Lecture 19 : Brownian motion: Path properties I

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Durl0, Section 8.1], [Ligl0, Section 1.5, 1.6], [MP10, Section 1.1,
1.2].
1 Invariance

We begin with some useful invariance properties. The following are immediate.

THM 19.1 (Time translation) Let s > 0. If B(t) is a standard Brownian motion,
then so is X (t) = B(t + s) — B(s).

THM 19.2 (Scaling invariance) Ler a > 0. If B(t) is a standard Brownian mo-
tion, then so is X (t) = a1 B(a?t).

Proof: Sketch. We compute the variance of the increments:

Var[X (t) — X(s)] = Varla '(B(a’t) — B(a%s))]
= a %(a’t — a’s)
= t—s.

THM 19.3 (Time inversion) If B(t) is a standard Brownian motion, then so is
0 t=0
X(t) — ) 1 Y
tB(t™), t>0.
Proof: Sketch. We compute the covariance function for s < ¢:

Cov[X(s), X(t)] = Cov[sB(s™1),tB(t™1)]
= st(s_l/\t_l)

= S.
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It remains to check continuity at 0. Note that
{nt(t) = 0} = U{B®I<1/m, ¥teQn(0,1/n)},
80 m>1n>1

and

{th(t) = 0} = U{X®I<1/m, vteQn(0,1/n)}.

tl0
m>1n>1

The RHSs have the same probability because the distributions on all finite-dimensional

sets —and therefore on the rationals—are the same. The LHS of the first one has

probability 1. |
Typical applications of these are:

COR 194 Fora <0 < b, let
T(a,b) =inf{t >0 : B(t) € {a,b}}.

Then
E[T(a,b)] = ®E[T(1,b/a)].

In particular, E[T(—b,b)] is a constant multiple of b*.
Proof: Let X (t) = a~'B(a?t). Then,

E[T(a,b)] = a’E[inf{t >0,: X(¢t) € {1,b/a}}]
= a’E[T(1,b/a)].

COR 19.5 Almost surely,
t~1B(t) = 0.

Proof: Let X (t) be the time inversion of B(t). Then

lim Bit) = tligloX(l/t) = X(0)=0.

t—o00
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2 Modulus of continuity

By construction, B(t) is continuous a.s. In fact, we can prove more.

DEF 19.6 (Holder continuity) A function f is said locally a-Holder continuous
at x if there exists € > 0 and ¢ > 0 such that

[f (@) = f)| < clz -yl

for all y with |y — x| < €. We refer to « as the Holder exponent and to c as the
Holder constant.

THM 19.7 (Holder continuity) If o < 1/2, then almost surely Brownian motion
is everywhere locally a-Holder continuous.

Proof:

LEM 19.8 There exists a constant C' > 0 such that, almost surely, for every suffi-
ciently small h > 0and all0 <t <1—h,

|B(t+ h) — B(t)| < C\/hlog(1/h).
Proof: Recall our construction of Brownian motion on [0, 1]. Let
D, ={k27" : 0 <k <2"},

and

Note that D is countable and consider {Z; };cp a collection of independent stan-
dard Gaussians. Let

Z1, t=1,
Fy(t) =10, t =0,
linearly, in between.
and forn > 1
2= V27, t € D\ Dy,
F.(t) =<0, t € Dy_1,
linearly, in between.
Finally

B(t)=>_ Fu(t).
n=0
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Each F,, is piecewise linear and its derivative exists almost everywhere. By
construction, we have
1 lloo
2-n
Recall that there is N (random) such that | Z;| < ¢/n for all d € D,, withn > N.
In particular, for n > N we have

[ Falloe < ey/n2™nH1/2,

Using the mean-value theorem, assuming [ > N,

1P llo <

|B(t+h) = B(t)] < i [Fn(t +h) = Fu(1)]
n=0

IA

l )
> o+ Y 20 Fullsos
n=0

n=I[+1

N l 00
< R | Elloe+ch Y v/n2M42¢ Y /272,
n=0 n=N

n=I[+1

Take h small enough that the first term is smaller than /hlog(1/h) and [ defined
by 27! < h < 27!*! exceeds N. Then approximating the second and third terms
by their largest element gives the result. |

We go back to the proof of the theorem. For each &, we can find an h(k) small
enough so that the result applies to the standard BMs

{B(k+t)— B(k) : t €[0,1]},
and
(B(k+1—1t)—B(k+1) : t €[0,1]}.
Since there are countably many intervals [k, k+ 1), such h(k)’s exist almost surely

on all intervals simultaneously. Then note that for any o < 1/2,ift € [k, k + 1)
and h < h(k) small enough,

|B(t + h) — B(t)| < Cy/hlog(1/h) < Ch®(= Ch'/?(1/h)(1/2=)),
This concludes the proof. |

In fact:

THM 19.9 (Lévy’s modulus of continuity) Almost surely,

: |B(t +h) — B(1)]
limsup sup =
hi0  0<t<l—h 2hlog(1/h)
For the proof, see [MP10].
This result is tight. See [MP10, Remark 1.21].
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3 Non-Monotonicity

THM 19.10 Almost surely, for all 0 < a < b < 400, standard BM is not mono-
tone on the interval [a, b].

Proof: It suffices to look at intervals with rational endpoints because any general
non-degenerate interval of monotonicity must contain one of those. Since there are
countably many rational intervals, it suffices to prove that any particular one has
probability 0 of being monotone. Let [a, b] be such an interval. Note that for any
finite sub-division

a=ayp< a1 << ap_1<ap=>o,
the probability that each increment satisfies
B(a;) — B(a;—1) >0, Vi=1,...,n,
or the same with negative, is at most
1\"
2 <2> — 0,

as n — oo by symmetry of Gaussians. |
More generally, we can prove the following. For a proof see [Lig10].

THM 19.11 Almost surely, BM satisfies:
1. The set of times at which local maxima occur is dense.
2. Every local maximum is strict.
3. The set of local maxima is countable.

Proof: Part (3). We use part (2). If ¢ is a strict local maximum, it must be in the set
+oo
U {t : B(t,w) > B(s,w), Vs, |s—t| <n~'}.
n=1

But for each n, the set must be countable because two such ¢’s must be separated
by n~!. So the union is countable. ]

Further reading

Other constructions in [Dur10, Section8.1] and [Lig10, Section 1.5]. Proof of mod-
ulus of continuity [MP10, Theorem 1.14].
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