
Lecture 20 : Path properties II

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Dur10, Section 8.1], [Lig10, Section 1.6], [MP10, Section 1.3].

1 Previous class

THM 20.1 If α < 1/2, then almost surely Brownian motion is everywhere locally
α-Hölder continuous.

Recall:

THM 20.2 (Scaling invariance) Let a > 0. If B(t) is a standard Brownian mo-
tion, then so is X(t) = a−1B(a2t).

THM 20.3 (Time inversion) If B(t) is a standard Brownian motion, then so is

X(t) =

{
0, t = 0,

tB(t−1), t > 0.

LEM 20.4 (LLN) Almost surely, t−1B(t)→ 0 as t→ +∞.

2 Non-differentiability

SoB(t) grows slower than t. But the following lemma shows that its limsup grows
faster than

√
t.

LEM 20.5 Almost surely

lim sup
n→+∞

B(n)√
n

= +∞.

Proof: By (FATOU),

P[B(n) > c
√
n i.o.] ≥ lim sup

n→+∞
P[B(n) > c

√
n] = lim sup

n→+∞
P[B(1) > c] > 0,

by the scaling property. Thinking of B(n) as the sum of Xn = B(n)−B(n− 1),
the event on the LHS is exchangeable and the Hewitt-Savage 0-1 law implies that
it has probability 1.
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DEF 20.6 (Upper and lower derivatives) For a function f , we define the upper
and lower right derivatives as

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h
,

and

D∗f(t) = lim inf
h↓0

f(t+ h)− f(t)

h
.

We begin with an easy first result.

THM 20.7 Fix t ≥ 0. Then almost surely Brownian motion is not differentiable at
t. Moreover, D∗B(t) = +∞ and D∗B(t) = −∞.

Proof: Consider the time inversion X . Then

D∗X(0) ≥ lim sup
n→+∞

X(n−1)−X(0)

n−1
= lim sup

n→+∞
B(n) = +∞,

by the lemma above. This proves the result at 0. Then note thatX(s) = B(t+s)−
B(s) is a standard Brownian motion and differentiability of X at 0 is equivalent to
differentiability of B at t.

In fact, we can prove something much stronger.

THM 20.8 Almost surely, BM is nowhere differentiable. Furthermore, almost
surely, for all t

D∗B(t) = +∞,

or
D∗B(t) = −∞,

or both.

Proof: Suppose there is t0 such that the latter does not hold. By boundedness of
BM over [0, 1], we have

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M,

for some M < +∞. Assume t0 is in [(k − 1)2−n, k2−n] for some k, n. Then for
all 1 ≤ j ≤ 2n − k, in particular, for j = 1, 2, 3,

|B((k + j)2−n)−B((k + j − 1)2−n)|
≤ |B((k + j)2−n)−B(t0)|+ |B(t0)−B((k + j − 1)2−n)|
≤M(2j + 1)2−n,
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by our assumption. Define the events

Ωn,k = {|B((k + j)2−n)−B((k + j − 1)2−n)| ≤M(2j + 1)2−n, j = 1, 2, 3}.

It suffices to show that ∪2n−3k=1 Ωn,k cannot happen for infinitely many n. Indeed,

P

[
∃t0 ∈ [0, 1], sup

h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M

]

≤ P

[
2n−3⋃
k=1

Ωn,k for infinitely many n

]
But by the independence of increments

P[Ωn,k] =
3∏

j=1

P[|B((k + j)2−n)−B((k + j − 1)2−n)| ≤M(2j + 1)2−n]

≤ P
[
|B(2−n)| ≤ 7M

2n

]3
= P

[∣∣∣∣ 1√
2−n

B

([√
2−n

]2)∣∣∣∣ ≤ 7M√
2−n · 2n

]3
= P

[
|B(1)| ≤ 7M√

2n

]3
≤

(
7M√

2n

)3

,

because the density of a standard Gaussian is bounded by 1/2. Hence

P

[
2n−3⋃
k=1

Ωn,k

]
≤ 2n

(
7M√

2n

)3

= (7M)32−n/2,

which is summable. The result follows from BC.

3 Quadratic variation

Recall:

DEF 20.9 (Bounded variation) A function f : [0, t]→ R is of bounded variation
if there is M < +∞ such that

k∑
j=1

|f(tj)− f(tj−1)| ≤M,
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for all k ≥ 1 and all partitions 0 = t0 < t1 < · · · < tk = t. Otherwise, we say
that it is of unbounded variation.

THM 20.10 (Quadratic variation) Suppose the sequence of partitions

0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k(n) = t,

is nested, that is, at each step one or more partition points are added, and the mesh

∆(n) = sup
1≤j≤k(n)

{t(n)j − t(n)j−1},

converges to 0. Then, almost surely,

lim
n→+∞

k(n)∑
j=1

(B(t
(n)
j )−B(t

(n)
j−1))

2 = t.

Proof: By considering subsequences, it suffices to consider the case where one
point is added at each step. Let

X−n =

k(n)∑
j=1

(B(t
(n)
j )−B(t

(n)
j−1))

2.

Let
G−n = σ(X−n, X−n−1, . . .)

and

G−∞ =
∞⋂
k=1

G−k.

CLAIM 20.11 We claim that {X−n} is a reversed MG.

Proof: We want to show that

E[X−n+1 | G−n] = X−n.

In particular, this will imply by induction

X−n = E[X−1 | G−n].

Assume that, at step n, the new point s is added between the old points t1 < t2.
Write

X−n+1 = (B(t2)−B(t1))
2 +W,
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and
X−n = (B(s)−B(t1))

2 + (B(t2)−B(s))2 +W,

where W is independent of the other terms. We claim that

E[(B(t2)−B(t1))
2 | (B(s)−B(t1))

2 + (B(t2)−B(s))2]

= (B(s)−B(t1))
2 + (B(t2)−B(s))2,

which follows from the following lemma.

LEM 20.12 Let X,Z ∈ L2 be independent and assume Z is symmetric. Then

E[(X + Z)2 |X2 + Z2] = X2 + Z2.

Proof: By symmetry of Z,

E[(X + Z)2 |X2 + Z2] = E[(X − Z)2 |X2 + (−Z)2]

= E[(X − Z)2 |X2 + Z2].

Taking the difference we get

E[XZ |X2 + Z2] = 0.

The fact that X−n is a reversed MG follows from the argument above. (Exer-
cise.)

We return to the proof of the theorem. By Lévy’s Downward Theorem,

X−n → E[X−1 | G−∞],

almost surely. Note that E[X−1] = E[X−n] = t. Moreover, by (FATOU), the
variance of the limit

E[(E[X−1 | G−∞]− t)2] ≤ lim inf
n

E[(X−n − t)2]

≤ lim inf
n

Var

k(n)∑
j=1

(B(t
(n)
j )−B(t

(n)
j−1))

2


= lim inf

n
3

k(n)∑
j=1

(t
(n)
j − t(n)j−1)

2

≤ 3t lim inf
n

∆(n)

= 0.

So finally
E[X−1 | G−∞] = t.
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