = µt1,...,tn(A1 × · · · ×An),

where the latter is the finite-dimensional distribution of standard Brownian motion.

See [Dur10]. The only problem with this approach is that the event

C = {ω : ω(t) is continuous in t},

is not in F0. See Exercise 8.1.1 in [Dur10].
Instead, we proceed as follows. There are several constructions of Brownian

motion. We present Lévy’s contruction, as described in [MP10]. See [Dur10]
and [Lig10] for further constructions.

THM 19.5 (Existence) Standard Brownian motion B = {B(t)}t≥0 exists.

Proof: We first constructB on [0, 1]. The idea is to construct the process on dyadic
points and extend it linearly. Let

Dn = {k2−n : 0 ≤ k ≤ 2n},

and
D = ∪∞n=0Dn.

Note that D is countable and consider {Zt}t∈D a collection of independent stan-
dard Gaussians. We define B(d) for d ∈ Dn by induction. First take B(0) = 0
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and B(1) = Z1. Note that B(1) − B(0) is Gaussian with variance 1. Then for
d ∈ Dn\Dn−1 we let

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2(n+1)/2
.

By construction, B(d) is independent of {Zt : t ∈ D\Dn}. Moreover, as a linear
combination of zero-mean Gaussians, B(d) is a zero-mean Gaussian.

We claim that the differences B(d) − B(d − 2−n), for all d ∈ Dn\{0}, are
independent Gaussians with variance 2−n .

• We first argue about neighboring increments. Note that, for d ∈ Dn\Dn−1,

B(d)−B(d− 2−n) =
B(d+ 2−n)−B(d− 2−n)

2
+

Zd

2 · 2(n−1)/2
,

and

B(d+ 2−n)−B(d) =
B(d+ 2−n)−B(d− 2−n)

2
− Zd

2 · 2(n−1)/2
,

are Gaussians and they are independent by the following lemma. By induc-
tion the differences above are Gaussians with variance 2−(n−1) and indepen-
dent of Zd.

LEM 19.6 If (X1, X2) is a standard Gaussian then so is 1√
2
(X1+X2, X1−

X2).

• More generally, the two intervals are separated by d ∈ Dj . Take a minimal
such j. Then, by induction, the increments over the intervals [d−2−j , d] and
[d, d+2−j ] are independent. Moreover, the increments over the two intervals
of length 2−n of interest (included in the above intervals) are constructed
from B(d)−B(d− 2−j), respectively B(d+ 2−j)−B(d), using a disjoint
set of variables {Zt : t ∈ Dn}. That proves the claim by induction.

We now interpolate linearly between dyadic points. More precisely, let

F0(t) =


Z1, t = 1,

0, t = 0,

linearly, in between.

and for n ≥ 1

Fn(t) =


2−(n+1)/2Zt, t ∈ Dn\Dn−1,

0, t ∈ Dn−1,

linearly, in between.
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We then have for d ∈ Dn

B(d) =
n∑

i=0

Fi(d) =
∞∑
i=0

Fi(d).

We want to show that the resulting process is continuous on [0, 1]. We claim
that the series

B(t) =
∞∑
n=0

Fn(t),

is uniformly convergent. From a bound on Gaussian tails we saw last quarter,

P[|Zd| ≥ c
√
n] ≤ exp

(
−c2n/2

)
,

so that for c large enough
∞∑
n=0

P[∃d ∈ Dn, |Zd| ≥ c
√
n] ≤

∞∑
n=0

(2n + 1) exp
(
−c2n/2

)
< +∞.

By BC, there is N (random) such that |Zd| < c
√
n for all d ∈ Dn with n > N . In

particular, for n > N we have

‖Fn‖∞ < c
√
n2−(n+1)/2,

from which we get the claim.
To show thatB(t) has the correct finite-dimensional distributions, note that this

is the case for D by the above argument. Since D is dense in [0, 1] the result holds
on [0, 1] by taking limits and using the convergence theorem for Gaussians from
the previous lecture.

Finally, we extend the process to [0,+∞) by gluing together independent
copies of B(t).

Further reading

Other constructions in [Dur10, Section8.1] and [Lig10, Section 1.5].
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