Lecture 22 : Strong Markov property

MATH275B - Winter 2012

Lecturer: Sebastien Roch

References: [Dur10, Section 8.3], [Lig10, Section 1.8], [MP10, Section 2.2].

1 Stopping times

We first generalize stopping times to continuous time.

DEF 22.1 (Stopping time) A RV T with values in $[0, +\infty]$ is a stopping time with respect to the filtration $\{\mathcal{F}(t)\}_{t\geq 0}$ if for all $t \geq 0$,

$$\{T \le t\} \in \mathcal{F}(t).$$

THM 22.2 If the filtration $\{\mathcal{F}(t)\}_{t\geq 0}$ is right-continuous in the previous definition, then an equivalent definition is obtained by using a strict inequality.

EX 22.3 Let G be an open set. Then

$$T = \inf\{t \ge 0 : B(t) \in G\},\$$

is a stopping time with respect to $\{\mathcal{F}^+(t)\}$. Indeed, note

$$\{T < t\} = \bigcup_{s < t, s \in \mathbb{Q}} \{B(s) \in G\} \in \mathcal{F}^+(t),$$

by continuity of paths and the fact that G is open.

To define the strong Markov property, we will need the following.

DEF 22.4 Let T be a stopping time with respect to $\{\mathcal{F}^+(t)\}_{t>0}$. Then we let

$$\mathcal{F}^+(T) = \{A : A \cap \{T \le t\} \in \mathcal{F}^+(t), \forall t \ge 0\}.$$

The following lemma will be useful in extending properties about discrete-time stopping times to continuous time.

LEM 22.5 The following hold:

- 1. If T_n is a sequence of stopping times with respect to $\{\mathcal{F}(t)\}$ such that $T_n \uparrow T$, then so is T.
- 2. Let T be a stopping time with respect to $\{\mathcal{F}(t)\}$. Then the following are also stopping times:

$$T_n = (m+1)2^{-n}$$
 if $m2^{-n} \le T < (m+1)2^{-n}$.

EX 22.6 Let F be a closed set. Then

$$T = \inf\{t \ge 0 : B(t) \in F\},\$$

is a stopping time with respect to $\{\mathcal{F}^+(t)\}$. See [Lig10] for a proof.

2 Strong Markov property

THM 22.7 (Strong Markov property) Let $\{B(t)\}_{t\geq 0}$ be a BM and T, an almost surely finite stopping time. Then the process

$$\{B(T+t) - B(T) : t \ge 0\},\$$

is a BM started at 0 independent of $\mathcal{F}^+(T)$.

Proof: Let T_n be a discretization of T as above. Let

$$B_k(t) = B(t + k2^{-n}) - B(k2^{-n}),$$

and

$$B_*(t) = B(t + T_n) - B(T_n).$$

Suppose $E \in \mathcal{F}^+(T_n)$. Then for every "finite-dimensional" event A we have, by the Markov property and time translation invariance,

$$\mathbb{P}[\{B_* \in A\} \cap E] = \sum_{k=1}^{+\infty} \mathbb{P}[\{B_k \in A\} \cap E \cap \{T_n = k2^{-n}\}]$$
$$= \sum_{k=1}^{+\infty} \mathbb{P}[B_k \in A] \mathbb{P}[E \cap \{T_n = k2^{-n}\}]$$
$$= \mathbb{P}[B \in A] \sum_{k=1}^{+\infty} \mathbb{P}[E \cap \{T_n = k2^{-n}\}]$$
$$= \mathbb{P}[B \in A] \mathbb{P}[E].$$

That is, B_* is independent of $\mathcal{F}^+(T_n)$. Since $\mathcal{F}^+(T) \subseteq \mathcal{F}^+(T_n)$, B_* is also independent of $\mathcal{F}^+(T)$. Moreover, $T_n \downarrow T$ so that by continuity $\{B(t+T) - B(T)\}_{t\geq 0}$ is itself independent of $\mathcal{F}^+(T)$. The same argument shows that the increments have the correct distribution.

3 Applications

We discuss one application.

THM 22.8 (Reflection principle) Let $\{B(t)\}_{t\geq 0}$ be a standard BM and T, a stopping time. Then the process

 $B^*(t) = B(t)\mathbb{1}\{t \le T\} + (2B(T) - B(t))\mathbb{1}\{t > T\},\$

called BM reflected at T, is also a standard BM.

Proof: Follows immediately from the strong Markov property and symmetry. ■ A remarkable consequence is the following.

THM 22.9 Let $\{B(t)\}$ be a standard BM and let

$$M(t) = \max_{0 \le s \le t} B(s).$$

Then, if a > 0,

$$\mathbb{P}[M(t) \ge a] = 2\mathbb{P}[B(t) \ge a] = \mathbb{P}[|B(t)| \ge a].$$

Proof: Let

$$T = \inf\{t \ge 0 : B(t) = a\}.$$

Then we have the disjoint union

$$\{M(t) \ge a\} = \{B(t) \ge a\} \cup \{B(t) < a, M(t) \ge a\}$$

= $\{B(t) \ge a\} \cup \{B^*(t) > a\}.$

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Lig10] Thomas M. Liggett. Continuous time Markov processes, volume 113 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. An introduction.
- [MP10] Peter Mörters and Yuval Peres. Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.