
Lecture 19 : Brownian motion: Path properties I

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Dur10, Section 8.1], [Lig10, Section 1.5, 1.6], [MP10, Section 1.1,
1.2].

1 Invariance

We begin with some useful invariance properties. The following are immediate.

THM 19.1 (Time translation) Let s ≥ 0. If B(t) is a standard Brownian motion,
then so is X(t) = B(t+ s)−B(s).

THM 19.2 (Scaling invariance) Let a > 0. If B(t) is a standard Brownian mo-
tion, then so is X(t) = a−1B(a2t).

Proof: Sketch. We compute the variance of the increments:

Var[X(t)−X(s)] = Var[a−1(B(a2t)−B(a2s))]

= a−2(a2t− a2s)
= t− s.

THM 19.3 (Time inversion) If B(t) is a standard Brownian motion, then so is

X(t) =

{
0, t = 0,

tB(t−1), t > 0.

Proof: Sketch. We compute the covariance function for s < t:

Cov[X(s), X(t)] = Cov[sB(s−1), tB(t−1)]

= st
(
s−1 ∧ t−1

)
= s.
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It remains to check continuity at 0. Note that{
lim
t↓0

B(t) = 0

}
=
⋂
m≥1

⋃
n≥1
{|B(t)| ≤ 1/m, ∀t ∈ Q ∩ (0, 1/n)} ,

and {
lim
t↓0

X(t) = 0

}
=
⋂
m≥1

⋃
n≥1
{|X(t)| ≤ 1/m, ∀t ∈ Q ∩ (0, 1/n)} .

The RHSs have the same probability because the distributions on all finite-dimensional
sets —and therefore on the rationals—are the same. The LHS of the first one has
probability 1.

Typical applications of these are:

COR 19.4 For a < 0 < b, let

T (a, b) = inf {t ≥ 0 : B(t) ∈ {a, b}} .

Then
E[T (a, b)] = a2E[T (1, b/a)].

In particular, E[T (−b, b)] is a constant multiple of b2.

Proof: Let X(t) = a−1B(a2t). Then,

E[T (a, b)] = a2E[inf{t ≥ 0, : X(t) ∈ {1, b/a}}]
= a2E[T (1, b/a)].

COR 19.5 Almost surely,
t−1B(t)→ 0.

Proof: Let X(t) be the time inversion of B(t). Then

lim
t→∞

B(t)

t
= lim

t→∞
X(1/t) = X(0) = 0.
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2 Modulus of continuity

By construction, B(t) is continuous a.s. In fact, we can prove more.

DEF 19.6 (Hölder continuity) A function f is said locally α-Hölder continuous
at x if there exists ε > 0 and c > 0 such that

|f(x)− f(y)| ≤ c|x− y|α,

for all y with |y − x| < ε. We refer to α as the Hölder exponent and to c as the
Hölder constant.

THM 19.7 (Holder continuity) If α < 1/2, then almost surely Brownian motion
is everywhere locally α-Hölder continuous.

Proof:

LEM 19.8 There exists a constant C > 0 such that, almost surely, for every suffi-
ciently small h > 0 and all 0 ≤ t ≤ 1− h,

|B(t+ h)−B(t)| ≤ C
√
h log(1/h).

Proof: Recall our construction of Brownian motion on [0, 1]. Let

Dn = {k2−n : 0 ≤ k ≤ 2n},

and
D = ∪∞n=0Dn.

Note that D is countable and consider {Zt}t∈D a collection of independent stan-
dard Gaussians. Let

F0(t) =


Z1, t = 1,

0, t = 0,

linearly, in between.

and for n ≥ 1

Fn(t) =


2−(n+1)/2Zt, t ∈ Dn\Dn−1,
0, t ∈ Dn−1,
linearly, in between.

Finally

B(t) =
∞∑
n=0

Fn(t).
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Each Fn is piecewise linear and its derivative exists almost everywhere. By
construction, we have

‖F ′n‖∞ ≤
‖Fn‖∞
2−n

.

Recall that there is N (random) such that |Zd| < c
√
n for all d ∈ Dn with n > N .

In particular, for n > N we have

‖Fn‖∞ < c
√
n2−(n+1)/2.

Using the mean-value theorem, assuming l > N ,

|B(t+ h)−B(t)| ≤
∞∑
n=0

|Fn(t+ h)− Fn(t)|

≤
l∑

n=0

h‖F ′n‖∞ +
∞∑

n=l+1

2‖Fn‖∞,

≤ h
N∑
n=0

‖F ′n‖∞ + ch
l∑

n=N

√
n2n/2 + 2c

∞∑
n=l+1

√
n2−n/2.

Take h small enough that the first term is smaller than
√
h log(1/h) and l defined

by 2−l < h ≤ 2−l+1 exceeds N . Then approximating the second and third terms
by their largest element gives the result.

We go back to the proof of the theorem. For each k, we can find an h(k) small
enough so that the result applies to the standard BMs

{B(k + t)−B(k) : t ∈ [0, 1]},

and
{B(k + 1− t)−B(k + 1) : t ∈ [0, 1]}.

Since there are countably many intervals [k, k+1), such h(k)’s exist almost surely
on all intervals simultaneously. Then note that for any α < 1/2, if t ∈ [k, k + 1)
and h < h(k) small enough,

|B(t+ h)−B(t)| ≤ C
√
h log(1/h) ≤ Chα(= Ch1/2(1/h)(1/2−α)).

This concludes the proof.
In fact:

THM 19.9 (Lévy’s modulus of continuity) Almost surely,

lim sup
h↓0

sup
0≤t≤1−h

|B(t+ h)−B(t)|√
2h log(1/h)

= 1.

For the proof, see [MP10].
This result is tight. See [MP10, Remark 1.21].
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3 Non-Monotonicity

THM 19.10 Almost surely, for all 0 < a < b < +∞, standard BM is not mono-
tone on the interval [a, b].

Proof: It suffices to look at intervals with rational endpoints because any general
non-degenerate interval of monotonicity must contain one of those. Since there are
countably many rational intervals, it suffices to prove that any particular one has
probability 0 of being monotone. Let [a, b] be such an interval. Note that for any
finite sub-division

a = a0 < a1 < · · · < an−1 < an = b,

the probability that each increment satisfies

B(ai)−B(ai−1) ≥ 0, ∀i = 1, . . . , n,

or the same with negative, is at most

2

(
1

2

)n
→ 0,

as n→∞ by symmetry of Gaussians.
More generally, we can prove the following. For a proof see [Lig10].

THM 19.11 Almost surely, BM satisfies:

1. The set of times at which local maxima occur is dense.

2. Every local maximum is strict.

3. The set of local maxima is countable.

Proof: Part (3). We use part (2). If t is a strict local maximum, it must be in the set

+∞⋃
n=1

{
t : B(t, ω) > B(s, ω), ∀s, |s− t| < n−1

}
.

But for each n, the set must be countable because two such t’s must be separated
by n−1. So the union is countable.

Further reading

Other constructions in [Dur10, Section8.1] and [Lig10, Section 1.5]. Proof of mod-
ulus of continuity [MP10, Theorem 1.14].
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