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MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 9], [Durl0, Section 5.1].

1 Conditional expectation: definition, existence, unique-
ness

1.1 Definition

DEF&THM 2.1 Let X € LY(Q, F,P) and G C F a sub o-field. Then there exists
a(a.s.) unique Y € L*(Q,G,P) s.t.

E[Y;G] = E[X;G], VG € G.

Such'Y is called a version of E[X | G].

1.2 Proof of uniqueness

Let Y,Y’ be two versions of E[X | G] such that w.lL.o.g. P[Y > Y'] > 0. By
monotonicity, there is n > 1 with G = {Y > Y’ +n~1} € G such that P[G] > 0.
Then, by definition,

0=E[Y —Y";G] >n"'P[G] > 0,

which gives a contradiction.

1.3 Proof of existence

There are two main approaches:
1. First approach: Radon-Nikodym theorem. Read [Dur10, Section A.4].
2. Second approach: Hilbert space method.

We begin with a definition.
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DEF&THM 2.2 Let X € L2(Q, F,P)and G C F a sub o-field. Then there exists
a(a.s.) unique Y € L2(Q,G,P) s.t.

A=||X =Yl =inf{||X - Wl : We £%Q,G,P)},

and, moreover,
(Z,X —-Y)=0,VZ € L*(Q,G,P).
Such'Y is called an orthogonal projection of X on L*(Q2,G,P).

We give a proof for completeness.
Proof: Take (Y;,) s.t. || X —Y,,||2 — A. Remembering that L?(2, G, P) is complete
we seek to prove that (Y},) is Cauchy. Using the parallelogram law

2V +20IVIE = U = VI3 +1IU + V3,

note that
1 1
X = Y[l + X = Va3 = 21X = S(V; + Y93 + 25 (Y - Y23
The first term on the LHS is at least A? so we have what we need. Let Y be the
limit of (Y},).

Note that for any Z € L?(Q2,G,P) and t € R
IX —Y —tZ|3 > | X - Y5,
so that, expanding and rearranging, we have
—2(Z, X - Y)+ 2|3 >0,

which is only possible if the first term is 0.
Uniqueness follows from the parallelogram law again. |
We return to the proof of existence of the conditional expectation. We use the
standard machinery. The previous theorem implies that conditional expectations
exist for indicators and simple functions. Now take X € £!(£, F,P) and write
X = XT— X, s0wecanassume X € £1(Q, F,P)* w.l.o.g. Using the staircase
function

0, ifX =0
x() — (—1)27", if(i—1)27"<X<i27"<r
r, if X > 7,

we have 0 < X 4 X. Let Y(") = E[X(") | G]. Using an argument similar to the
proof of uniqueness, it follows that U > 0 implies E[U | G] > 0. Using linearity ,
we then have Y (") 1Y = lim sup Y'(") which is measurable in G. By (MON)

E[Y;G] = E[X;G], ¥G € G.
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2 Examples
EX 23 If X € £Y(G), then E[X | G] = X a.s. trivially.
EX 24 IfG = {0,Q}, then E[X | G] = E[X].

EX 2.5 Let A,B € Fwith0 <P[B] < 1. IfG ={0,B,B%Q} and X = 14,
then
P[ANB]

P[A|G] = phiBLa
A1l {Pgﬁ[gg], onw € B°¢

onw€ B

3 Conditional expectation: properties

We show that conditional expectations behave the way one would expect. Below
all Xs are in £1(Q2, 7, P) and G is a sub o-field of F.

3.1 Extending properties of standard expectations

LEM 2.6 (CLIN) E[ale + a2X2 | g] = alE[Xl ’ g] + CLQE[XQ ‘ g] a.s.

Proof: Use linearity of expectation and the fact that a linear combination of RVs
in G isalsoin G. ]

LEM 2.7 (cPOS) If X > 0then E[X | G] > 0 a.s.

Proof: Let Y = E[X | G] and assume P[Y < 0] > 0. Thereis n > 1s.t. P[Y <
—n~1 > 0. But that implies, for G = {Y < —n~1},

E[X;G] =E[Y;G] < —n"'P[G] < 0,
a contradiction. [ ]
LEM 2.8 (¢tMON) If0 < X, 1 X then E[X,, |G] T E[X | ]G] a.s.

Proof: Let Y,, = E[X,,|G]. By (cLIN) and (cPOS), 0 < Y,, 1. Then letting
Y = limsup Y,, by (MON),

E[X;G] = E[Y; G,
forall G € G. ]

LEM 2.9 (¢cFATOU) If X,, > 0 then E[lim inf X, | G] < liminf E[X,, | G] a.s.
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Proof: Note that, for n > m,

Xn2>Znm = klgngm te g,

so that inf,, >, E[X,, | G] > E[Z,, | G]. Applying (cMON)

E[llim Z,, |G] = imE[Z,, |G] < lim igf E[X,|G].

LEM 2.10 (¢cDOM) If X, <V € £Y(Q, F,P) and X,, — X a.s., then
E[X, |g] = E[X |]]
Proof: Apply (cFATOU) to W,, =2V —|X,, — X| >0
E[2V | G] = E[liminf W,,] < liminf E[W,, |G] = E[2V | G]-lim inf E[| X,,—X| | G].

Use that, by definition,

E[X, - X |G| < E[[X, - X||G]. .
LEM 2.11 (¢JENSEN) If f is convex and E[| f(X)|] < 400 then
fEX]6]) <E[f(X)[7].

Proof: Exercise! ]

3.2 Other properties
LEM 2.12 (Tower) If H C G is a o-field

E[E[X [G]|H] = E[X | H].
In particular E[E[X | G]] = E[X].
Proof: LetY =E[X |G]and Z =E[X |H]. Then Z € Handfor He HC G

E[Z; H] = E[X; H] = E[Y; H].

LEM 2.13 (Taking out what is known) If Z € G is bounded then
E[ZX |G] = ZE[X | G].

This is also true if X, Z > 0 and E[ZX]| < +oo or X € LP(F) and Z € L1(G)
withp ' +qg ' =1andp > 1.
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Proof: By (LIN), we restrict ourselves to X > 0. Clear if Z = 1 is an indicator
with G’ € G since

E[leX;G) = E[X;GN G =EE[X|G;GNG) =E[leEX |GG,
for all G € G. Use the standard machine to conclude. [ |
LEM 2.14 (Role of independence) If H is independent of o(c(X),G), then

E[X|o(G,H)] = E[X |]].
In particular, if X is independent of H then E[ X | H] = E[X].
Proof: Let H € Hand G € G. Since Y = E[X | G] € G, we have
E[X;G N H] = E[X; G]P[H] = E[Y; G]P[H] = E[Y; G N H].
We conclude with the following lemma.

LEM 2.15 (Uniqueness of extension) Let 7 be a w-system on a set S, that is,
a family of subsets stable under intersection. If 1, pe are finite measures on
(S,0(2)) with 11(2) = pa2(Q2) that agree on L, then py and pio agree on o(I).

Indeed, note that the collection Z of sets GNH for G € G, H € H form a m-system
generating o (G, H). [ |

Further reading

Regular conditional probability [Dur10, Section 5.1]. 7-\ theorem [Dur10, Section
A1l
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